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I. INTRODUCTION

Chimera states are states of partial synchronization in which a group of oscillators oscillate

in phase while the remaining oscillators oscillate incoherently [1–3]. States of this type

were first identified in systems of phase oscillators with nonlocal coupling [1] and a fairly

detailed understanding of the origin of such states in one spatial dimension and their stability

properties has now been achieved [4, 5]. Chimera states may be stationary or they may

travel [5, 6]. A system may exhibit a single coherent cluster or multiple coherent clusters;

the latter may be equally or unequally distributed [5, 6]. Although first discovered in

numerical simulations, a self-consistency analysis based on the Ott-Antonsen Ansatz [4, 7, 8]

has provided valuable information about the splitting or coalescence of chimera states as

parameters are varied; this approach allows in addition the determination of the stability of

such states and hence provides a first step towards understanding the types of bifurcations

that chimera states may undergo [4, 5].

Rather less is known about chimera states in two-dimensional oscillator arrays and exist-

ing results are largely based on numerical simulations [9–11]. Both two- [9–11] and three-

dimensional [12] arrays have been studied and the results have revealed new types of chimera

states, in addition to the counterparts of the one-dimensional states already mentioned. In

two dimensions these include spiral chimera states with an incoherent core while the os-

cillators outside the core oscillate coherently [11, 13]. In this paper we consider the case

of two-dimensional oscillator arrays with nonlocal coupling, with a view to studying, both

numerically and analytically, different states of partial synchrony in two dimensions. Like

earlier work, our work is restricted to arrays of phase-coupled oscillators with periodic bound-

ary conditions in both directions, i.e., to phase oscillators on a (flat) torus.

First steps in this direction were taken by Kim et al. [14] in their study of the system

dθij
dt

= ω − K

N(R)

∑
(m−i)2+(n−j)26R2

sin(θij − θmn + α). (1)

Here θij denotes the phase of the oscillator at position (i, j) on a two-dimensional periodic

lattice, K is the coupling strength, and N(R) is the number of oscillators whose distance to

(i, j) is no larger than R. They found and investigated many of the interesting patterns that

arise as α varies in the range [−π, π], but did not observe chimera states. In 2012, Hager-

strom et al. created a physical realization of a two-dimensional iterated map with nonlocal

coupling and periodic boundary conditions, and observed chimera states in an experiment

[15]. Meanwhile, Omel’chenko et al. [11] presented a series of numerical experiments on

the same system as used in [14] but with a careful preparation of initial conditions. They

reported chimera states of three types: a coherent spot, an incoherent spot, and different

stripe patterns. In addition, they observed a stable configuration of four spirals. This work

has recently been extended to three dimensions [12]. While the results in these papers are

largely based on numerical simulations, Panaggio and Abrams used asymptotic methods

to derive conditions under which two-dimensional “spot” and “stripe” chimeras can exist

on a two-dimensional periodic domain [16]. With their method, they also reveal an asym-

metric chimera state; however, this state is unstable and appears in simulations only as a
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transient. In the work reported below additional two-dimensional chimera states, including

states we call twisted chimera states and multi-core spiral wave chimera states, are observed

and studied.

The system we consider consists of an oscillator array on a two-dimensional torus. The

continuous version of the model leads to the following evolution equation for the phase

θ(x, y, t):

∂θ(x, y, t)

∂t
= −

∫ π

−π

∫ π

−π
G (x− x′, y − y′) sin(θ(x, y, t)− θ(x′, y′, t) + α) dx′ dy′. (2)

To make the system analytically tractable, we assume the coupling kernel G can be decom-

posed as G(x, y) = Gx(x) +Gy(y), where Gx and Gy are functions representing the coupling

in the x and y directions, respectively. Inspired by the work in [5], we choose Gx and Gy

from the following two families:

G(1)
n (x) ≡ cos(nx), G(2)

n (x) ≡ cos(nx) + cos[(n+ 1)x].

With these coupling kernels, we observe chimera states on a two-dimensional torus with

random initial conditions, including twisted chimeras and a variety of spiral wave chimeras.

The simulations are carried out using a fourth-order Runge-Kutta method with time step

δt = 0.025. Both x and y directions are discretized into N uniform intervals with N = 256

or N = 512.

This paper is organized as follows. In Section II we introduce the effective order parameter

equation we will use to describe the phase patterns obtained in numerical simulations. These

are described in Sections III and IV for two different choices of the coupling kernel G(x, y).

These sections also relate the simulations to solutions of the order parameter equation and

use the latter to determine the stability properties of the different states found. The paper

ends with a brief discussion in Section V.

II. EFFECTIVE EQUATION

As in the one-dimensional case, an equivalent description of Eq. (2) can be obtained by

constructing an equation for the local spatial average z(x, y, t) of exp[iθ(x, y, t)] defined by

z(x, y, t) ≡ lim
δ→0+

1

δ2

∫ δ/2

−δ/2

∫ δ/2

−δ/2
exp[iθ(x+ x′, y + y′, t)] dx′dy′. (3)

The evolution equation for z then takes the form [17]

zt =
1

2

(
exp(−iα)Z − exp(iα)z2Z∗

)
, (4)

where Z(x, y, t) ≡ K[z](x, y, t) and K is a compact linear operator defined via the relation

K[u](x, y, t) ≡
∫ π

−π

∫ π

−π
G(x− x′, y − y′)u(x′, y′, t) dx′dy′. (5)
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A derivation of Eq. (4) based on the Ott–Antonsen ansatz is very similar to the one-

dimensional case [5, 18] and is omitted.

Stationary rotating solutions of Eq. (4) take the form

z(x, y, t) = z̃(x, y) exp(−iΩt), (6)

where Ω satisfies the nonlinear-nonlocal eigenvalue problem

iΩz̃ +
1

2

[
exp(−iα)Z̃(x, y)− z̃2 exp(iα)Z̃∗(x, y)

]
= 0. (7)

Here z̃(x, y) describes the spatial profile of the rotating solution and

Z̃(x, y) ≡ K[z̃](x, y) = R(x, y) exp(iΘ(x, y)) (8)

is the (complex) local order parameter; this parameter has magnitude R(x, y) and phase

Θ(x, y).

Solving Eq. (7) as a quadratic equation in z̃ we obtain

z̃(x, y) = exp(iβ)
Ω− µ(x, y)

Z̃∗(x, y)
=

exp(iβ)Z̃(x, y)

Ω + µ(x, y)
, (9)

where β ≡ (π/2) − α, and µ(x, y) equals [Ω2 − |Z̃(x, y)|2]1/2 when |Ω| > |Z̃(x, y)| and

i[|Z̃(x, y)|2 − Ω2]1/2 when |Ω| < |Z̃(x, y)| for reasons explained in [17]. Combining this

equation and the relation between z̃ and Z̃ gives us the self-consistency equation

R(x, y) exp(iΘ(x, y)) = exp(iβ)

∫ π

−π

∫ π

−π
G(x−x′, y− y′) exp(iΘ(x′, y′))h(x′, y′) dx′dy′, (10)

where

h(x, y) ≡ Ω−
√

Ω2 −R2(x, y)

R(x, y)
. (11)

As in the one-dimensional case, temporal stability of the stationary rotating solution is

determined by the spectrum of the following linear operator:

vt = L[v] ≡ iµ(x, y)v +
1

2

[
exp(−iα)V (x, y, t)− exp(iα)z̃2V ∗(x, y, t)

]
, (12)

where V (x, y, t) ≡ K[v].

