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Scroll waves in a three-dimensional medium with negative filament tension may break up and
display spatio-temporal chaos. The presence of heterogeneities can influence the evolution of the
medium, in particular scroll waves may pin to such heterogeneities. We show that as a result the
medium may be stabilized by heterogeneities of a suitably chosen geometry. Thin rod-like hetero-
geneities suppress otherwise developing spatio-temporal chaos and additionally clear out already
existing chaotic excitation patterns.

I. INTRODUCTION10

The emergence of nonlinear spatio-temporal patterns11

in excitable media has been extensively described for12

chemical [1–4] and biomedical systems [5, 6]. In the lat-13

ter case, the view of the heart as an excitable medium14

offers an explanation for the propagation of electrical ac-15

tivation waves. Valuable insight can be gained already by16

considering the heart as a two-dimensional medium [7, 8].17

For potentially fatal conditions such as ventricular fibril-18

lation, however, it is necessary to take into account the19

full three-dimensional dynamics including the formation20

of scroll waves.21

Often, the evolution of phase singularities is sufficient22

to describe the characteristic dynamics of excitable me-23

dia. In three-dimensional systems, these phase singu-24

larities form filaments, the center lines of rotating scroll25

waves. The stability of the filament length, i.e. whether26

small perturbations from a straight line will shrink or27

grow, is determined by the filament tension (see [9]). The28

sign of the filament tension determines the qualitative29

dynamics: perturbations shrink for positive and grow for30

negative filament tension. This growth may eventually31

lead to turbulent behavior of the medium and to breakup32

of the filament at system boundaries.33

In this article we investigate the dynamics of scroll34

waves in a medium with heterogeneities. These het-35

erogeneities introduce additional no-flux boundaries into36

the otherwise homogeneous medium. Examples for such37

heterogeneities in the cardiac muscle are blood vessels38

or damaged tissue. The impact of the cardiac vascula-39

ture on the response of tissue to external stimulation as40

required by low-energy defibrillation methods has been41

shown previously [10]. Tissue damage may occur due42

to the local lack of oxygen during traumatic events such43

as infarction. Subsequently the lesion undergoes a com-44

plex remodeling process but always results in a region45

of reduced conductivity and contractility. We show that46

the presence of cylindrical heterogeneities in an excitable47

medium can lead to a stabilization even in the case of48

FIG. 1. (Color online) Scroll wave which is partly pinned to a
heterogeneity (vertical cylinder). The simulation was started
with initial conditions as described in Sec. V A. An interme-
diate state is shown where the scroll wave is only attached to
the upper part of the heterogeneity, the rest of the medium
is not synchronized yet.

negative filament tension. As an example Fig. 1 shows a49

scroll wave that is already partly pinned to a cylindrical50

heterogeneity. Similarly to spiral waves in two dimen-51

sions [11], a pinned scroll wave can synchronize the full52

medium due to its higher rotation frequency. This ex-53

tends previous findings by Jiménez and Steinbock [12]54

on the self-wrapping of filaments with positive tension55

around continuous cylindrical heterogeneities.56

II. METHODS57

In the following, we use the Barkley model [13, 14] as
a model for excitable media. It describes two variables u
and v, whose dynamics are governed by a set of reaction-
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diffusion equations

∂u

∂t
=

1

ε
u(1− u)

(
u− v + b

a

)
+∇2u (1)

∂v

∂t
= u− v (2)

