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Abstract

We present fluid velocity measurements in a modified Taylor-Couette device operated in the

quasi-Keplerian regime where it is observed that nearly-ideal flows exhibit self-similarity under

scaling of the Reynolds number. In contrast, non-ideal flows show progressive departure from ideal

Couette as the Reynolds number is increased. We present a model that describes the observed

departures from ideal Couette rotation as a function of the fluxes of angular momentum across the

boundaries, capturing the dependence on Reynolds number and boundary conditions.
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I. INTRODUCTION

That the global properties of an extended system may be mapped to the boundaries is

an idea that has found success in holographic theories of general relativistic systems [1, 2],

and in magnetically confined plasmas [3, 4]. We report on a similar behavior observed in

incompressible hydrodynamic flows in a Taylor-Couette apparatus where it is observed that

certain characteristics of the global flow are largely dictated by the boundaries. This finding

is particularly relevant for experiments that examine quasi-Keplerian (QK) flows, that is,

rotation satisfying 0 < q < 2 where q = −d ln Ω/d ln r, Ω is the fluid angular velocity and r is

the radial coordinate, as models of astrophysical systems, namely accretion disks. Numerous

recent studies have commented on the hydrodynamic stability of such systems [5–8], with

extensions to magnetohydrodynamics in electrically conducting fluids [9–13].

While there is some disagreement between studies as to whether hydrodynamic turbu-

lence can be induced in QK flows, the balance seems to lean toward the negative, at least

insofar as incompressible turbulence is considered, and points to the important role of mag-

netohydrodynamic effects in astrophysical systems. However, while it is known that QK

flows are linearly stable it remains unknown whether there exists a nonlinear transition to

turbulence, even for incompressible hydrodynamic systems. Some experiments [5–7] and

simulations [14] indicate that such a transition is not likely, while others present evidence

that suggests that a subcritical transition may exist [8] and some simulations find signif-

icant transient growth of perturbations that may allow for nonlinear effects to enter [15].

Fluid experiments in other regimes of operation that are not astrophysically-relevant have

observed bi-stability [16, 17], suggesting that should a similar mechanism exist for QK sys-

tems then a subcritical pathway to turbulence may explain angular momentum transport in

accretion disks [18]. We show in this work that the influence of the boundaries is intimately

connected to the global structure of flows in Taylor-Couette experiments and, by extension,

is also related to the tendency of these systems to generate and sustain turbulence.

One of the long-standing challenges of Taylor-Couette experiments in the quest to under-

stand angular momentum transport in astrophysically-relevant flows has been the parasitic

presence of Ekman circulation (secondary circulation) induced by the mismatch between the

fluid velocity and the solid body rotation of the axial boundaries. A significant reduction

in Ekman circulation has been realized in experiment by using axial boundaries that are
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split into multiple rings capable of differential rotation. Under particular boundary condi-

tions, azimuthal velocity profiles of the fluid can be generated that very nearly match that

of ideal Couette rotation [5, 7, 19, 20], the rotation profile that is expected in the absence

of axial influences for a constant radial flux of angular momentum. In contrast, studies

in the “classical” configuration where the axial boundaries rotate with the outer cylinder

have shown performance that further deviates from ideal Couette as the Reynolds number

is increased [21]. Such trends are revealing of whether these systems are dominated by

boundary interactions or internal dynamics, a distinction with important consequences for

the applicability of such experiments to interpretation of astrophysical systems, especially

at large Reynolds numbers. First, through the experiments reported here we identify two

necessary criteria that define constraints on the boundary configurations that allow near-

ideal flows to develop. We then discuss the competing roles of radial (Stewartson) boundary

layers and axial (Ekman) boundary layers, from which we develop a model that describes

the quantitative departure of the rotation profiles from ideal Couette flow as a function of

the angular momentum fluxes through the boundaries.

II. EXPERIMENTAL APPARATUS

A Taylor-Couette (TC) device is a system of coaxial cylinders that rotate independently

of each other with the experimental fluid region between. The TC apparatus used in these

studies, called the Hydrodynamic Turbulence Experiment (HTX), is a modified version of

the classical device in that the axial boundaries in HTX are segmented to allow differential

rotation across the boundaries [7]. The inner cylinder radius is r1 = 6.9 cm and the outer

cylinder radius is r2 = 20.3 cm. The inner radius and outer radius of the independent rings

are defined by the parameters r3 and r4, respectively. The axial length of the experimental

volume is L = 39.8 cm, giving an aspect ratio of Γ = L/(r2 − r1) = 2.97 (see Fig. 1).

