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Self-consistent Direct Numerical Simulations (DNS) of turbulent channel flows of dilute polymer 
solutions exhibiting friction Drag Reduction (DR) show that an effective Deborah number defined as the 
ratio of polymer relaxation time to the time scale of fluctuations in the vorticity in the mean flow direction 
remains O(1) from onset of DR to the Maximum Drag Reduction (MDR) asymptote. However, the ratio of 
the convective time scale associated with streamwise vorticity fluctuations to the vortex rotation time 
decreases with increasing DR, and the maximum drag reduction (MDR) asymptote is achieved when these 
two time scales become nearly equal. Based on these observations a simple framework is proposed that 
adequately describes the influence of polymer additives on the extent of DR from onset of DR to MDR as 
well as the universality of the MDR in wall bounded turbulent flows with polymer additives. 

 PACS numbers: 47.27.ek, 47.27.nd, 47.57.Ng, 83.60.Yz 

 
I. INTRODUCTION 

 
It is well known that the addition of a small amount of 

soluble high molecular weight polymers to wall bounded 
turbulent flows can lead to dramatic friction DR. Polymer 
concentrations of O(100) PPM are sufficient to reduce the 
drag up to 80% [1-5]. This phenomenon has enormous 
practical applications including reducing the cost of 
transportation of crude oil over long distances. Two salient 
features of this phenomenon are the existence of a threshold 
for the onset of drag reduction and, an upper bound referred 
to as the maximum drag reduction (MDR) asymptote, 
originally proposed by Virk [6] based on his extensive 
analysis of experiments conducted using homogeneous 
polymer solutions that varied in chemical detail, 
concentration and molecular weight. Since the mid-1990s, 
Direct Numerical Simulations (DNS) of turbulent flows 
(see, for example, refs [7-13]), in which one 
self-consistently solves the equations of conservation of 
mass and momentum with an evolution equation for the 
polymeric stresses such as the FENE-P (finitely extensible 
nonlinear elastic Peterlin) model, have been successfully 
performed.  

DNS results have demonstrated that polymer-induced DR 
arises as a consequence of a self-sustaining process that 
relies on significant polymer chain extension in the 
near-wall region and a commensurate extraction of energy 
from the fluctuating motions, and the stabilization of 
near-wall streamwise vortices [4,5,7,10,11,14-17]. The 
polymer extensional viscosity has a remarkable effect on the 
aforementioned self-sustaining process and the extent of DR 
[11,14-17]. In parallel to DNS, DR has also been 
investigated from the point of view of Coherent Structure 
(CS) dynamics [18-23]. These studies show that the action 
of quasi-streamwise vortices lead to substantial chain 
elongation and commensurate polymeric forces and torques 

that inhibit CS dynamics responsible for the production of 
turbulent shear (Reynolds) stress. The proposed suppression 
of streak instability and the commensurate self-sustaining 
mechanism [18, 19], effect of biaxial extensional flow [21] 
and inhibition of auto generation of new vortices [23] are 
among the principal findings of DNS and CS dynamics 
studies. In particular, it has been shown that enhanced chain 
extensibility or extensional viscosity results in enhanced DR 
via modification of near wall coherent structures; i.e., 
energetic streamwise vortices exhibit a significant reduction 
in number and become highly elongated. Moreover, 
simulations have shown the existence of an onset threshold 
for DR, at an O(1) Deborah number defined as the ratio of 
the polymer relaxation time to the time scale of fluctuations in 
the vorticity in the mean flow direction. 

While these studies have clearly indicated that the 
interaction of polymer and vortex time scales play a central 
role in determining the extent of DR, a clear interpretation 
and a criterion for the existence of MDR in this context is 
lacking. In this study, we report specific criteria for 
interaction of polymer and vortex time scales for the onset 
of DR and the MDR asymptote. 

