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We present a Lattice Boltzmann realization of Grad’s extended hydrodynamic approach to non-
equilibrium flows. This is achieved by using higher order isotropic lattices coupled with a higher
order regularization procedure. The method is assessed for flow across parallel plates and three-
dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and
numerical solution of the Boltzmann equation across the full range of Knudsen numbers, from the
hydrodynamic regime to ballistic motion. The model proposed in this paper may offer a compact
and efficient computational tool for the simulation of non-equilibrium flows in complex geometries.

A deeper understanding of the physics of fluids at the
micro and nanoscale is key to many emergent applica-
tions in science and micro-nano-engineering [1–3]. Due
to the inherent multiscale nature of the problem, with
details at the nanometric scales affecting the overall op-
eration of macroscopic devices, a whole array of compu-
tational techniques must be deployed to develop a quanti-
tative understanding of these phenomena. As a result, in
the last decades several mesoscale methods have emerged
in the attempt of bridging the gap between the macro and
microlevels [4–9]. Among others, the lattice Boltzmann
(LB) appears to offer a very effective means of dealing
with flow problems which are "too small" for the contin-
uum mechanics and "too large" for molecular methods
[10] .
The Boltzmann equation is known to converge

to the Navier-Stokes equations in the limit of van-
ishing Knudsen number, through the Chapman-
Enskog asymptotic expansion. The same is true
for the LB equation.
At finite Knudsen numbers, higher order gen-

eralized hydrodynamic equations, known as Bur-
nett and super-Burnett, are obtained. However,
the practical use of these equations has met with
limited success, due to unstable behavior and
other difficulties connected with the implementa-
tion of boundary conditions. It has been argued
that LB cannot deliver any reliable information
in this finite-Knudsen generalized hydrodynamic
regime, since it does not feature enough sym-
metry to recover the required high-order terms.
However, numerous simulations have proved such the-
oretical expectation too restrictive and shown that LB
continues to provide useful information also beyond the
hydrodynamic regime, where non-equilibrium effects can
no longer be treated as a weak departure from lo-
cal equilibrium. [11–13].
Subsequent developments have identified the main fea-
tures that have to be added on top of the standard LB
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scheme in order to make it eligible for generalized hydro-
dynamic investigations, namely: i) Higher-order lattices
(HOL) [14–17], ii) Kinetic boundary conditions (KBC)
[18], iii) Regularization(REG) [19, 20]. KBC are re-
quired to properly describe the momentum exchanges
between fluid molecules and solid walls, so as to allow
relative motion of the fluid in the near-wall region (slip-
motion). They stand in marked contrast with the no-slip
boundary conditions used in continuum hydrodynamics
which are typically implemented by the so-called bounce-
back (BB) rule, i.e. particles impinging on the wall are
bounced back along the opposite direction [15, 18]. HOL
are necessary to provide sufficient symmetry/isotropy for
the description of the high order kinetic moments carry-
ing the relevant gneralized hydrodynamic information.
By HOL we refer to those lattices which provide isotropy
beyond fourth order. Typical HOL used in LB theory
contain more kinetic moments than needed for hydrody-
namic purposes, the so-called "ghosts", hence suitable
filtering of such modes is a crucial step of the procedure.
Finally, Regularization filters out the non-hydrodynamic
modes generated by the free motion of the molecules
between two subsequent collisions, with the result of
smoothing the effects of ghost modes [20–22]. The com-
bination of the three features above, which we shall dub
Extended LB for brevity, bears a major conceptual and
practical value, as it potentially leads to the accomplish-
ment of the Grad’s extended hydrodynamics approach
[23] within a very compact and efficient computational
framework [24]. It is clear that the successful completion
of this program would lead to a significant gain (one or
two orders of magnitude) in computational efficiency for
Kn ∼ 1 flows. However, to date, there is no consolidated
picture of how the above features combine to form a uni-
fied lattice kinetic approach capable of handling strong
non-equilibrium effects across a broad range of Knudsen
numbers.
In this paper, we show that all three ingredients are in-
deed necessary to correctly reproduce non-equilibrium
behaviour across the full range of Knudsen number, for
the case of flow across flat parallel plates. On the other
hand, we also show that for more complex geometries,
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FIG. 1. (Color online) 4th-order isotropic 19 speeds lattice
(red arrows) and 8th-order isotropic 41 speeds lattice (red
and blue arrows)

such as 3d flows through a regular array of spheres, global
observables, say mass flow, can be computed even by us-
ing simple bounce-back boundary conditions. Since such
conditions are manifestly locally incorrect at finite Knud-
sen numbers, the message is that the errors they intro-
duce are alleviated by the Regularization procedure, at
least in a global sense, i.e. upon averaging over the entire
fluid configuration. This may offer a handy shortcut for
computational studies of non-equilibrium flows through
disordered media.