In the following we perform numerical simulations withN2 identical oscillators and use the

results to determine the order parameter amplitude and phase by discretizing the definition

R(x, y) exp(iΘ(x, y)) =

∫
G(x− x′, y − y′) exp(iθ(x′, y′)) dx′dy′ (13)

as follows:

Rnm exp(iΘnm) =

(
2π

N

)2 ∑
n′,m′

G

(
2(n− n′)π

N
,
2(m−m′)π

N

)
exp(iθn′m′). (14)

Here θnm is the phase of the oscillator at site (n,m), and Rnm and Θnm are the modulus and

phase of the expression on the right. We use the results to establish the symmetry properties

of the order parameter and to suggest the form of the solution of the self-consistency relation

(10).
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III. THE CASE Gx = Gy = G
(1)
n

We consider first the case where Gx = cos(nx) and Gy = cos(ny). In [5] we discussed

the one-dimensional system with G(x) = cos(nx), where splay states and 2n-cluster chimera

states are observed. In the current two-dimensional system, counterparts of the splay states

are still present, although no counterparts of 2n-cluster chimera states were observed: 2n-

cluster chimera states are always unstable in two dimensions. This is because the 2-cluster

state is unstable (Sec. III B) and the stability calculation for the case n > 1 is the same.

However, in addition to the stable splay states, we have also observed two new types of

chimera states. One is the twisted chimera state already mentioned, in which a coherent

stripe with uniformly varying phase distribution coexists with an incoherent domain, while

the other is a multi-core spiral wave chimera. These states are described below.

Before proceeding we wish to point out two facts about Eq. (2) with the present coupling.

First, the system is invariant under the three reflections (x, y)→ (−x, y), (x, y)→ (x,−y),

and (x, y) → (y, x), i.e., it is invariant under the group D4 of rotations and reflections of

a square. It follows that if θ(x, y, t) is a solution, then so are θ(−x, y, t), θ(x,−y, t), and

θ(y, x, t). Second, if
∫ π
−π Gy(y) dy = 0, then the following statement holds: if θ1(x, t) is a

solution for the one-dimensional system

∂θ(x, t)

∂t
= −

∫ π

−π
G(x− x′) sin[θ(x, t)− θ(x′, t) + α] dx′, (15)

then θ2(x, y, t) ≡ θ1(x, 2πt) is a solution of Eq. (2). We say that the solution θ2 of the two-

dimensional system is inherited from the solution θ1 for the corresponding one-dimensional

system.

A. Splay states

Splay states with a phase that varies uniformly with respect to x are observed in one-

dimensional systems. The inherited solution of the two-dimensional system is also observed

in numerical simulations. Figure 1 shows two examples in which the phase varies uniformly

in the x direction. Solutions in which the phase varies uniformly in the y direction are also

observed (not shown).

The splay state in Fig. 1 can be written in the form

θ(x, y, t) = −Ωt+ qx, (16)

where −Ω represents the overall rotation frequency and q (an integer) is the twist number.

Substituting Eq. (16) into Eq. (2) we obtain a relation for the rotation frequency:

Ω =

∫ π

−π

∫ π

−π
G(x, y) sin(qx+ α) dx dy. (17)

As in the one-dimensional case, states of this type travel with speed c = Ω/q, i.e., to the

right when both Ω and q have the same sign and to the left when Ω and q have opposite

signs.
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FIG. 1. (Color online) Snapshot of the phase pattern for splay states in two dimensions. (a) The

phase distribution θ(x, y, t) for Gx = cos(x), Gy = cos(y). (b) The phase distribution θ(x, y, t) for

Gx = cos(x) + cos(2x), Gy = cos(y) + cos(2y). The simulations are done with β = 0.05, N = 256

from a random initial condition. Colors indicate the phase of the oscillators.

To investigate the linear stability of the splay states, we use the approach of [5] and sup-

pose that θ(x, y, t) is perturbed by ε exp[λt+i(kxx+kyy)] with 0 < ε� 1. A straightforward

calculation, using the fact that Gx, Gy are both even and Ĝy 0 = 0, leads to the following

relation for the growth rate λ of the perturbation:

λ =
1

2

[
exp(iα)(Ĝx,q−kxδky ,0 + δkx,qĜy,−ky) + exp(−iα)(Ĝx,−kx−qδky ,0 + δkx,−qĜy,−ky)

]
−Ĝx,q cosα,

(18)

where Ĝx,k ≡
∫ π
−π Gx(x) exp(ikx) dx etc. This relation shows that when 0 < α < π/2, the

splay state is linearly stable when |q| = n if Gx = Gy = G
(1)
n and |q| = n or n + 1 if

Gx = Gy = G
(2)
n .

B. Two-cluster chimera states

As in one dimension the splay states may coexist with stable chimera states. However, no

stable analogues of the 2n-cluster chimera states familiar from the one-dimensional problem

have been observed in two dimensions since such states are now unstable. To demonstrate

this we first compute such states using the self-consistency analysis and then determine their

stability properties.

In view of the coupling kernel G(x, y) the local order parameter must take the form

Z̃(x, y) = R0 cos(nx) (modulo translations), a result expected to be exact in the limit

N →∞. The self-consistency relation for R0 is

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 cos2 (nx)

〉
. (19)

Here the bracket 〈·〉 is defined by 〈f〉 =
∫ π
−π

∫ π
−π f(x′, y′) dx′ dy′. Thus the self-consistency

equation for R0 has the same form as in one dimension (1D) except that the bracket rep-

resents an integral over a torus rather than a ring. Therefore, if Ω′ and R′0 is the solution



7

0 0.5 1 1.5
0

10

20

30

β

(a)

 

 

Ω
R

0

0 0.5 1 1.5
0

5

10

β

λ p

(b)

FIG. 2. (Color online) Dependence of (a) R0 and Ω, and (b) the point eigenvalues λp on the

parameter β.

for 1D case, then Ω = 2πΩ′ and R0 = 2πR′0 is the solution in two dimensions (2D). The

solution of Eq. (19) is shown in Fig. 2(a). Since the right side of Eq. (19) is identical for

all n = k/2, k ∈ N, it follows that the same solution describes all 2n-cluster chimera states,

n = 1, 2, . . ..

The linear stability of the 2n-cluster chimera states determined by the above analysis can

be studied using Eq. (12). This equation is solved by

v(x, y, t) = exp(λt)v1(x, y) + exp(λ∗t)v∗2(x, y), (20)

leading to the eigenvalue problem

λ

(
v1
v2

)
=

1

2

(
2iµ+ exp(−iα)K − exp(iα)z̃2K

− exp(−iα)z̃∗2K −2iµ∗ + exp(iα)K

)(
v1
v2

)
. (21)

Since the operator K is compact, its spectrum consists of two parts, a continuous spectrum

given by {iµ(x, y),−iµ∗(x, y)} with x, y ∈ [−π, π] and a (possibly empty) point spectrum.

The spectrum is in addition symmetric with respect to the real axis: if λ is an eigenvalue

with eigenvector (v1, v2)
T , then λ∗ is an eigenvalue with eigenvector (v∗2, v

∗
1)T . The continuous

spectrum is stable (negative) or neutrally stable (purely imaginary). Thus the stability of

the chimera states is solely determined by the point spectrum. In the following we use the

term stable to indicate absence of (exponentially growing) instability.