 
 

II. NUMERICAL METHODS 
 
For the channel Poiseuille flow considered in this study, 

the x axis represents the mean flow direction, i.e., the 
direction of the constant, externally imposed pressure 
gradient and y and z axes are the wall-normal and spanwise 
directions respectively. The nondimensional governing 
equations for unsteady, incompressible, viscoelastic flow 
with the FENE-P constitutive equation are as follows: 
 

▽·u = 0, (1) 
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ut + u·▽u = -▽p + 
Reτ

β ▽2u + 1
Reτ

β− ▽·τ , (2) 

ct + u·▽c = c·▽u + (▽u)T·c - τ , (3) 
 
where u is the velocity, p is the pressure, and the polymer 
stress τ = (c⁄[1-trace(c)/L2] - I)/Weτ . The friction velocity Uτ 
and the channel half height h are used as the velocity and 
length scale, respectively. The friction velocity is defined as 
Uτ = (τw/ρ)1/2, where τw represents the shear stress at the 
wall and ρ is the density of the polymer solution. The 
frictional Reynolds number is defined as Reτ= Uτ h/νo, 
where νo is the zero shear-rate kinematic viscosity. The 
parameter β is the ratio of the solvent viscosity (μs) to the 
total solution zero-shear-rate viscosity (μo). The polymer 
stress τ is obtained by solving an evolution equation for the 
conformation tensor c≡〈qq〉, which represents the average 
second moment of the polymer chain end-to-end distance 
vector (q). Note that︱q︱< L since L represents the 
maximum length of the macromolecule. I is the unit tensor, 
Weτ= λUτ

2
 /νo is the friction Weissenberg number, a 

dimensionless relaxation time defined as the product of the 
polymer relaxation time (λ) and a characteristic shear rate 
based on the friction velocity. Similar to earlier DNS of 
turbulent viscoelastic flows, a small artificial diffusive term 
D▽2c must be added to the right-hand side of Eq. (3) to 
enhance numerical stability. Specifically, we have used a 
very small D, namely O(0.01), resulting in a numerical 
Schmidt number Sc+ = 1/(Reτ0 D) of the order O(0.1), for 
which the elastically modified turbulent flow structures are 
D independent. Note that the original constitutive equation 
without the diffusive term is applied at the walls, thus, no 
boundary conditions are externally imposed for c at the 
wall. 

The fully spectral numerical method used for solving the 
governing equations, the rheological parameter sets, 
turbulence statistics and the extent of DR are described in 
detail in our earlier publications [11-13]. It should be noted 
that the present simulation results are obtained from the 
streamwise computational domains approximately 5000 and 
10000 wall units. Although, these domains are two or four 
times longer than those commonly used for Newtonian flow 
simulations, they are essential for obtaining accurate. 
vorticity correlations [11]. The spatial discretization, i.e., 
mesh resolution is Δx+ ≈ 20 in the low drag reduction (LDR, 
0 < DR < 30%) and high drag reduction (HDR, 30% < DR < 
60%) regimes, while Δx+ ≈ 40 is used at MDR; Δz+ ≈ 10 and 
Δy+ ≈ 0.06 near the wall (the Chebyshev node spacing is 
non-uniform in the y direction, i.e., it is much more refined 
in the wall region) is used to ensure sufficient resolution 
[11-13].   

The numerical value of Weτ for onset of DR depends on 
the ratio of solvent to total viscosity β as well as the 
maximum chain extensibility L, in units of (kT/H)1/2  (H is 
defined as spring constant of the FENE-P bead-spring 
model, kT is the energy of thermal fluctuations), i.e., 
(1-β)L2Weτ could be thought of as a measure of the 
cumulative elastic effect of the polymer additive [14-17]. 
Similarly, more recent DNS studies [10, 11, 16] have shown 

that as L2Weτ approaches a large enough value, DR plateaus 
around 70%.  

