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Abstract

A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as

ions and primary electrons are attached to the grain through collisional collection, and secondary

electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian

distributions were considered. The fluctuations could be bistable in either plasma when the sec-

ondary electron emission is present, as two stable macrostates, associated with two stable roots of

the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the

grain charge between two macrostates, was shown to be possible.
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I. INTRODUCTION

Various mechanisms, including ion and electron collisional collection and resulting sec-

ondary emission of ions or electrons, contribute to the charging of a dust grain in a plasma.

Since the collision of plasma particles with the grain occurs at random times, the net elec-

tric charge possessed by the grain fluctuates in time even if the plasma parameters such

as temperature and number densities are fixed. This kind of fluctuations, which take place

in systems with discrete particles, are known as intrinsic noise [1]. This noise cannot be

switched off as it is inherent in the actual physical mechanism, e.g., electron or ion electron

collision or emission in grain charging mechanism, which is responsible for the evolution of

the system. Intrinsic charge fluctuations refer to random variation of the grain charge by

this intrinsic noise.

Description of intrinsic charge fluctuations of grains was the subject of a number of

studies [2–15]. Cui and Goree [2] studied the fluctuations through a Monte Carlo approach

and concluded that they are most important for small grains. The grain charge is correlated

with the grain size so this conclusion is consistent with that the net elementary charge Z

possessed by the grain should have fluctuations with Zrms ∝
√
| 〈Z〉 | suggested by Morfill

et al. [16]. Cui and Goree [2] also showed that the fluctuating charge of small grains could

experience positive values. It is known that the grain mean charge at equilibrium is negative

because a charging grain collects mobile electrons more than ions until it reaches equilibrium.

Matsoukas and Russell [3] proposed a one-step process master equation [1] for the grain

charge density function, then derived a Fokker-Planck equation for it and showed that if

the condition e2/4πǫ0RkBTe ≪ 1, where R is the radius of the grain and Te is the electron

temperature, is satisfied, the charge distribution at stationary states is Gaussian with average

and variance related to the ion and electron currents to the grain. Defining the system size

as Ω = 4πǫ0RkBTe/e
2, Shotorban [9] derived a Gaussian solution at non-stationary states

for the Fokker-Planck equation formulated through the system size expansion of the master

equation [1]. In the non-stationary state Gaussian solution, the rate of the mean grain

charge correlates with the rate of charge to the net current. This mean equation is the

macroscopic equation [1] of the grain charging system, and it is the same equation widely

used for negligible fluctuations, which is the charge conservation law for the grain. The rate

of the grain charge variance is correlated with the currents and their derivatives evaluated
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at the charge mean. Shotorban [13] lately extended this model to include multi-component

plasmas where there are various kinds of singly- or multiply-charged negative or positive ions

and showed that the grain charge distribution still follows Gaussianity when Ω is sufficiently

large.

In all above discussed references, collisional collections of electrons and ions were the

only mechanism of charging. The secondary electron emission (SEE) of electrons is another

mechanism, which is important when sufficiently energetic electrons or ions are present.

The electron yield, the ratio of emitted electrons to incident ones, is a function of primary

electron energy and the physical and chemical state of the surface. Gordiets and Ferreira [6]

obtained an analytical solution for the PDF at stationary states for a master equation that

included the effect of the electron detachment, e.g., SEE, assuming that the grain charge

does not experience positive values, i.e, a half-infinite range Z = 0,−1,−2, . . .. This kind

stationary-state solution is unique for the master equation of a general one-step process with

a half-infinite or finite range of the variable whereas it is not unique for a range consisting of

all integers [1]. Later, Gordiets and Ferreira [8] formulated an improved version of the master

equation that they had originally proposed [6], relaxed the half-infinite range assumption,

and derived an approximate analytical solution for the PDF at the stationary state. This

approximation is not well justified for grains where the PDF varies substantially in a small

range of charges. Khrapak et al. [7] studied the effects of thermionic emission and UV

irradiation, separately, while electron collisional collection was present. They concluded

that Zrms ∝
√

| 〈Z〉 | is valid for these situations as well. Lately, Mishra and Misra [15]

studied the fluctuations in multi-component plasma through a population balance equation

resembling the master equation. They also included the influence of photoemission from

dust through irradiation by laser light in their study. It is noted that all works above but

Refs. 10 and 14 rely on Markov approaches for description of grain charge fluctuations used

a non-Markov approach for description of grain charging.