We can compute unstable point eigenvalues λp numerically. For this purpose we rewrite

Eq. (21) in the form

Lv ≡
(

2− exp(−iα)K
λp−iµ

exp(iα)z̃2K
λp−iµ

exp(−iα)z̃∗2K
λp+iµ∗

2− exp(iα)K
λp+iµ∗

)(
v1
v2

)
= 0, (22)

and define f ≡ 1
4
exp(−iα)
λp−iµ , f c ≡ 1

4
exp(iα)
λp+iµ∗

, g ≡ 1
4
exp(iα)z̃2

λp−iµ , and gc ≡ 1
4
exp(−iα)z̃∗2
λp+iµ∗

. Note that f c

is the complex conjugate of f only when λp is real, and likewise for gc. Since the lack of

smoothness of Z̃ can lead to significant numerical error when the above problem is solved
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directly using a global collocation method, we employ instead Fourier basis functions. These

are particularly convenient in view of the sinusoidal coupling kernel [4, 5]. Following the

convention used in [5], we write

v =
1

4π2

∑
m,n

v̂mn exp(−imx) exp(−iny). (23)

In this basis, Eq. (22) takes the form∑
m,n

Bkl,mnv̂mn = 0, (24)

where v̂mn = (v̂1,mn, v̂2,mn),

Bkl,mn =

(
2π2δk,mδl,n − f̂k−m l−nĜmn ĝk−m l−nĜmn

ĝck−m l−nĜmn 2π2δk,mδl,n − f̂ ck−m l−nĜmn

)
,

and f̂l, f̂
c
l , ĝl, ĝ

c
l are the Fourier coefficients of f , f c, g and gc, respectively; the latter are

defined by f̂kl = 〈f exp(ikx) exp(ily)〉, etc.

The point eigenvalue λp satisfies the condition detB(λp) = 0. We use n = 1 as an

example. In this case Ĝmn = 2π2 whenever (m,n) = (±1, 0) and (0,±1), and 0 otherwise.

Therefore, λp satisfies

det



1− f̂0,0 ĝ0,0 −f̂−2,0 ĝ−2,0 −f̂−1,1 ĝ−1,1 −f̂−1,−1 ĝ−1,−1
ĝc0,0 1− f̂ c0,0 ĝc−2,0 −f̂ c−2,0 ĝc−1,1 −f̂ c−1,1 ĝc−1,−1 −f̂ c−1,−1
−f̂2,0 ĝ2,0 1− f̂0,0 ĝ0,0 −f̂1,1 ĝ1,1 −f̂1,−1 ĝ1,−1
ĝc2,0 −f̂ c2,0 ĝc0,0 1− f̂ c0,0 ĝc1,1 −f̂ c1,1 ĝc1,−1 −f̂ c1,−1
−f̂1,−1 ĝ1,−1 −f̂−1,−1 ĝ−1,−1 1− f̂0,0 ĝ0,0 −f̂0,−2 ĝ0,−2
ĝc1,−1 −f̂ c1,−1 ĝc−1,−1 −f̂ c−1,−1 ĝc0,0 1− f̂ c0,0 ĝc0,−2 −f̂ c0,−2
−f̂1,1 ĝ1,1 −f̂−1,1 ĝ−1,1 −f̂0,2 ĝ0,2 1− f̂0,0 ĝ0,0
ĝc1,1 −f̂ c1,1 ĝc−1,1 −f̂ c−1,1 ĝc0,2 −f̂ c0,2 ĝc0,0 1− f̂ c0,0


= 0. (25)

This equation applies for the coupling kernels Gx = Gy = G
(1)
1 and will be used in later

sections. For 2-cluster chimera states we have in addition f̂kl = ĝkl = f̂ ckl = ĝckl = 0 whenever

l 6= 0. Thus Eq. (25) reduces to

det


1− f̂0,0 ĝ0,0 −f̂−2,0 ĝ−2,0
ĝc0,0 1− f̂ c0,0 ĝc−2,0 −f̂ c−2,0
−f̂2,0 ĝ2,0 1− f̂0,0 ĝ0,0
ĝc2,0 −f̂ c2,0 ĝc0,0 1− f̂ c0,0

 = 0, (26)

and two copies of the block

det

(
1− f̂0,0 ĝ0,0
ĝc0,0 1− f̂ c0,0

)
= 0. (27)
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One branch of the point spectrum comes from Eq. (26). The resulting point eigenvalue λp
is computed using continuation based on Newton’s method and is shown in Fig. 2(b) (green

solid line). Notice that

f̂0,0 =
1

4

〈
exp(−iα)

λp − i
√

Ω2 −R2
0 cos2 x

〉
=

1

4

∫ π

−π

exp(−iα)

λp/(2π)− i
√

Ω′2 −R′20 cos2 x
dx. (28)

From this and similar relations we conclude that if λ′p is an eigenvalue in 1D, then λp = 2πλ′p
is an eigenvalue in 2D. A second branch of the point spectrum comes from Eq. (27) and is also

shown in Fig. 2(b) (red dashed line). This point eigenvalue has double multiplicity because

the factor (27) occurs twice; the figure shows that it is positive for all 0 ≤ β ≤ π
2
, thereby

explaining why we were unable to find 2n-cluster chimera states starting from random initial

conditions.

C. Twisted chimera states
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FIG. 3. (Color online) Snapshots of the phase patterns for twisted chimera states. (a) The phase

distribution θ(x, y, t) for Gx = Gy = G
(1)
1 . (b) The phase distribution θ(x, y, t) for Gx = Gy = G

(1)
2 .

The simulations are done with β = 0.05, N = 256 and random initial condition. Colors indicate

the phase of the oscillators.

As mentioned above, twisted chimera states are obtained in numerical simulations with

the coupling kernels Gx = cos(nx), Gy = cos(ny). Figure 3 provides examples for n = 1, 2

and β = 0.05. In these states the coherent clusters form closed stripes on a torus. In addition,

the phase varies uniformly along the stripes. We use the term twist number to indicate the

number of times the stripe wraps in either the x or the y direction. Thus the states in

Figs. 3(a,b) correspond to 1:1 and 2:2 twisted chimeras, respectively. Numerical simulations

suggest that this type of chimera state is one of the two most frequently observed states (the

other being a splay state) when starting from random initial conditions with β . 0.12.

To understand the properties of the twisted chimera states we invoke the self-consistency

equation (10). Figures 4(a,b) show the pattern of R(x, y) and Θ(x, y) for the 1:1 twisted
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FIG. 4. The (real) order parameters (a) R(x, y), and (b) Θ(x, y) for the 1:1 twisted chimera state

shown in Fig. 3(a). In panel (a), the color indicates the amplitude of the local order parameter

R(x, y). In (b), the color indicates the phase.

chimera state obtained from the numerical simulation reported in Fig. 3(a). To understand

the properties of these empirical order parameter fields we need to solve Eq. (10) for R(x, y)

and Θ(x, y). This formidable task can be simplified using appropriate symmetry relations

valid for our choice of Gx and Gy. We illustrate the procedure in Appendix A in the case

n = 1, obtaining R exp(iΘ) = R0

2
(exp(ix)− exp(iy)). It follows that the self-consistency

requirement takes the form

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 sin2

(
x− y

2

)〉
. (29)

The detailed derivation of this expression can also be found in Appendix A.

Equation (29) is identical to Eq. (19) with a change of coordinates u ≡ x + y, v ≡ x−y
2

.

Thus the dependence of Ω and R0 on β is identical to that shown in Fig. 2(a). When β = 0,

Ω = R0 ≈ 14.346, which is consistent with the value Ω = R0 = 4π2−8π obtained analytically

from Eq. (29). As in the 1D case, the boundary between coherent and incoherent domains

is determined by the relation Ω = R0

∣∣sin (x−y
2

)∣∣, implying that the coherent fraction (by

area) is given by r = 1− 2π−1 sin−1(Ω/R0). The dependence of r on β is shown in Fig. 5(a).