The value of β is inversely related to the polymer 
concentration. Since most prior DNS studies of polymer 
induced turbulent DR have been performed for bulk flows 
with a mean Reynolds number less than 8900, they have 
used lower β values than those in the experiments to 
amplify elastic effects. In fact, β values as low as 0.4 have 
been used [10] in order to reach the HDR regime. However, 
such β values lead to significant shear thinning of the 
viscosity, and special care should be taken to define the DR 
accurately. Hence, we have chosen β =0.9 to perform our 
simulations as it has been shown that with this value one can 
capture elastic effects with negligible influence of 
shear-thinning viscosity (i.e., on the order of few percent) 
[11-13]. The high level of turbulent fluctuation with respect 
to the mean value in the MDR regime has been clearly 
shown in [11]. Specifically, the variations in the xz-plane 
averaged data are relatively minor at LDR. Hence, time 
averaging over 10-15 computational units (h/Uτ) is 
sufficient to obtain good statistics. While, in the HDR and 
MDR regimes significant variations are observed. Since the 
degree of intermittency rapidly increases as one moves from 
the LDR to the HDR and MDR regimes, time averaging 
over 30-50 h/Uτ is needed to obtain good statistics. 

 
FIG. 1. (Color online) Mean streamwise velocity profiles as a 
function of distance from the wall. 
 

III. RESULTS AND DISCUSSION 
 

Figure 1 shows a typical mean streamwise velocity 
profiles as a function of the distance from the wall for the 
simulations conducted at Reτo=395. Clearly, two DR 
regimes can be observed: a low drag reduction (LDR) and a 
high drag reduction (HDR) [10,24]. In the LDR regime, the 
logarithmic profile is shifted upwards parallel to that of the 
Newtonian flow. While in the HDR regime, the slope of the 
mean velocity is augmented gradually with the increasing 
DR levels. Finally, for the 74% DR case, Virk’s MDR 
asymptote (U+=11.7 ln y+ -17) is observed. The turbulence 
statistics in the LDR and HDR regimes are distinctly 
different. At LDR, the statistics are similar to Newtonian 
flows, however, at HDR significant reduction in normal and 
spanwise velocity fluctuations and Reynolds stress is 
observed [10, 11, 24].  
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Typical vorticity fluctuations at various DR levels up to 
MDR have been shown in [11]. The intensity of the 
streamwise vorticity fluctuations monotonically decrease 
with increasing DR. The average size of the vortices also 
increases and the location of the center of the energetic 
vortices shifts to the center of the channel. The circles 
shown in Fig. 2 schematically represent the average size and 
position of the streamwise vortices at different extent of DR. 
The locations of the maximum and minimum correspond to 
the average edge and center locations of the streamwise 
vortices (eddies) in the wall region, respectively [25]. The 
interval between these two locations is roughly the average 
radius of streamwise vortices. It can be seen that at MDR 
the average size of the streamwise energetic vortices is 
larger than 100 wall units, i.e., on the order of the flow 
channel outer scale. 

 
 
FIG. 2. (Color online) The axial vortex rotation time scale, 

1/ωx
+

,rms, as a function of the distance from the wall. The circles 
sketch the sizes and positions of energetic vortices.  
 

It is well known that the streamwise vortices play an 
important role in mediating the mass/momentum transfer 
between the near wall region and turbulent core by ejecting 
low speed fluid from the near wall region to the core 
(ejection/upwash). In addition, they bring high speed fluid 
from the core towards the wall (sweep/downwash). The time 
scale associated with such events can be estimated as the 
inverse of the root mean square vorticity fluctuations ωx,rms 
and, the product λωx,rms. Lumley [1, 2] has conclusively 
demonstrated that the drag reducing effect of polymer 
additives additives as follows. Macromolecules are streched 
in the flow outside the viscous sublayer due to the 
fluctuating strain rate. In a flow field with a characteristic 
deformation (shear) rate, and a corresponding fluctuating 
strain rate of Uτ

2/ν , the degree of polymer stretch is directly 
related to the friction Weissenberg number Weτ= λUτ

2
 /ν. If 

Weτ << 1, then macromolecules have sufficient time to relax 
to equilibrium, hence, their effect on the flow is minimal. 
However, when Weτ reaches an O(1) value, polymers can be 
significantly stretched by the flow and the extent of 
macromolecular the stretch is intimately related to the flow 
kinematics. To this end, λωx,rms on average represents the 
number of stretching/relaxation cycles the polymer 
undergoes within a single vortex rotation. As shown in Fig. 