Corresponding components on the top and bottom are driven by the same motor so that the

system is up-down symmetric. The angular velocities of the inner cylinder, outer cylinder

and rings are identified by Ω1, Ω2 and Ω3, respectively. Rotary encoders report the speed of

the motors to the control system.

A laser Doppler velocimeter (LDV) diagnostic system is used to measure the local, az-

imuthal velocity (vθ), which in the experiments reported here were measured at the midplane
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FIG. 1. (color online) Illustration of the HTX device at PPPL showing the segmented axial

boundaries (yellow, blue and green segments), the inner cylinder in black, the outer cylinder in

green and the working fluid in dark blue.

of the device. The LDV system is calibrated by measuring fluid flow in solid body for which,

after spin-up, the only velocity component is vθ, which is a unique function of the motor

speeds. For these studies we define the global shear Reynolds number as Res = r2g∆Ω/ν,

where rg = (r1r2)
1/2 is the geometric-mean radius, ∆Ω = Ω1 − Ω2 and ν is the kinematic

viscosity, approximately 1× 10−6 m2/s for water.

III. OBSERVATIONS

The core observation of this work is summarized in Fig. 2, presenting flows under two

different values of normalized shear (q = 1.8 and q = 1.5) and three different bound-

ary conditions: Split, Optimized, and Ekman. For the q = 1.8 cases these configuration

speeds, reported as Ω1-Ω3-Ω2, are multiples of 350-350-50 RPM (Split), 350-185-50 RPM

(Optimized), and 350-50-50 RPM (Ekman). For the q = 1.5 these are 250-250-50 RPM

(Split), 250-140-50 RPM (Optimized), and 250-50-50 RPM (Ekman). The reference profile

for these studies is described by ideal Couette rotation, defined in terms of angular velocity
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FIG. 2. (color online) Scaled measurements of vθ at various Res for (a) q = 1.8 and (b) q = 1.5.

as ΩC(r) = ΩA+ΩB(rg/r)
2, where ΩA = (r22Ω2−r21Ω1)/(r

2
2−r21), ΩB = r2g(Ω1−Ω2)/(r

2
2−r21).

As a function of azimuthal velocity the Couette solution is vC(r) = rΩC. It is interesting that

while the Ekman and Split configurations exhibit progressive departure from ideal Couette

as the Reynolds number is increased, the shape of the Optimized cases is nearly invariant

with respect to scaling of the Reynolds number.
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A. Necessary conditions for near-ideal flows

Recognizing that the axial boundaries in the Split cases will tend to increase the angular

momentum flux to the bulk, and conversely for the Ekman cases, we begin by considering the

ansatz that the balance of angular momentum fluxes across the axial boundaries determines

the deviation from ideal Couette. A continuous variation of Ω3 from Ω2 to Ω1 would then

suggest that there is some intermediate state for which the profile must pass close to ideal

Couette rotation. We now address whether there is a method for predicting this optimal

value of Ω3.

The transition between the bulk flow and the walls of the TC device, which may move

at very different speeds, occurs over thin boundary layers. The structure of these boundary

layers depends on whether we are considering the balance of forces in the axial or radial

directions. The bulk flow transitions to the axial boundary speeds over Ekman boundary

layers whose thickness scales like δE ∼ rRe
−1/2
b , and in the ideal model of radial boundaries,

over Stewartson boundary layers that scale like δS ∼ rRe
−1/4
b , where Reb = r2Ωb/ν is a local

Reynolds number particular to the boundary location r with boundary speed Ωb [22–24].

The fluxes of angular momentum across these boundary layers, being inversely proportional

to the boundary layer thickness, do not scale proportionally, and hence we anticipate that

self-similarity of the global properties need not be preserved as the Reynolds number is

scaled. Thus, while the observed variation in the shape of the Ekman and Split profiles is

expected, it comes as some surprise that the Optimized profiles are effectively independent

of the Reynolds number.