I. REGULARIZED LATTICE BOLTZMANN
METHOD AND KINETIC BOUNDARY

CONDITIONS

The lattice Boltzmann method is based on a minimal
(lattice) version of the Bhatnagar-Gross-Krook equation,
in which the computational molecules stream along the
links of a uniform lattice, and collide on the nodes ac-
cording to a simple relaxation to a local equilibrium. In
equations

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t) +
∆t

τ
(feqi − fi(~x, t)) +

∆t

c2s
~ci · ~F

(1)

where fi(~x, t) is the discrete distribution function, rep-
resenting the probability of finding a particle at position
~x and time t with discrete velocity ~ci, being i the index
spanning over the lattice discrete directions, i = 0, .., b,
[25]. Finally, ∆t is the lattice time step. The left hand
side of the equation (1) represents the free-streaming of
particles within the lattice, which hop from a lattice node
to neighbor ones according to the direction defined by
the lattice vector ~ci. The right hand side includes the
forcing term and the collisional relaxation of the set of
distribution functions towards the discrete local equilib-
ria feqi , i.e. truncated low-Mach number expansion of the
Maxwell-Boltzmann distribution. When using HOL’s the
forcing term as in eq. 1 should be modified to include a
discrete correction [14]. However we have verified that
the results obtained are not affected by the type of forc-
ing scheme. Indeed, by simulating the same flow with
both flow boundary conditions (without forcing term)
and with a different kind of forcing scheme, namely the
Exact Difference Method [26], we have obtained basically
the same results. It is worth noting that while the low or-
der isotropic lattices are implemented with second order
equilibria, the high order lattices are equipped with equi-
libria including kinetic moments up to third order. The
second order and third order expansion of the Maxwell-
Boltzmann distribution function, used in this work, reads
as follows:

feqi = wiρ

[
1 +

(~ci · ~u)

c2s
+

(~ci · ~u)2

2c4s
− ~u · ~u

2c2s

]
(2)

feqi = wiρ

[
1 +

(~ci · ~u)

c2s
+

(~ci · ~u)2

2c4s
− ~u · ~u

2c2s
+

(~ci · ~u)3

6c6s
− ~u · ~u

2c4s
(~ci · ~u)

]
(3)

where wi are weights of the discrete equilibrium dis-
tribution functions, cs is the lattice sound speed, ~u is
the macroscopic flow velocity. The parameter τ in equa-
tion (1) is the relaxation time which controls the lat-
tice kinematic fluid viscosity through the relation, [25]:
ν = c2s

(
τ − ∆t

2

)
. We wish to point out that the

use of third order equilibria is motivated by the
fact that the regularization procedure employed
encompasses moments up to order Three. As a
result the use of equilibria higher than third order
would require an adaptation of the regularization
step as well. Such an adaptation is conceptually
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straightforward, but it implies a significant com-
putational overhead due to the need of computing
the fifteen components of the fourth order tensor∑

i fi~ci~ci~ci~ci.

The relevant hydrodynamic macroscopic moments,
i.e. density, linear momentum and momentum flux
tensor, are given by linear weighted sums, namely,
ρ(~x, t) =

∑
i fi(~x, t), ρ~u(~x, t) =

∑
i fi(~x, t)~ci,

Π(~x, t) =
∑

i fi(~x, t)Qi where Qi = ~ci~ci − c2sI, I
being the identity matrix.
In this work, we shall use two classes of lattices the
D3Q19 and D3Q41 lattices, providing 4th and 8th order
isotropy in three dimensions, respectively (see Fig. 1).
The standard notation DnQm for m discrete velocities
in n spatial dimensions is used throughout. While low
order lattices allow to correctly recover kinetic moments
only up to second order, the 8th-order ones provide
sufficient isotropy to retrieve moments up to order four.

The regularized LB reads as follows:

fi(xi + ci∆t, t+ ∆t) = Rf ′i(x, t) ≡ h
eq
i −

∆t

τ
hneqi (4)

where hi is the hydrodynamic component of the full dis-
tribution fi (see [19, 21, 27, 28]) and R stands for the
regularization operator. From the above, it is appreci-
ated that, the post-collision distribution, of a 4th-order
isotropic lattice, is defined only in terms of the rele-
vant hydrodynamic modes, namely the conserved and
the transport ones (ρ, ρ~u and Π). Also to be noted
that, for 8th-order lattices, the hydrodynamic component
also includes third-order moments, namely Q(~x, t) =∑

i f
eq
i (~x, t)Qi~ci.