2, 1/ωx
+

,rms (scaled by the time scale of viscous diffusion 
ν/Uτ

2) increases with increasing DR. It can also be seen that 
for Newtonian flows in the viscous sublayer and the buffer 
layer this time scale is in the range of 5 to 10 times the 
viscous diffusion time scale. If drag reduction is manifested 
when these time scales at small y+ become equivalent (i.e., 
the dimensionless time scale for upwash and downwash 
become similar to Weτ), then one would expect that the 
onset of DR occurs in 5 ≤ Weτ < 10. Indeed, this is 
consistent with the findings for the onset of drag reduction 
at Weτ = 6.25 (i.e., Deborah number, De = λωx,rms = 
Weτ ωx

+
,rms ~ O(1) [1,2,26]). 

This analysis clearly suggests that the near wall vortex 
time scale plays a significant role in determining the onset 
of DR. In fact, in addition to the onset of DR we have 
observed that this time scale plays a significant role in all 
DR regimes. Polymers extract energy from the flow as they 
are pulled around the near wall vortices, and release energy 
back to the flow in the high speed streaks [17]. Hence, the 
degree to which the polymer chains have been extended 
should be considered in analyzing the results. Thus an 
effective Weissenberg number Weτ

eff = Weτ[1-trace(c)/L2], 
is a more appropriate measure of polymer time scale for 
understanding the interplay between polymer chain and the 
flow dynamics. It should be noted that [1-trace(c)/L2] 
appears in the expression for the polymeric stress tensor. 
The values of Weτ

eff and 1/ωx
+

,rms  in the near wall region 
are listed in Table 1.  

 
TABLE 1: The comparison of Weτ

eff and 1/ωx
+

,rms in the 
near wall region 

Weτ L2 DR trace(c)/L2 Weτ
eff 1/ωx

+
,rms 

 0      ~ 5-10 
 25  900 19% ~ 0.35 ~ 15 ~ 10-16 
 100  900 38% ~ 0.78 ~ 22 ~ 20-32 
 100  3600 54% ~ 0.62 ~ 38 ~ 30-45 
 100  14400 61% ~ 0.42 ~ 58 ~ 38-68 
 200  14400 74% ~ 0.77 ~ 66 ~ 42-72  

 
Clearly from the onset of DR up to the MDR asymptote, 

Weτ
eff is increased from 5-10 to about 60-70, while the 

product of Weτ
effωx

+
,rms remains O(1) in the near wall 

region. This suggests that as elastic forces are enhanced they 
lead to stabilization of near wall axial vortices resulting in 
much longer and slower rotating vortices. Furthermore, 
these findings underscore the fact that there exists an 
intricate balance between elastic forces and average rotation 
speed of the near-wall axial vortices that determines upwash 
and downwash events and consequently Reynolds stress 
production. 