The experiments reported here showed no significant temporal variation in the mean

values, hence, it can be stated that in steady-state the net flux of angular momentum into

these flows must sum to zero, that is, Φ1 + Φ2 + 2Φz = 0 where Φ1 and Φ2 are the fluxes

integrated over the inner and outer cylinders, respectively, and Φz is the axial flux integrated

over each axial boundary (with inward towards the fluid defined as a positive flux). The

ideal Couette profile is the response to a constant radial flux of angular momentum, implying

that Φ2 = −Φ1 and that the axial fluxes of angular momentum are everywhere zero. Such a

state can be imagined in a TC system with free-slip conditions on the axial boundaries, or

with a continuously variable boundary that can perfectly match the ideal Couette profile,

conditions that will result in vanishing stress at the axial boundaries. The radial flux of
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angular momentum under these conditions (which we call ΦC, the Couette flux) has a

magnitude equal to

ΦC = Φ0

r2g
r22 − r21

Res, (1)

where Φ0 = 4πρν2L. As an aside, it is interesting to note that ΦC = Φ0 Res when the radius

ratio (r2/r1) is equal to the golden ratio.

Even though there is, in general, a large mismatch between fluid and axial boundary

speeds, we find that the flows under the Optimized boundary conditions very closely ap-

proximate the ideal Couette profile, and therefore have a nearly constant radial flux of

angular momentum. We now show that rather than satisfying the condition that the axial

flux of angular momentum everywhere vanishes, these flows satisfy a much weaker constraint:

it is the surface integral of the axial angular momentum flux that vanishes, that is, Φz ≈ 0.

To calculate the axial flux of angular momentum, being proportional to dΩ/dz, we make

the assumption that dΩ/dz ≈ ∆ΩE/δE, where ∆ΩE = Ωb−Ωfl is the difference of the bound-

ary angular velocity (Ωb) and the fluid angular velocity just inside the Ekman boundary layer

(Ωfl), and that δE = αE (ν/Ωb)
1/2 represents the thickness of an Ekman boundary layer with

an unknown numerical constant αE . Defining the normalized quantities ω = Ω/∆Ω (recall-

ing, ∆Ω = Ω1 − Ω2), ωb = Ωb/∆Ω, s1 = r1/rg and s2 = r2/rg, we have

Φz = Φ0

rg
2αEL

Re3/2s

∫ s2

s1

(ωb − ω)ω
1/2
b s3ds. (2)

That the radial flux of angular momentum under ideal Couette rotation (Eq. 1) scales like

Res, whereas Φz scales like Re3/2s means that unless steps are taken to force the integral in

Eq. 2 to zero, there will always exist a Reynolds number beyond which the axial flux will

overwhelm the Couette flux and cause the flow to depart from ideal rotation, regardless of

aspect ratio. From Eq. 2 we can immediately conclude that TC devices of the “classical”

geometry with the axial boundaries co-rotating with either the inner cylinder or outer cylin-

der will always have non-zero Φz and can therefore never be a good model for astrophysical

systems at sufficiently high Reynolds numbers to be of interest. In looking for the condi-

tions under which ideal Couette flow may be generated, we set ω = ωC and search for the

boundary conditions (the ωb) that cause the integral of Eq. 2 to vanish.

Figure 3 summarizes fluid velocity measurements over a scan of Ω3 for q = 1.8 flows for
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FIG. 3. (color online) Experiments conducted in q = 1.8 flows showing vθ as a function of Ω3 for

the (a) HTX and (b) wide-ring geometries, progressing from low ring speeds (bottom curves) to

higher ring speeds (upper curves). In panels (c) and (d) the experimental χ2 (dashed green), for

the measured profiles relative to the ideal Coutte profile for these boundary conditions, is plotted

against the calculated axial flux of angular momentum from Eq. 2 (red, increasing function) and the

pressure differential from Eq. 3 (blue, decreasing function) for the HTX and wide-ring geometries,

respectively. Φz is normalized by ΦC and ∆p is normalized by the kinetic energy density for ideal

Couette flow. The vertical dotted lines indicate the zeros of ∆p and Φz.

two axial boundary configurations: the HTX configuration with r3 = 7.8 cm and r4 = 13.5 cm,

and a wide-ring configuration with rings that span the entire radial gap. These experiments

show that the HTX configuration produces an exceptional match to the ideal Couette profile

for a narrow range of ring speeds centered about 185 RPM, with very low fluctuation levels

spanning the entire gap [7]. Importantly, the boundary conditions that generate near-ideal

flows for the HTX configuration include the zero crossing of Φz (panel c). However, the

wide-ring case also has a zero in Φz , near 85 RPM (panel d), yet its flows never resemble
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FIG. 4. (color online) Same as Fig. 3 except for q = 1.5.

ideal Couette, indicating that the vanishing of Φz is a necessary but not sufficient condition

for achieving near-ideal flows.