The stability of the twisted chimera states can be analyzed in the same way as done for

the 2n-cluster chimera states. When n = 1, λp is still determined by Eq. (25). It turn out

that many elements in Eq. (25) vanish and the equation for the point eigenvalue λp reduces

to the three conditions

det


1− f̂0,0 −f̂−1,1 ĝ−2,0 ĝ−1,−1
−f̂1,−1 1− f̂0,0 ĝ−1,−1 ĝ0,−2
ĝc2,0 ĝc1,1 1− f̂ c0,0 −f̂ c1,−1
ĝc1,1 ĝc0,2 −f̂ c−1,1 1− f̂ c0,0

 = 0, (30)

and

det

(
1− f̂0,0 −f̂−1,1
−f̂1,−1 1− f̂0,0

)
= 0, det

(
1− f̂ c0,0 −f̂ c−1,1
−f̂ c1,−1 1− f̂ c0,0

)
= 0. (31)
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FIG. 5. (Color online) Dependence of (a) the fraction r of coherent oscillators and (b) the real

part of the two complex point eigenvalues λp on the parameter β.

It turns out that Eq. (30) gives the same result as Eq. (26). This is not so surprising if

we compare the elements of the two matrices in Eq. (26) and Eq. (30). These two matrices

are almost identical except that some of the matrix elements in Eq. (30) have opposite

sign from that of the corresponding terms in Eq. (26). However, this does not affect the

final determinant of the matrix. Equation (31) gives two additional branches of eigenvalues,

which are complex conjugates of one another. Figure 5(b) shows the dependence of the real

part of the two point eigenvalues λp that result on the parameter β. As β increases from 0,

the red (dashed) eigenvalue λp becomes unstable first, at β ≈ 0.122. This onset of instability

is consistent with direct numerical simulation.

D. Spiral wave chimeras

For larger values of β, stable configurations of multi-core spiral wave chimera states are

found. In this state a core of incoherent oscillators is surrounded by spiral arms consisting

of phase-locked oscillators. The arms rotate rigidly with a constant angular velocity. In the

following we define the time-averaged oscillation frequency θ̄t(x, y) ≡ limT→∞[θ(x, y, T ) −
θ(x, y, 0)]/T at each location on the torus. From the self-consistency analysis, we then

find that θ̄t(x, y) = −Ω when Ω < R(x, y) (the coherent region outside the core) and

θ̄t(x, y) = −Ω +
√

Ω2 −R(x, y)2 when Ω > R(x, y) (in the incoherent core). The former

frequency thus corresponds to the angular velocity of the spiral arms, i.e., to the rotation

rate of the spatial pattern; the latter frequency depends on the distance from the core (it

vanishes at the core center where R = 0) but because the core is incoherent the frequency

cannot be identified with spatial rotation. Figure 6 shows the phase distribution in multi-

core spiral chimeras obtained with the coupling kernels G
(1)
1 and G

(1)
2 , specifically with 4

and 16 incoherent cores, distributed evenly in both x and y directions. In addition, Figure 7

shows three examples of spiral wave chimeras with G
(1)
1 and different values of β. These

results indicate that spiral wave chimeras can be present for α near π/2, in contrast to

earlier work suggesting that such states would only be found for α sufficiently close to zero
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FIG. 6. (Color online) Snapshots of the phase patterns for two numerically stable spiral wave

chimera states. (a) The phase distribution θ(x, y) for Gx = Gy = G
(1)
1 . (b) The phase distribution

θ(x, y) for Gx = Gy = G
(1)
2 . The upper left spirals rotate clockwise in both (a) and (b), with the

direction of rotation alternating from core to core in both x and y directions. The phase patterns

have the symmetry D2 and not D4. Simulations are done with β = 1, N = 256 and random initial

conditions. Colors indicate the phase of the oscillators.

[13].
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FIG. 7. (Color online) Snapshots of the phase patterns for spiral wave chimeras. (a) β = 1.5. (b)

β = 1. (c) β = 0.5. In all three panels, colors indicate the phase of the oscillators. The simulations

are done with Gx = Gy = G
(1)
1 , N = 256 and random initial conditions.

To understand the origin of the n = 1 spiral wave chimeras, we examine their properties

using the self-consistency analysis. It turns out (Appendix B) that R exp(iΘ) = b(sin(x) +

i sin(y)) and hence that

2b2 = exp(iβ)

〈
Ω−

√
Ω2 − b2(sin2 x+ sin2 y)

〉
. (32)

The right side of Eq. (32) remains unchanged when sin2 x and sin2 y are replaced by sin2(px)

and sin2(qy) for all p, q ∈ 1
2
N. Solving Eq. (32) gives us the values of Ω and b for the m = 1

spiral wave chimera, where m is the azimuthal wave number of the spiral. Thus |Ω| is also

the rotation frequency of the spiral in space.
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FIG. 8. (Color online) (a) Snapshot of the phase distribution θ(x, y) for a four-core spiral wave

chimera state for β = 1 (Fig. 7(b)) after translation of one of the incoherent cores to the origin.

(b) The corresponding order parameter R(x, y). (c) The corresponding order parameter Θ(x, y).

The simulation is done with Gx = Gy = G
(1)
1 , N = 256 and random initial conditions. In panels

(a) and (c) colors indicate the phase of the oscillators; in (b) color indicates the amplitude of the

local order parameter R(x, y).

When β = π
2
, we obtain Ω = 0 and b =

〈√
sin2 x+ sin2 y

〉
/2 ≈ 18.91. Figure 9(a) shows

the dependence of b and Ω on β. As β decreases from π
2
, b decreases, Ω increases and the

area of incoherent cores increases. When β ≈ 0.38, b = Ω and the incoherent cores touch

each other (Fig. 10(b)). When β decreases further, the incoherent domains reconnect and

the coherent domains separate into four isolated islands (Fig. 10(c)).
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FIG. 9. (Color online) Dependence on the parameter β of (a) b, Ω, (b) the fraction r of incoherent

oscillators, and (c) unstable point eigenvalues λp, computed from Eq. (33) (green solid line) and

Eq. (34) (red dashed line).

The stability of spiral wave chimera states can be analyzed in the same way as for the

2n-cluster chimeras and twisted chimeras. Again, when n = 1, the point eigenvalue λp is

determined by Eq. (25). It turns out that the determinant in Eq. (25) factors into three

factors:

det

(
1− f̂0 − f̂2 ĝ2

ĝc2 1− f̂ c0 − f̂ c2

)
= 0, (33)
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FIG. 10. (Color online) Snapshots of the phase patterns for spiral wave chimeras showing localized

regions of coherence embedded in an incoherent background. (a) β = 0.4. (b) β = 0.38. (c)

β = 0.36. In all three panels, colors indicate the phase of the oscillators. The simulations were

done for gradually decreasing β and Gx = Gy = G
(1)
1 , N = 256.

det

(
1− f̂0 + f̂2 −2ĝ1 − ĝ2
−2ĝc1 − ĝc2 1− f̂ c0 + f̂ c2

)
= 0, (34)

det

(
1− f̂0 + f̂2 2ĝ1 − ĝ2

2ĝc1 − ĝc2 1− f̂ c0 + f̂ c2

)
= 0, (35)

of which the first block appears twice.