The physical meaning of the regularization is quite trans-
parent: it filters out the non-hydrodynamic moments
from the post-collision distribution function, so as to
minimise their unphysical effect on the macroscopic be-
haviour of the flow.
Indeed, the aim of employing HOL is not to include
non-hydrodynamic moments (ghosts), but the transport
modes, namely non-conserved ones higher than 2nd-
order, which lie beyond the Navier-Stokes description but
still carry a macroscopic meaning.

As we shall see, this is crucial to recover the correct be-
havior in the high Knudsen regime. As per kinetic bound-
ary conditions, we have employed the diffuse-scattering
formulation developed in [18], namely a lattice transcrip-
tion of Maxwell’s full accommodation model. In this
model, molecules impinging on the wall fully accommo-
date with the solid ones, and consequently they are re-
emitted into the fluid along a random direction and with
a magnitude drawn from a local maxwellian at the local
wall temperature [29].

A. Extended Lattice Boltzmann vs Grad’s
extended hydrodynamics

It is well known that, back in the 60’s, Harold Grad
[23] proposed an elegant procedure, generalized hydrody-
namics, to solve the Boltzmann equation via expansion
onto suitable sets of basis functions (Hermite polynomi-
als for the case of Cartesian geometries). This expan-
sion leads to an open-ended hierarchy of first order non-
linear partial differential equations for the kinetic mo-
ments associated with the projection of the Boltzmann
distribution upon the chosen basis function. In order
to close the hierarchy, Grad proposed to truncate it to
the third order level, i.e. including density, current, mo-
mentum flux and energy flux, for a total of thirteen in
three spatial dimensions. Despite its elegance, Grad’s
procedure has met with limited success in practical ap-
plications, mainly because the 13-moment truncation no
longer guarantees positivity of the distribution function
and also because it is hard to impose well-defined bound-
ary conditions, especially in wall bounded flows where
more moments are needed to describe anisotropic trans-
port. The LB approach is an alternative way of formu-
lating the Grad’s program, using the discrete distribu-
tions instead of Grad’s kinetic moments as a mathemat-
ical representation. The perceived advantage is that, by
including a sufficient number of discrete velocities, the LB
can capture finite-Knudsen non-equilibrium effects with-
out incurring the numerical difficulties incurred by the
Grad’s procedure [30]. More specifically, there are sev-
eral basic differences between Extended LB schemes and
Grad’s 13 moments method. First, Extended LB schemes
obviously contain many more moments than Grad’s 13
moments method. In particular, Extended LB account
for third-order tensors not included in Grad’s analysis,
which play a significant role especially near solid walls.
Second, not all Extended LB schemes can be recovered
via Gauss-Hermite quadrature; to this purpose, suffices
to note that Gauss-Hermite nodes beyond the first Bril-
louin cell don’t come in integer sequence, hence they
do not correspond to the discrete velocities used in Ex-
tended LB schemes. Third, while in Grad’s 13 moments
method, boundary conditions are often ill-conditioned,
Extended LB schemes have shown compliance with well-
posed boundary conditions [30]. This is because the in-
teraction of the discrete distributions with the wall can be
handled through controlled lattice transcriptions of the
boundary conditions used in particle methods, typically
DSMC. In this sense, Extended LB are well positioned
to capture the best of the worlds.

II. FLOW ACROSS FLAT PLATES AT
INCREASING KNUDSEN

The capability of Extended LB to reproduce the flow
across parallel plates across a broad range of Knudsen
numbers has been pointed out before [24, 27]. From this



4

study, however, it is not clear whether all three ingre-
dients mentioned above are indeed necessary to achieve
quantitative agreement with analytical results and direct
Monte Carlo simulation of the Boltzmann equation. To
clarify this important issue, we have performed a system-
atic investigation of different combinations of HOL, KBC
and REG features.
The numerical simulations are performed on a

50× 50 grid, over several thousands time steps in
order to achieve steady-state conditions.