The role of the axial boundaries in dictating global performance has also been interpreted

through the competition of pressures from the bulk flow and from the boundary flow that

is viscously coupled to the axial boundaries [25, 26]. The tendency to drive secondary

flows was shown to be consistent with whether the bulk pressure is larger than (Ekman

circulation) or smaller than (anti-Ekman circulation) the boundary pressure. Following the

intuition motivated by these simulations, we define a function ∆p that characterizes the

average pressure difference between ideal Couette rotation and boundary rotation,

∆p =
ρr3g∆Ω2

∆r

∫ s2

s1

∫ s

s1

(

ω2
C − ω2

b

)

s′ ds′ ds. (3)

For the wide-ring configuration the zeros of ∆p and Φz are widely separated, meaning that

no circumstance exists where pressure balance and zero net axial flux can be simultaneously

satisfied. In contrast, the HTX configuration has zeros of these functions that are nearly
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coincident and fall within the operating range in which small fluctuations were observed in

Ref. [7]. Other boundary configurations with q = 1.5 also have nearly coincident zeros of

Φz and ∆p, in remarkably good agreement with experiments. Note that the requirement of

coincident or nearly-coincident zeros represents an effective third constraint. These studies

suggest that the requirements of having nearly coincident zeros of Φz and ∆p for the gener-

ation of ideal flows may represent necessary and sufficient conditions. Additional research

conducted over a wider range of geometries and shear conditions will provide a stronger test

of this hypothesis.

B. Departure of flows from ideal Couette

While the coincident vanishing of Φz and ∆p define what may be necessary and sufficient

conditions for ideal flows to develop, they do not reveal how QK systems should behave

under non-optimized conditions. A general model of the fluid response to forcing by the

boundaries must account for the fluxes across both axial and radial boundary layers. As

there does not exist a theory of Stewartson boundary layers under the conditions of QK

rotation at large Reynolds numbers, we cannot rely on results derived from a linear analysis

of perturbative differences in rotational speeds [24], especially for experimental conditions

where the Stewartson boundary layers are turbulent [7]. Instead, we assume a generalized

scaling of the Stewartson boundary layer thickness of the form δS = αSrRe
β
b , taking the

exponent of the Reynolds number (β) as a free-parameter to be determined from the ob-

served scalings in Fig. 2. While the numerical factors αE and αS are introduced through

the definitions of the boundary layer thicknesses, we cannot measure the boundary layers

directly, and therefore we must interpret their meaning as a measure of the effectiveness of

angular momentum flux.

We begin this analysis by considering the Ekman configurations from Fig. 2 where we

note that vθ transitions to solid body rotation at Ω2 near the outer cylinder, implying that

Φ2 ≈ 0. With a jump in azimuthal velocity (a negative ∆v) occurring over a Stewartson

layer at the inner cylinder, the appropriate form for Φ1 is

Φ1 = −Φ0

c1
2αS

Reβs
r1∆v

ν
, (4)

where c1 = (r1Ω1/r2∆Ω)β is a result of converting from a representation of the boundary
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layer thickness that depends on the local Reb to a global Res. We approximate these flows

with a piecewise function of the form vθ(ra < r < rt) = vC +∆v and vθ(rt < r < r2) = rΩ2,

where rt is the transition radius, similar to the identification of separate flow regions in

the recent work of Nordsiek et al. [21]. Substituting this rotation profile into Eq. 2 (using

ω = vθ/r∆Ω) and using Eq. 4 for the radial flux at r1, we solve the global balance of angular

momentum, Φ1 + 2Φz = 0, for the dimensionless ∆v′neg = ∆v/rg∆Ω as a function of Res.