The most well known effect of SEE on grain charging is perhaps its associated bifurcation

phenomena: two identical grains in the same plasma environment may have two different

stable charge values, one positive and one negative [17, 18]. Thus a small variation in the

parameters may cause a rapid change from one equilibrium charge to another. Interestingly,

Lai [19] showed that in the spacecraft charging, the bifurcation phenomena caused by SEE

could involve three stable equilibrium charge values. The experimental study of Walch
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et al. [20] on charging of grains with energetic electrons that resulted in secondary electron

emission, showed the distribution of grain charge could be bimodal. However, they asserted

that the lack of a unique value may be due to fluctuations in the plasma parameters or small

differences in the grains.

The current study is on the influence of SEE on grain charge intrinsic fluctuations with

a focus on bistability. Bistability occurs in stochastic systems with two stable macrostates

[1, 21]. The bistability of the grain charging system is associated with the bifurcation

phenomena described above. The fluctuations in a bistable system may be metastable [1],

where the fluctuations are at one macrostate for a while and at a random time, a passage

to the other macrostate takes place and at a random time, the system returns to the first

macrostate. Whether the metastability of grain charge fluctuations is investigated in this

work. In section II, first, a master equation describing the fluctuations of the grain charge

in the present of SEE mechanism is presented, and then currents of ions, primary electrons

and secondary electrons of a Maxwellian plasma and a non-Maxwellian plasma are shown.

In section III, results are shown and discussed. Conclusions are made in section IV.

II. MATHEMATICAL FORMULATION

Assuming that the charging of the grain undergoes a Markov process, the following master

equation can be formulated for the probability density function of the grain charge P (Z, t):

dP (Z, t)

dt
= (E− 1)f0(Z)Ie(Z)P (Z)

+

M−1∑

n=1

(
E
−n − 1

)
fn+1(Z)Ie(Z)P (Z)

+
(
E
−1 − 1

)
Ii(Z)P (Z), (1)

where E is an operator defined by E
kg(Z) = g(Z + k) for any integer number k, n indicates

the number of secondary electrons emitted from the grain upon the impact of one primary

electron, M is the maximum number of secondary electrons that can be emitted, Ii(Z) and

Ie(Z) are the currents of ions and primary electrons to the grain, respectively, and fn(Z) is

the probability distribution of emission of n electrons in a single incident of a primary impact,

i.e., the fraction of primary electrons that result in the emission of n secondary electrons in
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one single attachment incident. Hence, the rate of the attachment of the primary electrons

that do not cause secondary emission is f0(Z)Ie(Z), and fn(Z)Ie(Z) indicate the rate of the

attachment of the primary electrons that cause the emission of n secondary electrons in one

incident. The jump process associated with eq. (1) is regarded to that the attachment of

a primary electron to the grain causes the emission of n secondary electrons; thus the net

change of the grain charge is n− 1. In other words, Z(t), the charge of the grain at time t,

jumps to Z(t) + n− 1. The master equation of Gordiets and Ferreira [8] is a special case of

eq. (1) with M = 3. Also, two following special cases of the master equation (1) regarded

as one-step processes are worth noting:

• M = 0, which corresponds to a case where no SEE occurs, i.e., f0(Z) = 1 and

fn(Z) = 0 for n > 0. In this case, the second term on the right hand side of eq. (1)

vanishes and the master equation of the grain charing is retrieved [3, 9],

• M = 1, which corresponds a case that at most one secondary electron is emitted so

f0(Z) < 1 and f1(Z) = 1− f0(Z).