The main results are collected in Figure 2. From this
figure, we see that the Regularized D3Q41 with kinetic
boundary conditions provides excellent agreement with
both analytical asymptotics and DSMC (Direct Simula-
tion Monte Carlo), data, across all four Knudsen regimes,
Continuum, Slip, Transition and Ballistic. On the con-
trary, D3Q41 (no regularization) with kinetic boundary
conditions overestimates the flow approximately above
Kn ∼ 0.1 where, for the flow across flat plates, the Kn
is defined as:

Kn = ν/(hcs) (5)

where h is the height of the channel.
This suggests that the regularization corrects the well-

known tendency of the LB lattices to over-emphasize the
role of the streaming directions which never hit the wall
in the collisionless limit ("runaway directions"), thereby
leading to an artificial excess of mass flow [12]. Clearly,
this anomaly is particularly acute in the flat plates ge-
ometry, a point to which we shall return shortly. From
the same Figure we see that D3Q41R with bounce-back
underestimates the flow already at Kn > 0.05, indicating
that the excessive slow-down at solid walls caused by the
bounce-back conditions is not healed by Regularization.
Taken all together, the figure shows that both Regular-
ization and Kinetic boundary conditions are required to
retrieve the correct non-equilibrium behaviour across all
values of the Knudsen numbers. More importantly, it
also shows why this is so: Regularization mitigates the
"runaway pathology", but cannot cure the excessive loss
of momentum to the walls caused by bounce-back bound-
ary conditions.

III. THREE-DIMENSIONAL FLOW THROUGH
REGULAR ARRAYS OF SPHERES

We have noted before that the "runaway pathology" is
particularly emphasized by the flat plate geometry. One
may wonder whether more complex geometries, such as
those encountered in many practical applications, suffer
the same pathology. A similar question goes for the over-
dissipation induced by the bounce-back conditions. Both
questions appear relevant to the assessment of the LB
approach to geometries of practical interest [31, 32]. To
shed light into these issues, we have performed systematic
simulations of three-dimensional flows through a porous

medium formed by an array of simple cubic cells (scc)
of spheres of equal radius, at increasing values of the
Knudsen number.
The simulations are performed on a 1003 grid,

with 25 grid points across the radius of the sphere.
In lattice units (i.e., ∆t = ∆x = 1), the Knudsen num-

ber is defined as follows:

Kn = ν/(Dcs) (6)

where D is the sphere diameter. Hence, the Knud-
sen number can be controlled by varying the viscosity
through the relaxation time τ . Due to the geometric
properties of the elementary cell, we applied periodic
boundary conditions on all the six faces of the domain.
Both Reynolds and Mach numbers were kept sufficiently
low to secure compliance with the incompressible and
Darcy limits, respectively.

In Fig. 3 we show the permeability correction factors,
defined as the ratio between the apparent permeability
(which is a function of Kn) κ and the equivalent liquid
permeability or absolute permeability κ∞, for a broad
range of flow regimes. As a reference, we take the an-
alytical correction factors proposed by Klinkenberg [33]
and Beskok et al. [34], which read respectively:

κ = (1 + 4cKn)κ∞ (7)

κ = (1 + 4α(Kn)Kn)

(
1 +

4Kn

1− bKn

)
κ∞ (8)

where c is a constant slightly less than one, α is the
rarefaction coefficient and b is a constant . These two
corrections stand respectively for the lower and upper
bounds for permeability in porous media. Fig. 3 carries
the central message of this section. First, the D3Q19 and
D3Q41 with bounce-back boundary conditions agree with
the analytical solutions only in the regimeKn < 0.01. At
higher Knudsen’s, say between 0.01 < Kn < 0.03, they
slightly overestimate the mass flow. For D3Q19 this is
no surprise, but the fact that D3Q41 shows the same be-
havior reveals that higher-order lattices are still exposed
to the "runaway" effects. On the other hand, the over
slow-down due to bounce-back is probably still weak in
this region of Knudsen numbers, since molecular colli-
sions in the bulk are much more frequent than fluid-solid
collisions at the wall. At higher Knudsen’s, both models
substantially overestimate the permeability, which is also
understandable in view of the increasing role of runaway
effects. Summarizing, to this point, HOL alone is pow-
erless. Let us now consider the effect of Regularization,
while still sticking to bounce-back conditions. From Fig.
3, it is clearly appreciated that Regularization provides
a dramatic improvement at all Knudsen numbers, even
with the standard 19-speed lattice. Indeed, the mass
flow fits both the Klinkenberg and the Beskok solutions
in the slip regime and in the first half of the transition
zone (up to Kn ' 0.3). At higher Knudsen numbers,
D3Q19R slightly underestimates the Klinkenberg solu-
tion but still keeps providing reasonable results both in
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FIG. 2. (Color online) Normalized mass flux across two parallel plane plates as a function of the Knudsen number. Legend:
Navier-Stokes solution 1/(12Kn) (NSE) (solid line), Cercignani solution in the low-Kn slip flow regime[29](CEL) (dotted line),
Cercignani solution in the high-Kn transition and ballistic regimes) (CEH) (dashed-dot line), Direct Simulation Monte Carlo
(DSMC) (circles), Regularized D3Q19 LB with bounce-back boundary conditions (R19BB) (solid line with squares) ,Regularized
D3Q41 LB with kinetic boundary conditions(R41KB) (solid line with diamonds), Regularized D3Q41 LB with bounce-back
boundary conditions(R41BB) (solid line with circles),D3Q41 LB with kinetic boundary conditions (41KB) (dotted line with
triangles). Results with regularized D3Q41 LB with the kinetic boundary conditions are omitted because, on the scale of the
figure they overlap with R19KB. Likewise, D3Q19 LB with kinetic boundary conditions is not shown because it overlaps with
the 41KB. The main message here is that higher-order lattices, regularization and kinetic boundary conditions are required, in
order to retrieve the correct behaviour of the flow between two plates across all the Knudsen’s regimes.
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FIG. 3. (Color online) Permeability correction factor as a function of the Knudsen number. The Klinkenberg (KLI) [33]
and the Beskok (BES) [34] solutions are reported in solid and dashed-dot line respectively. 19BB(dotted line with trian-
gles),R19BB(dashed line with diamonds), 41BB(dashed line with crosses), R41BB(dashed-dot line with circles). It is evident
that the non regularized models can predict accurately the correction factor only within the continuum regime, while they
deviate from the analytical solutions already in the slip regime. On the other hand, the R41BB provides corrections factors in
good agreement with the Klinkenberg solution across the continuum, slip and transition regimes. When entering the ballistic
region, the R41BB begins to overestimate the Klinkenberg discharge while keeping on predicting values of permeability between
the Beskok and the Klinkenberg solutions. Here, 19BB stands for the D3Q19 LB with bounceback boundary conditions, while
the other labels are the same as in figure 2.
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(a)