Noting that Φz has two parts given this representation, our solution has three terms and is

of the form

∆v′neg =
f1

α c1
L
2r2

Reβ−1/2
s + f2

, (5)

where α = αE/αS, and the integral expressions f1 and f2 are defined as

f1 =

∫ st

s1

(ωb − ωC)ω
1/2
b s3ds (6)

f2 =

∫ st

s1

ω
1/2
b s2ds. (7)

Equation 5 is a transcendental expression in ∆v since the limits of the integrals in f1 and f2

are functions of rt which itself depends on ∆v. Equation 5 has only two free parameters: β

and α = αE/αS. Comparison of Eq. 5 with experimental measurements of ∆v is presented

in Fig. 5 for the q = 1.8 and q = 1.5 cases, where values of β ≈ 0.08 and αE/αS ≈ 15 provide

the best fit to the experimental measurements.

This analysis can be extended to the case of the Split configuration with positive ∆v by

accounting for the different boundary conditions and a slightly more complex flow structure.

The most important feature of the positive ∆v cases is that there is a nearly linear decrease

in ∆v across the gap, where ∆v at r2 is defined to be equal to ǫ∆v. In the q = 1.8 cases ∆v

decreases by about 60% across the gap (ǫ = 0.4), and by 80% for q = 1.5 (ǫ = 0.2), nearly

independent of Reynolds number. The radial flux at r2 in terms of the ǫ reduced ∆v is

Φ2 = Φ0

c2
2αS

Reβs
r2ǫ∆v

ν
, (8)

where c2 = (r2Ω2/r1∆Ω)β . The solution for positive, normalized ∆v is
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solutions to Eqs. 5 and 9 with β = 0.08 and αE/αS = 15.

∆v′pos =
f3

ǫ α c2
L
2r1

Reβ−1/2
s + f4

, (9)

where, similar to Eq. 5, we have

f3 =

∫ s2

st

(ωb − ωC)ω
1/2
b s3ds (10)

f4 =

∫ s2

st

[

s2 − ǫst − (1− ǫ)s

s2 − st

]

ω
1/2
b s2ds. (11)
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For the Split cases, the term st defines the transition point from increasing to decreasing

∆v, and the terms in square brackets in Eq.11 derive from the variation of ∆v with radius

(note that if ∆v were constant across the gap then ǫ = 1 and the term in brackets reduces

to unity, recovering Eq. 7). Equation 9 is compared against the measured ∆v′ in Fig. 5 and

is also found also to be in good agreement with experiment when using the same values of

αE/αS and β derived from the analysis of the Ekman cases.

The success of this model in reproducing the general features of the departures from ideal

Couette is remarkable given that it represents a simple accounting of the angular momentum

fluxes across the boundaries, ignoring completely the complex internal dynamics of these

flows, especially at large Reynolds number where a substantial fraction of the volume exhibits

turbulent fluctuations [7]. What disagreement exists between experiment and theory should

not overshadow the success of this model in reproducing the general trend of the velocity

deviations, the relative amplitude of the positive and negative ∆v cases, and the change

in the amplitude of the positive ∆v cases between q = 1.8 and q = 1.5. While the model

presented here uses a single set of parameters for both values of q, better fits to the data

can be found if we let these parameters depend on q. It is also possible the these parameters

have some dependence on geometry and themselves have a dependence on Reynolds number

that is not captured by the power-law scaling used here.

Studies of the measured fluctuation levels arising from the Stewartson boundary layers

in Ref. [7] found that the transition to turbulent Stewartson boundary layers was consistent

with the Taylor model of low Reynolds number centrifugal instability. So while cannot offer

a precise explanation for why β should take a value close to 0.1, we reiterate that the inferred

scaling applies to the angular momentum flux which is a combination of variations in the

boundary layer thickness and an effective viscosity within these layers that is modified by

turbulent fluctuations. It is beyond the scope and ability of these experiments to identify

the separate scalings of the turbulent viscosity and the thickness of the Stewartson boundary

layers, though perhaps future experiments will be able to provide greater insight into this

problem.

