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Abstract. The well-known Kerr effect in isotropic fluids consists in the appearance of 
uniaxial orientational order and birefringence that grows as the square of the applied electric 
field.  We predict and observe that at a high electric field, the Kerr effect displays new features 
caused by nonlinear dependence of dielectric permittivity on the field-induced orientational order 
parameter. Namely, the field-induced birefringence grows faster than the square of the electric 
field; the dynamics of birefringence growth slows down as the field increases. As the function of 
temperature, the field induced birefringence is inversely proportional to the departure from an 
asymptotic critical temperature, but this temperature is no longer a constant (corresponding to the 
lower limit of the supercooled isotropic phase) and increases proportionally to the square of the 
electric field. 

 
   

 
Condensed matter in presence of external fields is usually described by a Landau type of 

the free energy expansion.  The field-induced changes in the properties are assumed to be 

linearly related to each other.  A good example is the field-induced orientational order in an 

isotropic fluid [1-8].  The phenomenon manifests itself through the field-induced birefringence 

(called Kerr effect for the electric field and Cotton-Mouton effect for the magnetic field) [1-7], or 

as an enhancement of dielectric permittivity [8]. The standard Landau-de Gennes model 

describes these effects by expanding the free energy density in power series of the orientational 

order parameter S ,  assuming that the field-induced properties such as birefringence and 

dielectric permittivity, are linearly proportional to S , namely, n Sδ ∝  and 1E iso Sε ε ε= + , 

where isoε  and 1ε  are constants.   

In this Letter, we demonstrate that for high applied fields, the response of the system can 

be properly described only when the field-induced parameters are related in a nonlinear fashion. 
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Namely, we show that the field induced dielectric permittivity ( )E Sε  exhibits a quadratic 

dependence on the field-induced scalar order parameter S , namely, 2
1 2E iso S Sε ε ε ε= + + , where 

the new coefficient 2ε  can be even larger than 1ε .   The quadratic term leads to qualitatively new 

effects, such as birefringence growing faster than the square of the electric field,  a slowing down 

of the response dynamics at high fields and dependence of the effective critical temperature  on 

the applied electric field.  All these predictions are confirmed experimentally. 

Model. The equilibrium state of the isotropic phase in an electric field E  is determined 

by the free energy density in the Landau-de Gennes model as: 

* 2 3 41 1 1 1( )
2 3 4 2

f a T T S bS cS= − − + − ⋅E D ,                                        (1) 

where a , b , and c  are the expansion constants,  *T  is the lower temperature limit of the 

supercooled isotropic phase, and the electric displacement ( )0 E Sε ε=D E  depends on the applied 

field E  directly and through the dependence of the dielectric permittivity Eε  on S .  The effect 

of external fields is usually considered weak and thus only the linear term in the expansion of 

( )E Sε  is retained.  As a result, the simplest version of the theory with 0b c= =  predicts that the 

field-induced birefringence depends on temperature as nδ ( ) 1*T T
−

∝ − [9,10]. The abundant 

experimental results, see e.g. [3,4,11-13], clearly validate this prediction, except for the close 

proximity of the isotropic-to-nematic transition NIT  [14-16], where it suffices to use the full form 

of the Landau-de Gennes expansion with the higher order b - and c - terms in Eq.(1) [9,16].  The 

main result of our work is that the response of the system to high electric field is different from 

the predictions of the standard Landau-de Gennes model. This response demonstrates nonlinear 
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(quadratic) dependence of the dielectric permittivity on the orientational order, 

2
1 2E iso S Sε ε ε ε= + + ; the latter leads to qualitative new effects.   

The equilibrium state corresponding to the minimum of f  obeys the condition  

( ) ( )* 2 3 2
0 1 2

1 2 0
2

f a T T S bS cS S E
S

ε ε ε∂ = − − + − + =
∂

.                       (2) 

At temperatures well above NIT , the field-induced order parameter S  is small, so that the 

b - and c -  terms in Eq.(2) can be neglected:  

2
* 22

0 1 1

22 ( )E a T T E
S

ε
ε ε ε

= − − .                                                   (3) 

The nonzero coefficient 2ε  in the last expression shifts the asymptotic critical temperature for S , 

* 20 2T T E
a

ε ε′ = + . 