Solving these three equations determines the number of point eigenvalues and their de-

pendence on β, just as in the case of the 2n-cluster chimeras and the twisted chimeras. We

plot the unstable eigenvalues in Fig. 9(c). The green solid line is computed from Eq. (33)

and corresponds to an eigenvalue of double multiplicity while the red dashed line is com-

puted from Eq. (34); Eq. (35) does not generate unstable eigenvalues. Figure 9(c) indicates

an onset of instability already at β ≈ 0.46 as β decreases. However, in numerical simula-

tions we find that the spiral state remains stable down to β = 0.349, and no signature of

an instability onset at β ≈ 0.46 was identified despite long integration times. Figure 11(a)

shows that the amplitude of the predicted unstable mode for 0.349 . β . 0.46 has a pair

of reflection symmetries in the two diagonals, suggesting that the unstable mode enlarges

the spirals along one diagonal, while compressing those along the other, thereby breaking

the D4 symmetry of the core locations. In our simulations for 0.4 ≤ β ≤ 0.5 this collective

instability appears to have an amplitude that is so small that it is masked by fluctuations

due to the finite number of oscillators used in the simulations (we have used up to 512×512

oscillators). In contrast, the instability predicted from Eq. (33) to be at β ≈ 0.344 (Fig. 9(c),

green solid line) is easily detectable and agrees quite well with the numerically determined

onset, β ≈ 0.349. Figure 12 shows the corresponding eigenfunctions; since the multiplicity of

this eigenvalue is two, there are two linearly independent eigenfunctions, and these enhance

the spirals along the x or y axes, in contrast to those along the diagonals.
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FIG. 11. (Color online) (a) Modulus and (b) phase of the unstable eigenvector v(x, y) of the state

shown in Fig. 8(a) when β ≈ 0.41. The corresponding eigenvalue is λp ≈ 0.717 as computed from

Eq. (34).
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FIG. 12. (Color online) (a,c) Modulus and (b,d) phase of the unstable eigenvectors v(x, y) of the

state shown in Fig. 8(a) when β ≈ 0.33. The corresponding eigenvalue is λp ≈ 0.083 as computed

from Eq. (33).

IV. THE CASE Gx = Gy = G
(2)
n

In this section, we consider the coupling kernel with Gx = cos(nx) + cos[(n + 1)x] and

Gy = cos(ny) + cos[(n+ 1)y]. Much richer dynamics are observed.
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A. Inherited solutions

With Gx = cos(nx) + cos[(n+ 1)x] and Gy = cos(ny) + cos[(n+ 1)y] 1D splay states with

twist number |q| = n and |q| = n+ 1 are again observed (not shown). All other splay states

are linearly unstable.

(a)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(b)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

FIG. 13. (Color online) Snapshot of the phase pattern for (a) a 3-cluster chimera state, and (b)

a 4-cluster chimera state, both for Gx = Gy = G
(2)
1 , β = 0.05 and N = 256, but starting from

different but random initial conditions.
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FIG. 14. (Color online) (a) Snapshot of the phase pattern in a right-traveling coherent state. The

simulation is done for Gx = Gy = G
(2)
1 , with β = 0.7 and N = 256. (b) Snapshot of the phase

pattern for a right-traveling chimera state. The simulation is done for Gx = Gy = G
(2)
3 , with

β = 0.03 and N = 256.

In addition to the splay states, many of the other states observed in the 1D system [5]

have counterparts that are stable in two dimensions. Examples of 1D-like 3-cluster and

4-cluster chimeras are shown in Fig. 13, while a traveling coherent state and a traveling

chimera state are shown in Fig. 14.
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B. Twisted chimera states
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FIG. 15. (Color online) (a) Snapshot of the phase distribution in a 2:2 twisted chimera state. (b,c)

The local order parameters R and Θ computed from (a). The simulation is done for Gx = Gy =

G
(2)
1 , with β = 0.05, N = 256 and random initial condition.

When Gx = cos(nx) + cos[(n + 1)x] and Gy = cos(ny) + cos[(n + 1)y)], three types of

twisted chimera states are observed, n : n twisted chimeras, n + 1 : n + 1 twisted chimeras

and n : n + 1 twisted chimeras. In the following, we use the case n = 1 to illustrate these

states and the associated self-consistency analysis. The 1:1 twisted chimera looks identical

to Fig. 3, while Figs. 15 and 16 show the phase distribution and the local order parameter

for a 2:2 and a 1:2 twisted chimera, respectively.

The self-consistency analysis shows that for 2:2 twisted chimera, the local order parameter

takes the form Z̃(x, y) = R0

2
(exp(2ix)− exp(2iy)) with

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 sin2 (x− y)

〉
, (36)

while for the 1:2 twisted chimera the local order parameter has the form Z̃(x, y) =
R0

2
(exp(ix)− exp(2iy)) with

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 sin2 (x/2− y)

〉
. (37)

The derivation of these relations can be found in Appendix C. Both are equivalent to

Eq. (19) after change of variables.

The 1:1 chimera states correspond to the local order parameter Z̃ = R0

2
(exp(ix)−exp(iy))

and the self-consistency equation is identical to Eq. (29). The derivation of Eq. (29) (for a

1:1 twisted chimera), Eq. (36) (for a 2:2 twisted chimera) and Eq. (37) (for a 1:2 twisted

chimera) shows that even if multiple Fourier components are included in the coupling kernel

(Gx = Gy = G
(2)
1 ), some of these do not contribute to the final result owing to the symmetries

of the solution. However, the stability properties of the corresponding states may be affected.

For the three types of twisted chimera states discussed above, the stability is determined

by point eigenvalues satisfying detB(λp) = 0, where B(λp) is defined in Eq. (24). In the

present case, the corresponding matrices B are 16×16 matrices. It turns out that these
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FIG. 16. (Color online) (a) Snapshot of the phase distribution in a 1:2 chimera state. (b,c) The

local order parameters R and Θ computed from (a). The simulation is done for Gx = Gy = G
(2)
1 ,

with β = 0.05, N = 256 and random initial condition.

share the same point eigenvalues as the 1:1 chimera state for Gx = Gy = G
(1)
1 , which are

determined by Eqs. (30) and (31). Additional point eigenvalues may also be present, but

these do not affect stability and hence the theory predicts that all three types of twisted

chimera lose stability at β ≈ 0.122. This value agrees reasonably well with the instability

threshold β = 0.13± 0.01 obtained from direct numerical simulations.

C. Spiral wave chimeras
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FIG. 17. (Color online) Snapshots of the phase pattern in three numerically stable spiral wave

chimeras. (a) 4 intermittently incoherent cores. (b) 8 incoherent cores. (c) 16 incoherent cores.

The simulation is done for Gx = Gy = G
(2)
1 , with β = 1.2, N = 256 and random initial conditions.

Multi-core spiral wave states are also observed for Gx = cos(nx) + cos[(n + 1)x], Gy =

cos(ny) + cos[(n + 1)y] and some examples are given in Fig. 17. The states shown in

Figs. 17(b,c) are similar to the spiral wave chimera states for Gx = cos(nx), Gy = cos(ny);

in particular the spiral arms rotate with constant angular velocity given by the time-averaged

oscillator frequency θ̄t(x, y) introduced in section III D. The complex order parameter for

these states can also be reduced to simpler form by appropriate symmetry arguments and

it turns out that for the solutions in Figs. 17(b,c) it takes the form Z̃(x, y) = b2(sin(kx) +
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i sin(ly)) with k = 2 and l = 1, 2. The final self-consistency equation, viz.,

2b22 = exp(iβ)

〈
Ω−

√
Ω2 − b22(sin2(kx) + sin2(ly))

〉
, (38)

is equivalent to Eq. (32).

(a)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(b)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(c)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π
(d)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(e)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(f)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π
(g)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(h)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(i)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

FIG. 18. (Color online) Snapshots of chimera states for Gx = Gy = G
(2)
1 , N = 256, obtained by

gradually decreasing β. (a) β = 1.4. (b) β = 1.2. (c) β = 1.118. (d) β = 1.117. (e) β = 1.1. (f)

β = 0.8. (g) β = 0.4. (h) β = 0.06. (i) β = 0.025.