Defining the system size Ω as a reference constant charge number and having changed the

variable Z = Ωφ(t) + Ω1/2ξ, where Z is modeled by a combination of a deterministic part

φ(t) scaled by Ω, and a random part ξ scaled by Ω1/2, a macroscopic equation associated

with eq. (1) can be derived through the system size expansion method [1, 13]:

dφ

dt
= a1(φ), (2)

where a1(φ) = Ω−1In(Ωφ), In(.) = Ii(.)−Ie(.)+Is(.) is the net current to the grain, and Is(.)

is the SEE current to the grain. A solution of the macroscopic eq. (2) is a time-dependent

macrostate of the grain charging system while the solution of a1(φ) = 0 is a stationary

macrostate of the system [1].

Van Kampen [1] classifies the stable, bistable, and unstable stochastic systems through

a1(φ) in eq. (2): A stochastic system is stable when a′1(φ) < 0 where a′1(φ) ≡ da1/dφ; it is

bistable when there are two stable stationary macrostates, i.e., there are two solutions for

a1(φ) = 0 and at the vicinities of them, a′1(φ) < 0 holds; and it is unstable when a′1(φ) > 0.

This classification is in harmony with the bifurcation phenomenon reviewed in sec. I based

on the roots of the net current. In other words, having neglected the fluctuations of Z, i.e.,
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ξ = 0, one obtains Z = Ωφ and eq. (2) is readily simplified to dZ/dt = In(Z), which can

be used to find the time evolution of Z. If an initial Z is within the domain of attraction of

a stable root of In(Z) = 0, then Z approaches it at the stationary state when there are no

fluctuations. Each root is associated with one stationary macrostate of the system and the

system stability discussed above can be similarly done through the sign of I ′n(Z). When the

fluctuations of the grain charge are taken into account, there is a probability for a fluctuation

to carry the charge from the domain of attraction of one root to another.

The SEE current is correlated with Ie(Z) and fn(Z), and this correlation is found through

the mean secondary electron yield defined by

n(Z) = Is(Z)/Ie(Z). (3)

In addition, n(Z) is correlated with fn(Z) through the definition of the mean n(Z) =
∑M

n=1 nfn(Z). Using these two equations and the normalization condition, i.e.,
∑M

n=0 fn(Z) =

1, one obtains

Is(Z) =

[
1− f0(Z) +

M∑

n=2

(n− 1)fn(Z)

]
Ie(Z). (4)

Here, a binomial distribution is proposed for fn(Z):

fn(Z) =

(
M

n

)
pn(1− p)M−n, (5)

where for M > 0, p = n(Z)/M where n(Z) is given in eq. (3). Binomial distributions

are used for the Monte Carlo modeling of SEE in the electron-surface collision [22]. For

M = 1 in eq. (5), f0(Z) = 1−n(Z) and hence, f0(Z)Ie(Z)P (Z) = [Ie(Z)− Is(Z)]P (Z). For

M = 1, the summation terms in this equation are zero. It is noted that Ie(Z) − Is(Z) is

the net electric current to the grain so the charging process here is modeled as each primary

electron impact incident causing no or one secondary electron emission at most. In eq. (5),

a sufficient condition for the positivity of fn(Z) is 1− p > 0, which is equivalent to

n(Z) < M. (6)

This inequality sets the requirement for the minimum M .