The dynamics of field-induced order parameter can be described in the Landau-

Khalatnikov model ( )/ /dS dt f Sγ = −∂ ∂  [17],  obtained from Eq. (2) with 0b c= =  as 

( )* 2 2
0 2 0 1

1
2

dS a T T E S E
dt

γ ε ε ε ε⎡ ⎤= − − − +⎣ ⎦ .     (4) 

For the square pulse, ( )on offE t t t E≤ ≤ = , the solution of Eq.(4)  is 

  

( ) ( )
( ) ( ) ( )

* 2
0 2

*

1 exp , ;

exp , ,

on
on off E on

on

off
off off off

off

t tS t t t S
a T T E

t t
S t t S t

a T T

γτ
τ ε ε

γτ
τ

⎛ ⎞−≤ ≤ = − =⎜ ⎟ − −⎝ ⎠

−
> = =

−

  (5) 
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where ES  is the equilibrium value of the order parameter in the given applied electric field, 

obtained from Eq.(3); the switch-on time onτ  is the function of the applied electric field, while 

the switch off time offτ  is not. Interestingly and counterintuitively, the switch on time increases 

as the driving electric field increases. Below we demonstrate that the main predictions of this 

simple model, namely, field dependence of the asymptotic critical temperature and field-

triggered slow-down of the switch on response, are clearly observed in the experiment. 

Experiment. We used the standard nematic 4-cyano-4'-pentylbiphenyl (5CB), purchased 

from Merck and Jiangsu Hecheng. The temperature of the isotropic to nematic transition phase 

transition is ( )35.4 0.1 CNIT = ± ° . The NLC is filled into a cell made of two parallel glass plates 

with thin transparent electrodes of indium tin oxide (ITO) of small area, 22 2 mm×  and low 

resistivity, 10 / squareΩ . The cell thickness is 6.5 md μ= . The glass plates were covered by 

layers of polyimide PI-1211 (Nissan). In order to measure the optic response to the applied field, 

we use a laser beam (He-Ne, 633 nmλ = ) that passes through the crossed polarizers with the 

cell and an optic compensator between them, as described previously [18].  The transmitted 

intensity is measured by a detector TIA-525 (Terahertz Technologies, response time 1 ns< ). The 

cell is sandwiched between two right-angle prisms, so that the light incidence is oblique, at the 

angle 45θ = ° , Fig.1 (a). The temperature of cell assemblies is controlled with Linkam LTS350 

hot stage with the accuracy better than 0.1 C° .  Voltage pulses with sharp rise and fall edges 

(characteristic time better than 3 ns) were applied by a pulse generator HV 1000 (Direct Energy). 

The voltage pulses and photodetector signals were monitored with the 1G samples/s digital 

oscilloscope TDS2014 (Tektronix), Fig. 1(b).  
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The field induced birefringence was measured by monitoring the dynamics of polarized 

light intensity transmitted by the cell, optical compensator and the pair of polarizers.  The 

dynamics of the transmitted light intensity is measured at two compensator’s settings , A and B, 

for which the  phase retardance difference is B A πΓ − Γ = .  When there is no electric field, the 

measured transmitted light intensities for these settings are ( ) ( ) max min0 0
2A B

I II I += = ; here  maxI  

and minI  are the maximum and minimum transmitted intensities  determined by adjusting the 

phase retardance Γ  of the compensator.  Then the effective field-induced birefringence ( )effn tδ  

is determined through field-induced phase retardance ΔΓ  as  (see [18] for details):   

( ) ( ) ( )
max min

arcsin
2 2

A B
eff

I t I t
n t

d d I I
λ λδ
π π

−ΔΓ= =
−

                                                 (6) 

Using the Fresnel equation for the experimental set-up, we determine that 

( )2 2 2 2 2 2 2 2
|| ||1 sin sineff g gn n n n n n A n n ABSδ θ θ⊥ ⊥ ⊥= − − − = − = ,   (7) 

 where ( )2 2 2 2 2 2 2 2 2
|| || ||sin sin sing g gA n n n n n n n nθ θ θ⊥ ⊥= − + − , ||n  and n⊥  are field modified 

refractive indices that correspond to polarizations parallel and perpendicular to the applied field, 

respectively, 1.52gn =  is the refractive index of the glass prism, and 45θ = °  is the incidence 

angle, Fig.1 (a).  With the experimental data || 1.58n = , 1.55n⊥ = , collected at 78.8 10 V/mE = ×

and 25 CNIT T= + ° , we find 0.21A = ; the latter number remains constant within 3% when the 

applied field is less than 81.2 10 V/m× .  According to the Vuks model for the local field 
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correction [19] and to the experimental data [20,21], the quantity 2 2
||n n⊥−  in Eq.(7) is 

proportional to the field induced order parameter S ; 2 2
||n n BS⊥− = .  