To shed light on the exact mechanism by which polymer 
induced drag reduction occurs various time scales should be 
carefully examined.  To this end, we have defined an 
effective Deborah number, Deeff, that signifies the ratio of 
polymer to the near wall region vortex time scale, i.e., Deeff 
= Weτ

eff ωx
+

,rms . This time scale remains O(1) from the onset 
of DR to MDR. Hence, the polymer releases sufficient 
energy to stabilize the vortices such that a self-sustaining 
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mechanism of drag reduction is maintained. It should be 
noted that in this self-sustaining mechanism, the vortex 
convection velocity is another important factor in 
determination of the average vortex dynamics. The vortex 
convection time can be estimated from the average vortex 
length divided by the vortex convection velocity. To this 
end we have examined the convection velocity of the 
streamwise vorticity perturbations based on a method 
proposed by Kim and Hussain [27]. Specifically, the 
space-time cross correlations are used to evaluate the 
convection velocity for the vorticity perturbations in the 
mean flow direction. At a given y-plane location, the 
space-time cross correlations for streamwise vorticity 
perturbations is given by: 
 

, ,

( , , ) ( , , )( , , )
( ) ( )x x

x x

x rms x rms

x y t x x y t tR x y t
y yω ω

ω ω
ω ω

+ + + + + + + +
+ + +

+ + + +

+ Δ + ΔΔ Δ =  

 
  

FIG. 3. (Color online) The convection velocities for the 
vorticity perturbations in the flow direction at different extent 
of DR. 
 
The signal convection velocity, Vc, is the velocity with 
which the main portion of signal amplitude travels, and it 
can be measured by the peak location of space-time cross 
correlations for a given time interval Δt [27]. In turn, this 
velocity is  scaled by the friction velocity Uτ , 
Vc

+=Δx+
peak/Δt+. Figure 3 shows the convection velocities 

for vorticity perturbations in the flow at different extent of 
DR. It is now widely accepted that for Newtonian flows the 
axial vorticity perturbations propagate at a constant speed of 
~10Uτ at y+ <10. It can be seen that with increasing DR, the 
same feature is more or less observed. That is the 
convection velocities are increased and the constant 
convection velocity regions are also thickened. The 
intersection points between the convection velocity curves 
and the mean velocity profiles can be roughly regarded as 
the center of energetic axial vortices. This implies that in 
drag reduced flows the energetic axial vortices propagate at 
higher speeds and with significantly increased size. 
Specifically, at MDR the average axial energetic vortex 
move at least 3 times faster than its Newtonian counterpart 

and it is also at least 3 times larger than the Newtonian 
vortex. 

The aforementioned time scales, the vortex rotation time 
and axial vortex convective time as a function of DR are 
shown in Fig. 4. Since the vortex length increase is larger 
than the vortex convection velocity increase, the 
approximate time scale for persistence of axial vorticity 
perturbation “dubbed” vortex life time must increase with 
the extent of DR. The ratio of average vortex convection 
time to the average vortex rotation time is also plotted in 
Fig. 4 (see the right vertical coordinate). It can be seen that 
although the average lifetime of axial vortices increases 
with increasing DR while their rotation speed decreases, the 
rate of decrease in the rotation speed exceeds the 
enhancement in lifetime of axial vortices as a function of 
DR. In fact, this ratio starts at ~3 for Newtonian flows and 
becomes close to 1 as MDR is approached. For Newtonian 
flows, this result is consistent with the fact that there are on 
average 3 ejection events during one burst[28]. 

If this ratio (average vortex convection time to the 
average vortex rotation time scale) is reduced below 1, then 
a full vortex rotation process cannot on average be 
completed within a vortex convective time, and the intricate 
balance between elastic forces and vortex rotation will cease 
to exist. Thus MDR is reached when the aforementioned 
ratio becomes nearly equal, i.e., the energy extraction and 
release cycle gets interrupted. In turn, the flow state 
becomes weakly turbulent (laminar like). Eventually, the 
system transit back to active turbulence and the stochastic 
cycle repeats. This observation is in agreement with the 
experimental remark by Virk [3] that close to the MDR 
asymptote the flow appears laminar and shows very high 
intermittency [11]. This proposed frame work is also 
consistent with the universal nature of MDR as it is based 
on an intricate flow micro-structure coupling that balances 
the vortex life time and the vortex rotation time scale. Hence, 
MDR is reached irrespective of the specifics of polymer 
species, molecular weight, or the polymer solvent pair. 