13



IV. CONCLUSIONS

We conclude with an outlook to future physical and numerical experiments. The ratio

of Φz and ΦC explored earlier can be recast as a constraint on the aspect ratio L/∆r as a

function of the Reynolds number. The relative contribution of Φz can be made arbitrarily

small by increasing the axial size of the system, so that to make Φz/ΦC ≈ 10−2 for an Ekman

configuration, for example, one would need an aspect ratio of order 100 at a Reynolds number

of 106. Outside of using very large aspect ratios, one can employ mechanical advantages as we

have done in HTX, such as extensions of the inner and outer cylinder or independent rings.

Despite the desire to simplify the mechanical design of such modified TC devices, further

analysis shows that the only way to achieve simultaneous zeros in Φz and ∆p is through

a design with at least one independent ring. Greater insight into the balance of forces in

quasi-Keplerian flows could be explored in future experiments in modified Taylor Couette

devices like HTX. In particular, further exploration of the Reynolds number dependence

on these deviations, the dependence of the model parameters on q, and the structure of

the Ekman cells would tell us much more about the influence of the boundaries on global

behavior.

We have shown that nearly ideal flows exhibit profile shape invariance under scaling of

the Reynolds number, an effect we interpret through the dual conditions of vanishing axial

angular momentum flux and vanishing pressure differential that are nearly simultaneously

satisfied, offering predictive capability for selecting optimized boundary conditions and in

experimental design. The strongest piece of evidence in support of this model is the pre-

diction of self-similarity of the profiles with respect to scaling of the Reynolds number only

for cases in which the axial flux of angular momentum and the pressure differential vanish

nearly coincidentally, a prediction in excellent agreement with the observations presented

in Fig. 2. It should be reiterated that while the experiments for Optimized flows show

very small departures from ideal Couette, and whose interpretation is congruent with the

coincident zeros in ∆p and Φz, this does not strictly prove that these criteria represent true

sufficient conditions. An interesting problem for future studies would be to measure how

the departures from ideal Couette depend on the “distance” between these zeros.

It is interesting to note that in all cases presented here the local axial fluxes of angular

momentum may be quite large given the substantial difference in speed between the bulk fluid
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and the axial boundaries, and that it is only on summation over the axial boundaries that

zero net axial flux is realized for the Optimized cases. Recalling that multiple experiments

[7, 19, 20] and simulations [25, 27] have observed a nearly uniform axial structure through

the bulk of the fluid volume, the existence of the large axial fluxes naturally raises the

question of what allows the bulk flows to depart from the solid body rotation forced by the

boundaries? Intuition based on the Taylor-Proudman theorem for Rayleigh-stable flows, that

is dvθ/dz ≈ 0, would suggest that the bulk should tend to follow the boundary. However,

it should be recalled that the Ekman boundary layers do not need to satisfy the Taylor-

Proudman theorem because the axial gradient of vθ is balanced with a viscous diffusion of

vorticity over the scale of the boundary layer thickness. Thus, the nearly uniform axial

structure suggests that the large fluxes of angular momentum that must be present due to

the existence of the the Ekman boundary layers are redistributed locally, perhaps by small

Ekman cells that do not extend far into the bulk of the fluid or even in the boundary layers

themselves. As has been shown in prior studies, the free-shear layer that develops at the

interface between the differentially rotating rings on the axial boundaries is expected to be

centrifugally unstable and may help to enhance the redistribution of angular momentum

locally [13].

Another problem for future experiments, both physical and numerical, will be to explore

in greater detail how the very large, local fluxes of angular momentum are redistributed near

the axial boundaries with only minor effect on the bulk flow in the Optimized configura-

tions. Non-optimized boundaries, like the Split and Ekman configurations, show progressive

departure from the ideal Couette flow as the Reynolds number is increased, in agreement

with the expectations of a dominant axial flux of angular momentum. A good test for nu-

merical experiments will be to accurately model the global behavior of the mean flows in

TC experiments by properly accounting for the angular momentum fluxes from the bound-

aries. We believe that the boundary layer scalings presented here may enable simulations

to bootstrap to larger effective Reynolds numbers by using specified boundary flux models,

thus bypassing the need for very fine grids to resolve the boundary layer structure directly.

With the combination of recent simulations of QK flows that can attain Reynolds numbers

of the order of 105 [14, 28], though with axially-periodic boundary conditions, a specified-

flux boundary model may allow simulations to reach something resembling experimental

conditions of large Reynolds number TC flows.
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