 

FIG. 1 (color online). (a) Experimental incidence geometry, in which the cell is sandwiched 
between two right angle prisms for oblique light incidence at 45 degrees; the electric field is 
applied along the x axis; (b) dynamics of effective field-induced birefringence (circles) 
response to the applied voltage pulse (squares) at 30oC above TNI. 

 

The measured dependencies ( ),effn E Tδ  allow us to verify Eq.(3), see Fig.2,3. Far above the 

transition temperature, for 25 CNIT T> + °  , the temperature dependence of 2 / effE nδ   is clearly 

linear for all values of the strong electric field, Fig.2a, as predicted by Eq.(3). The intersection of 

the linear dependencies with the horizontal temperature axis in Fig.2a is different for different 

voltages.  This intersection is the asymptotic critical temperature T ′  introduced above.  The 
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explicit field dependence of T ′ , obtained by fitting the data in Fig.2a for 25 CNIT T> + ° , follows 

the behavior * 20 2'T T E
a

ε ε= + , Fig.2b, predicted by the model.  Small deviations from the linear 

behavior * 2'T T E− ∝  observed at the highest fields will be discussed later (see Fig.3).  Note that 

the very strong electric fields used in our work (that were not available in the prior studies of the 

subject) cause such a significant increase of S  that the temperature dependencies of 2 / effE nδ  

close to the transition, 25 CNI NIT T T< < + ° , is no longer linear, Fig.2a, and thus must be 

described with the higher order (b  and c ) terms in the Landau-de Gennes expansion. 

 

FIG. 2 (color online). (a) Temperature dependence of 2 / effE nδ  for applied electric field 

29 V/ mE μ=  (triangles), 58 V/ mμ  (crosses), 88 V/ mμ  (circles), and 115 V/ mμ (saltires); (b) 

NIT T′ −  vs. 2E . All dashed lines show the corresponding results of the linear fitting 

performed for high temperatures, 25 CNIT T> + ° .  
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FIG. 3 (color online). (a) 2 /E S  vs. 2E at 30 CNIT + °  (squares), 42 CNIT + °  (triangles), 

51 CNIT + °  (circles); (b) Temperature dependence of 2 1/ε ε  (squares) and 1( ) /a T T ε∗−  
(circles). 

 

Equation (3) predicts that 2 /E S  is proportional to 2E  at the temperatures well above NIT ; 

this is indeed what is observed experimentally, Fig. 3(a). The proportionality constant in the 

relationship 2 2
||n n BS⊥− =  is estimated to be 1.0 0.1B = ±  from the temperature dependencies 

( )||n T , ( )n T⊥  and ( )S T  measured in the nematic phase. One can estimate that the field-induced 

order parameter in the fitting temperature range can reach 0.15; however, this value is still 

mainly determined by linear and dielectric terms in Landau-De Gennes model, Eq.(2), as the 

relative contribution of the non-linear b and c terms is less than 4 %. Fitting the data at high 

temperatures allows one to determine the temperature behavior of  *
1( ) /a T T ε−  and 2 1/ε ε , 
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Fig.3b. The slope of *
1( ) /a T T ε−  vs  T  in Fig. 3(b) leads to 4 3

1/ 2.0 10 J/ C ma ε = × ° . The ratio 

2 1/ε ε  increases from 0.43 to 1.04 when the temperature decreases from 51 CNIT + °  to 

25 CNIT + ° . The temperature dependence of 2 1/ε ε  is most probably caused by the coefficient 2ε , 

associated with intermolecular interactions, rather than by 1ε  describing single molecule additive 

contributions. Note that the finite slope of the 2 /E S  vs  2E  means that the field-induced 

birefringence n Sδ ∝  does not follow the classic dependence 2n Eδ ∝  of the Kerr effect; in our 

case, nδ  grows faster than 2E . 