The state shown in Fig. 17(a) is particularly interesting. Unlike the other two spiral wave

states shown in Figs. 17(b,c) the cores of the state in Fig. 17(a) are incoherent only inter-

mittently; these partially or intermittently incoherent regions are not stationary but rotate

in the same sense as the coherent state to the outside but rather more slowly. We illustrate

this behavior using an example for β = 1.4. For this value of β, a snapshot of the phase

pattern at a particular instant is shown in panel (a) of Fig. 18. We should emphasize that

no persistently incoherent cores have as yet developed. Analysis of snapshots of the phase

distribution along a slice through one of the cores reveals the presence of a group of oscilla-

tors in the core region that alternately detrain and then entrain as the incoherent oscillators
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precess around the core (Fig. 19). The figure suggests that the detraining/entraining process

is approximately periodic (i.e., that the precession takes place at a constant angular speed),

much as is the case for a similar process observed in one-dimensional oscillator arrays in [5].

The resulting repeated detraining and entraining at a fixed location implies that the phase

distribution in the core is not time-independent and hence that a self-consistency analysis

based on the assumption that the order parameters are time-independent must necessarily

fail as soon as the number of oscillators undergoing this process becomes substantial as

found in 1D in Ref. [5].
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FIG. 19. Snapshots of the phase pattern θ(x, y0, t) for Gx = Gy = G
(2)
1 , with N = 256 and β = 1.4.

(a) t = 0. (b) t = 5. (c) t = 10. (d) t = 15. (e) t = 20. (f) t = 25. Here, panel (a) is a slice

through the upper two cores of Fig. 18(a) and so are the remaining panels. Note the significant

detraining of some oscillators in panels (c) and (e).

Starting from a 4-core spiral wave at β = 1.57 we decreased β in steps of ∆β = 0.001.

For each β, the simulation was run for T = 250, corresponding to between 120 and 600

rotation periods of the spiral, depending on β (0 < β < 1.4, see Fig. 9(a)). Figure 18 shows

snapshots of the states observed for different values of β. When β & 1.118, the partially

incoherent cores exhibit crescent phase structure with m = 1 azimuthal wave number. At

β ≈ 1.118 the azimuthal mode number m of this state jumps from m = 1 to m = 2, and

once β . 1.117 fully incoherent inner cores are present, surrounded in the outer core with an

intermittent partially coherent state corresponding to an m = 3 spiral pattern (Fig. 18(d)).

As β decreases further, the fully incoherent inner cores grow in extent and swallow the

outer core arms one by one (Fig. 18(f)). In contrast, the azimuthal wave number in the

coherent domain outside the core remains m = 1 throughout the range of β examined with

the m = 1 arm rotating clockwise in the upper right and bottom left and counter-clockwise

in the upper left and bottom right of each panel. The arms of the partially coherent or
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incoherent cores rotate in the same sense, but with a substantially slower angular velocity

than in the coherent domain. All these states are numerically stable.

The crescent structures observed here with the coupling kernels G
(2)
1 are associated with

the partially incoherent spiral cores, and are reminiscent of similar structures observed in un-

published work by Omel’chenko and Wolfrum, and also by Strogatz and in 3D by Maistrenko

et al. [12], in all cases with different coupling kernel G. In the work of the former authors

these structures appear to be associated with the onset of a core instability, typically an

unstable meander. This fact has led us to investigate carefully the presence of possible

meandering instabilities of the spiral cores for our parameter values, but without success –

in the present work these structures are numerically stable (some of our integrations were

continued for T = 10000 without finding any instability). Moreover Ref. [12] identifies

similar structures in 3D and these are also apparently stable. Thus the crescent structures

appear to be an equilibrium phenomenon, at least in the present work, and so merit further

study.

When β is decreased yet further a new set of oscillators, surrounding the incoherent

core, start detraining for a certain time interval before entraining again. As a result the

snapshot shown, for example, in Fig. 18(g) fluctuates in time. The intermittent incoherence is

located along a vein-like structure surrounding the cores and its location oscillates around the

incoherent core as time progresses. The size of the incoherent core appears to be independent

of N although fluctuations arising from the use of a finite number of oscillators in the

simulations are inevitably present. When β reaches β ≈ 0.06, the incoherent regions begin to

merge (Fig. 18(h)) and, with decreasing β, incoherence invades a larger and larger portion of

the two-torus (Fig. 18(i)). The partially coherent state finally loses stability at β ≈ 0.024 and

evolves into a twisted chimera state. The process described above exhibits some hysteresis –

to confirm this we performed a simulation with β increasing from small values in steps of size

δβ = 0.001 and for each β the simulation was run for total time T = 250. The transitions

reflected in Fig. 18 do not occur at identical β values. Figure 20 shows snapshots of the

states for different values of β when β is gradually increased. The fully incoherent cores

disappear at β ≈ 1.25, a value that differs from the value β ≈ 1.117 for the corresponding

transition when β is gradually decreased.
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FIG. 20. (Color online) Snapshots of chimera states for Gx = Gy = G
(2)
1 , N = 256 and (a) β = 1.12.

(b) β = 1.2. (c) β = 1.25, obtained on increasing β in steps of δβ = 0.001 and integrating for

T = 250 before the next increase.
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Figure 21 shows plots of the time-averaged frequency θ̄t(x, y) for different values of β

and provides more information about the regions of detraining/entraining oscillators. Com-

pared with the completely phase-random region, where θ̄t gradually increases (in absolute

value) from the center of an incoherent core towards the coherent region, θ̄t in the de-

training/entraining regions varies in a step-wise fashion, and not necessarily monotonically

(Fig. 21(a,b)). The vein-like structure surrounding the cores for certain values of β also

becomes clear (eg., Fig. 21(g)).
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FIG. 21. (Color online) Snapshots of the oscillator frequency θ̄t(x, y) averaged over the time interval

0 ≤ t ≤ 250 for Gx = Gy = G
(2)
1 , and N = 256. (a) β = 1.4. (b) β = 1.2. (c) β = 1.118. (d)

β = 1.117. (e) β = 1.1. (f) β = 0.8. (g) β = 0.4. (h) β = 0.06. (i) β = 0.025.

A figure analogous to Fig. 21(a,b) but with N = 512 (not shown) confirms that the

nonmonotonic behavior is not a finite size effect. In addition, we plot the behavior of θ̄t as

a function of the distance d to the center of the core for different values of β (Fig. 22). As

the cores are not exactly circular, we pick two directions as representative. In Fig. 22(a), we

pick a horizontal cut through a core, and denote the distance to the center of the core as dh.

In Fig. 22(b), we pick instead a diagonal cut through a core, and denote the distance to the

center as dd. The behavior of θ̄t in these two cases is quite similar: θ̄t varies in general in a

step-wise fashion, but not necessarity monotonically. When β = 0.8, the core is completely
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incoherent and the variation of θ̄t is similar to the case described in III D. Apart from

nonmonotonic behavior, we also noticed that in a certain range of β the oscillator frequency

at the center of a core remains nonzero (eg., Fig. 21(a)–(e)). To see in detail how the phase

oscillates in the core area, we investigate the dynamical behavior for particular oscillators

when β = 1.1. It turns out that even in the center of a fully incoherent core the phase

oscillates with a nonzero frequency, in contrast to the spiral wave chimeras described in III D.

We plot θ as a function of t for different distances dh from the core (horizontal cut) in Fig. 23.

Figure 23(a) confirms that θ̄t 6= 0 in the center of the core, and reveals in addition that the

frequency fluctuates relative to a nonzero mean with a characteristic fluctuation time scale.