Following Meyer-Vernet [17], who investigated the bifurcation phenomena associated with

SEE, a Maxwellian plasma and non-Maxwellian plasma are considered here:

For Maxwellian plasmas, it can be shown [13, 23]
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Ie(Z) = Γ×





1 + Z
Ω

Z ≥ 0,

exp
(
Z
Ω

)
Z < 0,

(7)

Ii(Z) = Γn̂i

√
T̂i

m̂i
×





1− Z

T̂iΩ
Z ≤ 0,

exp
(
− Z

T̂iΩ

)
Z > 0,

(8)

where ni and Ti are the number density and temperature of ions, respectively. Also, T̂i =

Ti/Te, m̂i = mi/me, n̂i = ni/ne,

Ω =
4πǫ0RkBTe

e2
, (9)

Γ = πR2ne

√
8kBTe

πme

=
ΩωpeR√
2πλDe

, (10)

where λDe =
√

ǫ0kBTe/nee2 is the electron Debye length and ωpe =
√
nee2/ǫ0me is the

electron plasma frequency.

Using the theory of Sternglass [24], the SEE current is obtained [17]

Is(Z) = 3.7δMΓ×





(
1 + Z

ΩT̂s

)
exp

(
− Z

ΩT̂s

+ Z
Ω

)
F5,B

(
EM

4kBTe

)
Z ≥ 0,

exp
(
Z
Ω

)
F5

(
EM

4kBTe

)
Z < 0,

(11)

where

F5(x) = x2

∫
∞

0

u5 exp
(
−xu2 − u

)
du,

F5,B(x) = x2

∫
∞

B

u5 exp
(
−xu2 − u

)
du,

where B =
√

4kBTeZ/ΩEM and T̂s = Ts/Te where Ts is the temperature of the emitted

secondary electrons. In eq. (11), δM is the maximum yield which is around unity for metals

and at the order 2 to 30 for insulators, and EM is the peak primary electron energy, a model

constant ranging from 300 to 2000 eV. The values of these two parameters for various dust

materials can be found in Ref. 17.

Electrons in the non-Maxwellian plasma are assumed to have a bi-Maxwellian distribu-

tion that occurs in a number of circumstances. A bi-Maxwellian distribution was derived
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by Weibel [25] from the Boltzaman equation for electrons with anisotropic distribution of

velocities that cause spontaneous growth of transverse electromagnetic waves. This phe-

nomenon, also known as Weibel instability, is observed in astrophysical plasmas [26, and

references therein] and fusion plasmas [27, and references therein]. A bi-Maxwelllian distri-

bution of electrons was also observed in several laboratory setups including Ref. 28. The

experiments of Godyak et al. [29] revealed that electrons have a non-Maxwellian distribution

in low-pressure capacitively coupled rf plasmas. At a very low pressure, where stochastic

electron heating dominates, the distribution is bi-Maxwellian whereas at a moderately low

pressure, where collisional electron heating dominates the distribution is Druyvesteyn. The

electron current to the grain in the bi-Maxwellian plasma is obtained by adding an identical

term, where ne and Te are to be replaced by nH and TH , to the right side of eq. (7) and

changing ne to ne − nH in the first term when using this distributions [17].

III. RESULTS AND DISCUSSIONS

Dimensionless net current is plotted against dimensionless grain potential in fig. 1 for a

Maxwellian plasma [17]. Seen in this figure is that when the SEE mechanism is lacking,

the net current curve crosses the horizontal axis only at one point so there is only one root.

The system is stable in this case as I ′n(Z) < 0 for all values of Z. This negativity is due

to attaching electrons, which are more mobile than attaching ions. On the other hand, it is

seen in the figure that when the SEE mechanism is present, the net current may have up

to three roots, one negative and two positive (Cases 1 and 2). The root at the middle is

unstable whereas two others are stable so the grain charge fluctuations are bistable in Cases

1 and 2. In case 3, only one stable root exists and for all values of Z except the domain

restricted between local maxima and minima, the system is stable. It is noted that the SEE

cases seen in fig. 1 are different through small changes made in the SEE current parameters

δM or EM . The triple root situations in Maxwellian plasmas are conditional on both a high

value of δM and a somewhat low value of EM/kBTs [17].