The significant contribution of the quadratic term in ( )E Sε  can be qualitatively 

explained from the temperature dependence of dielectric and optic tensors in the nematic phase. 

The applied electric field creates a uniaxial paranematic phase with the optical axis parallel to the 

field. Thus, we compare ( )E Sε  with the parallel component of the dielectric permittivity in the 

nematic phase ( ) || || 2
|| 1 2isoS S Sε ε ε ε= + + .  The latter dependence can be reconstructed from the 

temperature dependencies ( )|| Tε  and ( )S T  deduced from the dielectric and birefringence 

measurements. Our measurements of ( )|| Tε  and ( )n Tδ , similar to ones in [22,23], result in 

||
1 6.4ε =  and ||

2 8.8ε = . The ratio || ||
2 1/ 1.38ε ε ≈  obtained for the nematic phase, is close to 2 1/ε ε  

measured in the Kerr effect in the isotropic phase. 

We now proceed to the discussion of the dynamics of field-induced response.  It takes a 

finite time (about 10 ns) for the voltage to change from zero to its saturated value; the same for 

the reverse process.  Therefore, the values of onτ  and offτ  were obtained by fitting the rise and 

fall processes within the time intervals that correspond to the saturated and zero voltages, 
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respectively.  To compare the dynamics at different electric field, in Fig.4a we plot the 

normalized values of the field induced birefringence, ,max/eff effn nδ δ , where ,maxeffnδ  is the 

maximum birefringence achieved at the given field.  Figure 4(a) clearly shows that onτ  increases 

as the field is increased;  offτ  does not depend on the field within the accuracy of the experiment 

(1 ns),  being approximately equal to onτ  at the small field, Fig. 4(b), as expected, see Eq.(5). 

 

FIG. 4 (color online). Dynamics of the switching in isotropic phase at the temperatures well 
above NIT : (a) experimental optic response at 30 CNIT + °  (circles) and the respective linear 
fitting (solid line) for two different applied electric fields; note the slower switching-on at 
higher fields; (b) Electric field dependence of onτ  (open symbols) and offτ  (closed symbols) 

at 30 CNIT + °  (circles) and 42 CNIT + °  (squares). 

The experimental results above are all explained within the proposed model of the Kerr 

effect at high electric fields.  The model advances the standard Landau-de Gennes theory by 
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adding a dielectric permittivity term proportional to the square of the induced order parameter.   

An important question is whether the data can be explained by other mechanisms. One 

possibility is to add a term 4SE∝  with fourth order electric field to the Landau-de Gennes 

expansion.  Introduction of such a term would produce dependencies 2 / effE nδ  vs. NIT T−  that 

have a different tilt but the same intersection with the temperature axis for different values of E ; 

such a behavior would contradict strongly the experimental data in Fig.2(a).  Furthermore, the 

term 4SE∝  would not make the switch-on time dependent on the applied electric field.  One can 

also consider heating effects caused by adiabatic changes of polarization and order parameter [24] 

and by Joule heating of LC material and electrodes at the substrates.  The resulting temperature 

increase is rather small, less than 0.2oC, and could only decrease the observed asymptotic critical 

temperature and make the switching-on time faster.  The experiments, however, show an 

opposite behavior, Figs.2 and 4. 

To conclude, we presented a theoretical description and experimental confirmation of the 

new features of the electrooptic Kerr effect, observed at high electric fields.  First, at a given 

temperature, the field-induced birefringence grows faster than 2E , which is of interest in both 

the fundamental and applied aspects.  Second, the rise-on time of the field-induced birefringence 

becomes longer as the field increases. Finally, at the fixed electric field, the temperature 

dependence of the inverse Kerr constant outside the close proximity of NIT  remains linear, but 

the asymptotic critical temperature 'T  does not coincide with *T , shifting upwards with the 

square of the electric field. When the temperature dependence of the inverse Kerr constant is 

used to determine the lower temperature limit of the isotropic phase, this effect should be 

accounted for, otherwise the procedure will yield wrong results.  All these features are new as 
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compared to the standard Landau-de Gennes description of the Kerr effect and underline the 

importance of nonlinear relationships between different field-induced properties. 
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