(b)

(c)

FIG. 4. (Color online) Qxxz field on midplanes of the porous media at Kn = 5. (a) The D3Q19 exposes in full the lattice
structure, which betrays its lack of isotropy towards third order moments. As expected, D3Q19R is powerless against this
structural deficiency as shown in (b). (c) The D3Q41R appears both isotropic and noise-free.

the transition and in the free-molecular regimes. This
shows that, even without higher order lattices, the arti-
facts due to runaway directions and bounce-back bound-
ary conditions are substantially suppressed by the regu-
larization procedure. The use of higher order lattices fur-
ther improves the situation. Indeed, upon inspecting Fig.
3, a remarkably good agreement with the Klinkenberg
solution across all four Knudsen regimes is appreciated.

When entering the ballistic region, Kn > 1, the D3Q41R
starts to overestimate the Klinkenberg discharge, but still
remains between the Beskok and the Klinkenberg solu-
tions. This is a remarkable result, especially in view of
the fact that we are using a very simple single-time re-
laxation model with bounce-back boundary conditions.
To gain further insight into this welcome behavior, we
have monitored the spatial distribution of a number of
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representative third order kinetic moments, i.e. the ones
carrying the generalized hydrodynamic information. In
Fig. 4, we show the Qxzz field at Kn = 5, i.e. the flux
along the mainstream direction x of the partial kinetic
energy along z direction, on three mid-planes. These are
prototypical moments not included in the original Grad’s
formulation. From these figures, we see that D3Q19 ex-
poses in full the lattice structure, which betrays lack of
isotropy of third order moments. As shown, D3Q19R
is powerless against this structural deficiency. Finally,
D3Q41R appears both isotropic and noise-free. Although
qualitatively consistent with the picture of the Extended
LB strategy presented in this work, these results still
need quantitative comparison with direct simulation of
the Boltzmann equation.

IV. SUMMARY AND OUTLOOK

Summarizing, we have shown that for parallel plates
flows only, all three ingredients of the Extended LB
method, namely standard LB enriched with Regular-
ization step, High-order Lattices and Kinetic boundary
conditions, are necessary to quantitatively accomplish

Grad’s extended hydrodynamics program.
We have also shown that the mass flow across a regular

array of spheres can be quantitatively captured across
the full range of Knudsen number, by just regularizing
the standard LB scheme, without using kinetic boundary
conditions.

A quantitative statement on the internal structure of
the flow, on the other hand, must await for a system-
atic comparison with direct solution of the Boltzmann
equation for the geometry set-ups discussed in this pa-
per. Before closing, we hasten to add that our results
by no means imply that the Extended LB schemes pre-
sented in this work can capture the physics contained in
the Boltzmann equation in full generality. What they
imply is simply that the gap between the two can be sig-
nificantly narrowed for the specific cases explored in this
work. This opens new perspectives for the simulation of
strong non-equilibrium flows, either with Extended LB
stand-alone or in connection with DSMC for advanced
multiscale applications.
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