The PDF of the grain charge obtained through a numerical solution of the master equation

(1) for a Maxwellian plasma (Case 1-3 illustrated in fig. 1) for two grain sizes R = 5 and

R = 30nm are shown in fig. 2. A prominent deviation from Gaussian distribution is observed

for most of the cases seen in this figure. However, the PDF was verified to be very close
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to Gaussian for M = 1 in figs. 2(d-f) as compared to a Gaussian solution obtained by the

system size expansion method [9, 13]. For R = 5nm and M = 1, seen in fig. 2(c), the PDF

is bimodal, i.e., with two distinct local maxima, and for two other values of M , it is not.

It is born in mind that for all cases in figs 2(a-d), there are two stable roots of the net

current so they all are considered bistable according to the classification at the beginning of

this section. The bimodal PDF is also seen in fig. 2(b) for a larger grain with R = 30nm.

However, when the same SEE parameters are used for smaller grain R = 5nm, no bimodal

distribution is observed (see fig. 2a). No bimodal distribution is observed in fig. 2(e-f) which

is for the SEE cases with only one root of the net current. Although, in these two subfigures,

the deviation of the distribution from Gaussianity is substantial for M = 2 and 3.

Figure 3 displays time histories of grain charges. The discrete stochastic method [13],

adapted from Gillespie’s algorithm [30, 31]), is utilized to simulate the grain charge variation

governed by the master equation (1). Time histories seen in figs. 3(a,b), are for the bistable

cases shown in fig. 2(b) for M = 3 and fig. 2(c) for M = 1, respectively. The fluctuations in

these two cases are characterized by two distinct time scales: one associated with fluctuations

around two stable charges and the other associated with the spontaneous switches between

them. A system with this behavior is called metastable [1]. A switch from the negative

stable charge to the positive one is attributed to a sequence of incidents most of which

increase the grain charge by one or two elementary charges. These incidents could be the

attachment of an ion or the attachment of a primary electron that results in the emission of

two or more of secondary electrons. On the other hand, the switch from the positive stable

charge to the negative one is attributed to a sequence of incidents most of which are the

attachments of a primary electron without emitting a secondary electron. Fig. 3(c) which

corresponds to the PDF shown in fig. 2(e) with M = 3 is not bistable as the net current in

this case has only one root.

Shown in fig. 4 is the net current variation against the grain charge in a bi-Maxwellian

plasma. For the shown SEE cases, there are two negative and one positive roots for the

net current so the system is bistable in both SEE cases. The positive root is very close

to the origin of the coordinates and the net current has a very sharp variation around this

root. Although the curves of the SEE cases shown in this figure seem very similar, they

are different as the negative roots in the case with nH/ne = 0.035 are slightly closer to

each other than the case with nH/ne = 0.04. The root of the net current in the No SEE
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case is somewhat far from the roots of the SEE cases. Moreover, it is found that in the

NO SEE case, the net charge (the root of the net current) in the bi-Maxwellian plasma,

where nH/ne = 0.04, is with a factor of five larger than that in a Maxwellian plasma where

nH/ne = 0. The reason for this large difference is that a small fraction (slightly over 4%)

of the electrons in the bi-Maxwellian plasma have much higher temperature, TH/Te = 100,

whereas all electrons in the Maxwellian plasma have the cold temperature Te. An increase

in the electron temperature results in a more negative net charge on the grain, as an electron

has more kinetic energy in average sense to overcome the repulsion between itself and the

grain [3]. It is also noted that a triple root situation is expected to occur in a bi-Maxwellian

plasma more than a Maxwellian plasma. According to Meyer-Vernet [17], a Te higher than a

few 10eV and a TH higher than several 100eV, values typical in the solar wind and possible in

planetary magnetospheres, should result in triple roots for grains with non-metallic surfaces.