The origin of this time scale is not clear. Figures 23(b,c) show the behavior of oscillators

in the partially incoherent region farther from the core center. The figures reveal that the

oscillators at this location undergo episodic frequency fluctuations; between these episodes

the oscillation frequency remains constant. We identify these episodes (which appear to recur

periodically) with the detraining/entraining events mentioned above and conclude that at

this location the spatial phase pattern undergoes episodic rigid rotation. The duration of

the detraining/entraining events decreases as dh increases and they are absent in the fully

coherent region farther out (Fig. 23(d)). At the same time the mean oscillation frequency

θ̄t(x, y) gradually increases to its value Ω characterizing the fully coherent region.
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FIG. 22. (Color online) The mean oscillation frequency θ̄t as a function of (a) the horizontal

distance dh, (b) the diagonal distance dd from the center of a core for different values of β, showing

a stepwise but monotonic dependence for 0.8 . β . 1.2 and a stepwise nonmonotonic dependence

for β = 1.4. The dependence for β = 0.8 is continuous all the way to the core radius. The curves

for β = 1.117 and β = 1.118 almost overlap.

To gain a partial understanding of the above results we note that in certain intervals of β

(0.8 & β & 0.45), the multi-core spiral wave states in Fig. 18 are similar to the states found

with Gx = cos(x), Gy = cos(y) for which the self-consistency analysis proved successful.

Since Eq. (10) is invariant under translations in x and y directions, we choose the origin of

coordinates such that the computed R(x, y) and Θ(x, y) are (at least, approximately) invari-

ant under the pair of reflections (x, y) → (−x, y) and (x, y) → (x,−y). These symmetries
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FIG. 23. The phase θ(x = dh, y = 0, t) as a function of t for β = 1.1 and different values of dh. (a)

dh = 0. (b) dh = π/8. (c) dh = 3π/16. (d) dh = π/4.

allow us to write

R exp(iΘ) = a1 cos(x) + c1 cos(y) + a2 cos(2x) + c2 cos(2y). (39)

When β is around 0.8, as in the 4-core spiral wave chimera state for Gx = cos(x), Gy =

cos(y), we can assume in addition that the local order parameter R is invariant under the

reflection (x, y) → (y, x), at least approximately. Alternatively, we can solve for a1, c1, a2
and c2 directly without making use of this additional symmetry. The result is Ω ≈ 12.284,

a1 ≈ 17.533, c1 ≈ 17.533i, a2 = 0, and c2 = 0. For comparison, the order parameter

computed directly from the simulation data has a1 ≈ 18.1. However, in view of the narrow

spiral structures along the core edge (Fig. 18(f)) one cannot expect accurate agreement

between the simulation and the theory at this value of β. In fact the theory appears to

work better for smaller β. For example, when β = 0.7, a1 ≈ 17.11 from the self-consistency

equation, compared with the value a1 ≈ 17.15 from simulation. Nonetheless, we emphasize

that the self-consistency requirement must be regarded as an approximation that is valid

only in a certain range of β. In other regimes the self-consistency equation fails to account

for the more exotic chimera states observed there. This is for the following reasons:

• If the self-consistency analysis is correct, the oscillators in the incoherent core should

be locally uncorrelated. However, Figs. 18(a)–(e) show that this is not the case.

• The self-consistency analysis requires that the local order parameter R vanishes at

the phase singularity point at the core center (x0, y0). It therefore predicts that

∂θ(x0, y0, t)/∂t = Ω in the rotating frame, or equivalently that θ̄t(x0, y0) = 0 in the

original frame. However, numerical calculations show that this is also not the case

(e.g., Fig. 21(a)–(e)).



25

These reasons are similar to those that were found to apply to phase-coupled oscillators

in one-dimensional arrays in the presence of intermittent detraining. In one dimension it

was possible to confirm that these oscillations were intrinsic to the system and hence not

an artifact of a finite oscillator number [5]. It is considerably harder to confirm that this

continues to be the case in two dimensions, although we believe that this is in fact the case

– computations with an 512×512 oscillator array yield results very similar to those obtained

for a 256×256 array.

For these reasons we have not attempted a stability calculation of the above states using

the postulated order parameter expressions along the lines of Sec. III.

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated a two-dimensional system of identical phase-coupled

oscillators with nonlocal coupling of indefinite sign. We focused on the case where the

coupling kernel G(x, y) is D4 symmetric and can be written in the form G(x, y) = Gx(x) +

Gy(y). As in [5], Gx and Gy are chosen from two families of coupling kernels, G
(1)
n (x) ≡

cos(nx) and G
(2)
n (x) ≡ cos(nx)+cos[(n+1)x]. We found that the stationary solutions in the

corresponding one-dimensional system (15) have counterparts in two dimensions, although

their stability properties may differ owing to the possible presence of unstable longitudinal

modes. For example, 2n-cluster chimera states were shown to be unstable in 2D for all

values of β, while they are stable for certain range of β in 1D systems. In addition to these

expected states we also found a class of twisted chimera states in which the phase varies

uniformly along a closed coherent stripe, and a class of spiral wave chimera states in which

cores of incoherent oscillators are surrounded by coherent rigidly rotating spiral arms. With

the coupling kernels we have used, these chimeras are quite common and robust in the sense

that they can be obtained starting from random initial conditions.

We have obtained a fairly complete description of the above-mentioned stationary phase

patterns using a self-consistency analysis based on Eq. (10). Symmetry arguments allowed

us to reduce Eq. (10) to several algebraic equations. The local order parameters obtained

using this approach agree well with those generated from direct simulations. In addition

the loss of stability of these states with respect to β was found to be predicted accurately

from the linearization of Eq. (4) describing the evolution of the local mean field. The results

obtained are consistent with direct simulations when β is changed gradually. A key input

into the analysis was the D4 symmetry of the coupling kernel G
(1)
n . It would be of interest

therefore to perform a similar study of other D4 symmetric coupling kernels in order to

determine whether these support similar states. We note that none of our states exhibit the

D4 symmetry of the coupling kernel, and surmise that all such states are unstable.

The more exotic spiral wave chimera states were found to be present for the coupling

kernel Gx = Gy = G
(2)
n and their properties were investigated both decreasing and increas-

ing β. Many of the remarkable states identified with this coupling exhibit intermittent

detraining and entraining on the part of a subset of the oscillators similar to that found in

one-dimensional oscillator arrays [5]. The presence of this intermittency renders the self-

consistency analysis unusable, and a full understanding of these states remains a challenge.
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However, despite the absence of instantaneous D4 symmetry, time-averaged quantities such

as the time-averaged oscillation frequency θ̄t(x, y) were found to be accurately D4 symmetric,

suggesting that the results on “symmetry on average” obtained by Golubitsky and colleagues

[19, 20] for chaotic maps with symmetry could be extended to the nonlocal systems studied

here.

Because of the D4 symmetry of the coupling kernels G
(1)
n and G

(2)
n (and translation invari-

ance) the spiral states we have found consisted of four or more individial spirals arranged

in a periodic lattice. Thus we have not been able to study the properties of a single spiral

state in a plane. Such a state is expected to exhibit the symmetry Z̃(r, θ) → Z̃(r, θ + φ)

under rotations θ → θ + φ. When Z̃ admits the separable form Z̃ = R(r) exp(iΘ(r) + imθ)

this requirement translates into Z̃ → Z̃ exp(imφ). However, this is not the generic case as

can easily be seen by taking, for example, Z̃ = a(r) exp(iθ) + b(r) exp(2iθ). In this case the

handedness of the spiral will be reflected in both R(x, y) and in Θ. In our four-spiral states

we have not detected any signature of this handedness, neither locally near the spiral cores,

not globally. The resulting reflection symmetries of the order parameters R and Θ facilitated

greatly the modeling of these quantities, and the subsequent solution of the self-consistency

equation, and in some cases the determination of the stability properties of the resulting

state as well. We conclude that in these cases the azimuthal dependence of the spiral state

is close to sinusoidal. The reasons for this remain unclear.