 
FIG. 4. (Color online) The average time scales and ratio (= 

axial vortex convective time/vortex rotation time) as a function 
of extent of DR.           axial vortex convection time;            

vortex rotation time;         the ratio. 
 
These results clearly highlight that MDR is basically a 

transition state between laminar like and turbulent flow. 
This is in agreement with the theory proposed in [29-31] 
that a linear viscosity profile growing with the distance from 
the wall reduces the drag in turbulent flows by polymers, 

⊙⊙

⊙⊙ □□
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and the MDR profile is an edge solution of the 
Navier-Stokes equations beyond which no turbulent solution 
exists. To this end, we have computed the effective 
viscosities for representative LDR and HDR cases as well as 
at MDR (see Fig. 5a.) Clearly, the effective viscosities 
increase linearly from the wall to their respective peak 
positions. Also, the peak positions progressively move 
towards the center of the channel as DR is enhanced. 
Evidently, the vortex size and the peak positions are 
intimately related, i.e., the vortices are bounded by the peak 
position of the effective viscosity which corresponds to the 
average sizes and positions of the streamwise energetic 
vortices, respectively (see Fig. 2). At MDR, the effective 
viscosity increases linearly increases up to y/h = 0.4, 
indicating that the vortex size is approximately 150 wall 
units (Reτ0 =395). Clearly, the extent to which highly 
stretched polymers are ejected to the “bulk flow” is a 
sensitive function of the aforementioned vortex sizes (see 
Fig. 5b-d). These results further underscore the fact that 
simulations and/or experiments at Reτ0 =125 and 180 are not 
at a high enough Reτ0 for a comprehensive study of polymer 
induced drag reduction in the HDR and MDR regimes [11, 
31]. 

It is very gratifying that our novel yet simple framework 
based on the intricate coupling of the polymer and near wall 
vortex dynamics is consistent with several recently proposed 
mechanisms of drag reduction by polymer additives. 
Examples include: (1) during vortex rotation (upwash and 
downwash events) elastic energy is stored in the stretched 
polymers in the very near wall region and in turn it is 
transported and released to the buffer and the log layers 
[17,32]; (2) the high intermittency of polymer work is 
consistent with the polymer effect being associated with the 
intermittent near-wall structures such as quasi-streamwise 
and hairpin vortices [15], and (3) exact coherent state (ECS) 
[14,15,20], where it has been shown that viscoelasticity has 
a weakening effect on the streamwise vortices, plus the fact 
that for sufficiently low values of the frictional Reynolds 
number (~45), the coherent structures could be entirely 
suppressed if the elastic effects are sufficiently large. 

 
 

IV. CONCLOSION 
 

In summary, the effect of polymer additives on vortex 
dynamics and the extent of DR have been elucidated via 
extensive analysis of hi-fidelity DNS of polymer induced 
drag reduction in turbulent channel flows. Specifically, it 
has been shown that in the near wall region, from the onset 
of DR to MDR, a modified effective Deborah number 
defined as the ratio of polymer relaxation time to the time 
scale of fluctuations in the vorticity in the mean flow 
direction remains O(1).  

Moreover, it has been demonstrated that the average axial 
energetic vortex convection time increases with increasing 
DR while its rotation speed decreases. However, the rate of 
decrease in the rotation speed exceeds the enhancement in 
lifetime of axial vortices as DR is increased. Hence, MDR is 
achieved when these two time scales become nearly equal. 
Overall, this simple framework can adequately describe the 

influence of polymer additives on extent of DR from onset 
to MDR as well as the universality of the MDR in flow 
systems with polymer additives. We hope that this 
framework can also pave the way for modeling drag 
reduction in the HDR and MDR regimes.  

 

 
 

FIG. 5. (Color online) The effective viscosity (a) and 
instantaneous vectors and trace(c) distribution (b, c, and d) in 
the flow at different extent of DR. 
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