Figure 5 displays the grain charge PDF in the studied bi-Mawellian plasma for two grain

sizes. All three cases shown in this figure are associated with the SEE cases in fig. 4 and

the system is classified bistable in all. However, the bimodal distribution is observed for

smaller grain with R = 1nm at both nH/ne = 0.035 and 0.04. Although, the difference

between these two values is around %13, the bimodal forms of their associated PDF’s are

very different. The peak value of the PDF seen at around Z = 0 for nH/ne = 0.035 is at

least an order of magnitude larger than that for nH/ne = 0.04. For this case, the value

of the left peak is an order of magnitude larger that the right mode. For the grain with a

larger radius R = 3nm, no bimodal behavior is observed. For this case, also, a Gaussian

solution is obtained by the system size expansion with an initial condition 〈Z(0)〉 /Ω = −3.

An excellent agreement between the Gaussion solution and the master equation solution is

observed. When 〈Z(0)〉 = 0 is used, the solution at the stationary state is a sharp Gaussian

function at around Z = 0. Time history of the grain charge is shown in fig. 6 with panels

(a) and (b) associated with solid- and dashed-line PDFs, respectively, in fig. 5. An obvious

metastability is observed for these two cases.

IV. SUMMARY AND CONCLUSIONS

A master equation was formulated to include the effect of secondary electron emission in

addition to collisional attachment of ions and electrons on the intrinsic charge fluctuations of
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a grain. Grain charging in both Maxwellian and non-Maxwellian plasmas were considered.

In both plasmas, the fluctuations could be bistable, as the system could have two stable

macrostates. In the absence of SEE mechanism, the bistabillity is not possible as the system

always have a single macrostate. It was shown that if the system is bistable, the grain

charge can be metastable. That is a situation where the fluctuations are characterized by

two distinct time scales - one associated with fluctuations around two stable charges and the

other associated with the spontaneous switches between them. A switch from the negative

stable charge to the positive one is attributed to a sequence of incidents almost all of which

increase the grain charge by one or two elementary charges. On the other hand, the switch

from the positive stable charge to the negative one is attributed to a sequence of incidents

most of which are the attachments of a primary electron without resulting in the emission

of a secondary electron.
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FIG. 1. (Color Online) Dimensionless net current versus dimensionless grain charge z = Z/Ω, where

Ω = 4πǫ0RkBTe/e
2 and Γ = πR2ne

√
8kBTe/πme, for Ts/Te = 1.5 in a Maxwellian plasma [17];

Case 1: δM = 15 and EM/4kTe = 45.6; Case 2: δM = 14.85 and EM/4kTe = 45.6; Case 3: δM = 15

and EM/4kTe = 47.
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FIG. 2. (Color Online) Probability density function of grain charge in a Maxwellian plasma; (a)

Case 1 with R = 5nm; (b) Case 1 with R = 30nm; (c) Case 2 with R = 5nm; (d) Case 2 with

R = 30nm; (e) Case 3 with R = 5nm; (f) Case 3 with R = 30nm. Gaussian solutions are obtained

by the system size expansion method [9, 13]. See the caption of fig. 1 for parameters associated

with Case 1-3.
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FIG. 3. Grain charge variation in time in a Maxwellian plasma with SEE; (a) Case 1 with R = 30nm

and M = 3; (b) Case 2 with R = 5nm and M = 1; (c) Case 3 with R = 5nm and M = 3. The

dotted lines show the roots of the net current.
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FIG. 4. (Color Online) Dimensionless net current versus dimensionless grain charge z = Z/Ω in a

bi-Maxwellian plasma; Te = Ti = 25eV, δM = 3, EM/kBTe = 16, Ts/Te = 1, TH/Te = 100, and

M = 3 [17].
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FIG. 5. (Color Online) Probability density function of grain charge in a bi-Maxwellian plasma.

See the caption of fig. 4 for parameters.
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FIG. 6. Grain charge fluctuations in a bi-Maxwellian plasma with SEE, M = 3, and initial charge

Z(0) = 0; (a) nH/ne = 0.035 and R = 1nm; (b) nH/ne = 0.04 and R = 1nm; (c) nH/ne = 0.04

and R = 3nm.
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