This paper provides additional insight into chimera states in systems with dimension

higher than one. It shows that spiral wave chimeras are natural objects in two dimensions

and that these can be stable in a large range of the parameter β (or α), in contrast to [13].

In future work we will study the existence and properties of states of this type in more

realistic systems, including coupled arrays of Landau-Stuart oscillators.
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Appendix A: Twisted chimera states, Gx = Gy = G
(1)
n

Here we perform a self-consistency analysis of the twisted chimera states with Gx = Gy =

G
(1)
n for n = 1. First, we notice that Eq. (10) can be written as

R(x, y) exp(iΘ(x, y)) = a cos(x) + b sin(x) + c cos(y) + d sin(y), (A1)

where a, b, c, and d are complex numbers given by

a = 〈cos(x′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (A2)

b = 〈sin(x′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (A3)

c = 〈cos(y′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (A4)

d = 〈sin(y′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉. (A5)
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Since Eq. (10) is invariant under translation in x and y, we can choose the origin such that

R(x, y) is invariant under the transformation (x, y) → (y, x), and Θ(x, y) has a π phase

jump across the line y = x. This property implies

R(y, x) exp(iΘ(y, x)) = R(x, y) exp(iΘ(x, y) + iπ), (A6)

which is equivalent to

a cos(y) + b sin(y) + c cos(x) + d sin(x) = −(a cos(x) + b sin(x) + c cos(y) + d sin(y)). (A7)

Matching the coefficients of the Fourier components gives a = −c and b = −d.

In addition, we find from Fig. 4(b) that Θ(x, y) decreases linearly along the (1, 1) di-

rection. This behavior is similar to the splay states with a twist number q. In Fig. 4(b),

q = −1. From Fig. 4(a), we see that R is constant along the (1, 1) direction. Using this

property, we obtain

R(x+ δ, y + δ) exp(iΘ(x+ δ, y + δ)) = R(x, y) exp(iΘ(x, y) + iδ), (A8)

where δ represents an arbitrary displacement in the (1, 1) direction. From the limit δ → 0

we obtain

−a sin(x) + b cos(x)− c sin(y) + d cos(y) = i(a cos(x) + b sin(x) + c cos(y) + d sin(y)), (A9)

implying that b = ia and d = ic.

The fact that Eq. (10) is also invariant under translations in Θ allows us finally to choose

a to be real and positive. Writing a = R0/2 and substituting the expression R exp(iΘ) =

a(exp(ix)− exp(iy)) into Eqs. (A2)–(A5) leads to a single relation

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 sin2

(
x− y

2

)〉
. (A10)

Appendix B: Spiral wave chimera states, Gx = Gy = G
(1)
n

Spiral wave chimera states are also solutions of the self-consistency equations (A2)–(A5).

To simplify the analysis, we translate one of the cores to the origin (x, y) = (0, 0) (Fig. 8(a)).

Figure 8(c) shows that Θ(x, y) is constant, Θ(x, y) = Θ0, say, along the line segment between

the point (0, 0) and the point (π, 0). Invariance of Eq. (10) under translation in Θ allows

us to set Θ0 = 0. With this choice, the local order parameters (R,Θ) have the following

symmetry:

(x, y)→ (y, x) =⇒ (R,Θ)→ (R,
π

2
−Θ). (B1)

This symmetry property implies that

a cos(y) + b sin(y) + c cos(x) +d sin(x) = i(a∗ cos(x) + b∗ sin(x) + c∗ cos(y) +d∗ sin(y)). (B2)



28

Matching coefficients leads to a = ic∗ and d = ib∗. In addition, Figs. 8(b,c) suggest the

spiral wave chimera has a symmetry under rotation, viz.,

(x, y)→ (−y, x) =⇒ (R,Θ)→ (R,Θ +
π

2
), (B3)

corresponding to

a cos(−y) + b sin(−y) + c cos(x) +d sin(x) = i(a cos(x) + b sin(x) + c cos(y) +d sin(y)). (B4)

Matching coefficients leads to a = ic and d = ib. Finally, reflection with respect to the x

axis,

(x, y)→ (x,−y) =⇒ (R,Θ)→ (R,−Θ), (B5)

requires that

a cos(x)+ b sin(x)+ c cos(−y)+d sin(−y) = a∗ cos(x)+ b∗ sin(x)+ c∗ cos(y)+d∗ sin(y) (B6)

and hence implies a = a∗, b = b∗, c = c∗ and d = −d∗. Combining these relations we obtain

R exp(iΘ) = b(sin(x) + i sin(y)). (B7)

Substituting this expression into Eqs. (A2)–(A5) we find that the expressions in Eqs. (A2)

and (A4) vanish, while Eqs. (A3) and (A5) give

2b2 = exp(iβ)

〈
Ω−

√
Ω2 − b2(sin2 x+ sin2 y)

〉
. (B8)

Appendix C: Twisted chimera states, Gx = Gy = G
(2)
n

We first discuss the 2:2 twisted chimera (cf. Fig. 15) in detail. In this case, two closed

stripes of coherence are distributed uniformly on the torus. The local order parameter is

written as

Z̃(x, y) = Σ2
m=1 {am cos(mx) + bm sin(mx) + cm cos(my) + dm sin(my)} , (C1)

with the coefficients satisfying the self-consistency relations

am = 〈cos(mx′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (C2)

bm = 〈sin(mx′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (C3)

cm = 〈cos(my′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (C4)

dm = 〈sin(my′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (C5)

and h defined as in Eq. (11). From Figs. 15(b) and (c), we observe that the local order

parameters have the symmetry

(x, y)→ (x+ δ, y + δ) =⇒ (R,Θ)→ (R,Θ + 2δ). (C6)
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Thus

R(x+ δ, y + δ) exp(iΘ(x+ δ, y + δ)) = R(x, y) exp(iΘ(x, y) + 2iδ), (C7)

which implies a1 = b1 = c1 = d1 = 0, b2 = ia2 and d2 = ic2. The symmetry

(x, y)→ (y, x) =⇒ (R,Θ)→ (R,Θ + π) (C8)

leads to the relations a2 = −c2 and d2 = −b2. Combining these results we obtain Z̃(x, y) =

a2(exp(2ix)− exp(2iy)). Translation symmetry in θ allows us to set a2 = R0/2, where R0 is

a positive real number. The final self-consistency equation is thus

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 sin2 (x− y)

〉
. (C9)

The 1:2 twisted chimera shown in Fig. 16 can be analyzed similarly. In this case, the

local order parameter has the symmetry

(x, y)→ (x+ 2δ, y + δ) =⇒ (R,Θ)→ (R,Θ + 2δ), (C10)

implying that

R(x+ 2δ, y + δ) exp(iΘ(x+ 2δ, y + δ)) = R(x, y) exp(iΘ(x, y) + 2iδ). (C11)

This condition is equivalent to c1 = d1 = a2 = b2 = 0, b1 = ia1 and d2 = ic2. The symmetry

(x, y)→ (2y, x/2) =⇒ (R,Θ)→ (R,Θ + π) (C12)

likewise yields a1 = −c2 and b1 = −d2 so that Z̃(x, y) = a1(exp(ix) − exp(2iy)). With

a1 = R0/2, we obtain the self-consistency equation

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 sin2 (x/2− y)

〉
. (C13)
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