with parameters a, b and ε. ε is chosen to be small and58

determines the relative time scale of the dynamics of u.59

For all simulations, ε = 0.02 is used. The parameters60

a and b determine the dynamics of the excitation of the61

medium. In two-dimensional media spiral waves and in62

three-dimensional scroll waves typically emerge.63

The Laplace operator in Eq. (1) is approximated us-64

ing a 9-point (2D) or 27-point (3D) discretization on a65

square lattice. The local dynamics in the Eqs. (1) and66

(2) are solved using explicit forward Euler steps. In all67

simulations, no-flux boundary conditions between inside68

and outside are used at the boundaries of the simula-69

tion lattice and of the heterogeneities. The latter are70

implemented using the phase-field method described in71

[15]. The phase-field method represents the geometry72

of a simulated medium by a phase field with values be-73

tween 0 (outside) and 1 (inside) and implements obstacle74

boundaries as interfaces of finite width.75

The Barkley model parameters a, b are chosen such76

that the negative filament tension is maximized: We sim-77

ulated the growth of a slightly perturbed, straight fila-78

ment (as described in Sec. IV A) in the three-dimensional79

Barkley model for 0.5 ≤ a ≤ 0.9 and 0.01 ≤ b ≤ 0.1. To80

exclude parameter pairs (a, b) which allow no spiral and81

scroll waves, we added the condition b ≤ a
6 −

1
30 (see [14],82

Fig. 4). As a result from these simulations, we choose83

a = 0.54 and b = 0.055, because this set of parameters84

yields the most negative filament tension, i.e. a filament85

of a free scroll wave with these parameters grows the86

fastest.87

III. SPIRAL WAVE PERIODS IN THE88

TWO-DIMENSIONAL MEDIUM89

A. Setup90

In order to choose a favorable heterogeneity size, we91

perform two-dimensional simulations with a circular het-92

erogeneity of varying size.93

The integration of the Eqs. (1) and (2) is carried out94

on a 100×100 lattice covering a two-dimensional domain95

of size 20× 20 with spatial discretization ∆x = 0.2. Un-96

less noted otherwise, further sizes in this text are given in97

system units, not lattice points. For the used parameters,98

the side length 20 of the simulated medium is roughly one99

spiral wave length. The time step for the Euler integra-100

tion is ∆t = 0.0005.101

As the periods of spiral waves pinned to a circular ob-102

stacle are to be examined, a circular heterogeneity with103

radius r is placed in the middle of the medium. The ra-104

dius of this heterogeneity is varied from 0 to 4 in steps of105

0.2, corresponding to the chosen ∆x. Results obtained106

from radii up to about 0.6 are expected to suffer from107

the finite interface width of the heterogeneity boundary108

introduced by the phase-field method. The pinning of109

a freely rotating spiral wave to a heterogeneity strongly110

depends on the size of the obstacle and on the distance111

between spiral wave tip and obstacle [16]. For sizes of112

the heterogeneity which allow pinning we want to exam-113

ine pinned spirals. Therefore, we construct the initial114

conditions as follows: we take the u, v values of a freely115

rotating spiral and translate it so that its tip would lie116

inside the heterogeneity (for r > 0).117

For each radius, the spiral periods are measured by118

averaging the time differences between two consecutive119

maxima of u at a fixed point, distant to both the obstacle120

and the boundary. To exclude influences from transients121

after initialization, the measuring of the periods starts at122

t = 25, i.e. after roughly four free spiral periods for the123

chosen parameters. The overall simulation time is 100.124

B. Results125

The period T of a pinned spiral wave as a function126

of the heterogeneity’s radius r is shown in Fig. 2. For127

unpinned spirals (radii smaller than 1.5), the variance128

between measurements and deviations from a constant129

value are caused by spiral meandering. Since the period130

is recorded at a fixed point on the lattice, meandering131

influences the duration between two maxima of u and132

thus the measured period.133

For r ≤ 1.4 the periods of spirals in presence of a het-134

erogeneity are nearly the same as the period of a free135

spiral wave i.e. a spiral wave in a homogeneous medium136

(r = 0) which is Tf = 7.04. For these radii, the hetero-137

geneities are too small for the spirals to pin permanently138

(see e.g. [16]).139

The spiral waves stay permanently pinned to hetero-140

geneities with r ≥ 1.6, a radius which is large enough141

such that boundary effects from the phase-field method142

do not dominate. The measured periods increase nearly143

linearly with larger radii as predicted earlier [17–19]. For144

the smallest heterogeneities to which the spiral can pin145

– those with radius 1.6 ≤ r ≤ 2.4 – the periods of the146

pinned spirals are shorter than that of a free one. In this147

range, the smallest period is T = 4.98 at r = 1.6, which148

is about 25.6% smaller than the period of a free spiral.149150

IV. SCROLL WAVE STABILIZATION IN THE151

THREE-DIMENSIONAL MEDIUM152

In the preceding section we showed that spiral waves153

pinned to small heterogeneities can have a reduced period154

compared to that of a free spiral. In this section we155

will explore this effect for scroll waves in the presence of156

heterogeneities in a three-dimensional medium.157



3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

radius of the heterogeneity r

5

6

7

8

9
sp

ir
al

pe
ri

od
T

free spiral
spirals in medium
with heterogeneity

FIG. 2. (Color online) Periods T of spiral waves in the two-
dimensional Barkley model pinned to circular heterogeneities
with radii 0 ≤ r ≤ 4. The vertical dashed blue line denotes the
radius used for further simulations, the horizontal solid green
line is the spiral period of a freely rotating spiral. For compar-
ison with longer periods, additional simulations (Fig. 6) are
performed for r = 3.6. The error bars denote ten standard
deviations between subsequent periods. The standard devi-
ation is nonzero for the unpinned spirals due to spiral wave
meandering. The system size is 20 × 20. Model parameters
are a = 0.54, b = 0.055 and ε = 0.02.

It is known (e.g. [11]) that in an excitable medium with158

two or more excitation sources, the fastest source domi-159

nates the overall dynamics. Since a spiral wave pinned to160

a small heterogeneity can rotate faster than an unpinned161

one, we expect that a system with a scroll wave which162

is at least partially pinned to a cylindrical heterogene-163

ity of a similarly small radius will be governed by the164

frequency of the pinned scroll wave and the geometry of165

the heterogeneity. As a result, for system dynamics with166

negative filament tension, the part pinned to the hetero-167

geneity could prevent the filament from growing and thus168

prevent the scroll wave from eventually breaking up.169

To verify this hypothesis, we investigate a scroll wave170

with negative filament tension pinned at both ends to171

heterogeneities; that is, to a cylindrical obstacle of radius172

r with a gap of length l in its middle as shown in Fig. 3.173

As can be seen in Fig. 3, the edges of the cylinders are174

smoothened by the phase-field method.175

To characterize filament stabilization, we first apply176

the skeletonization algorithm [20, 21] of the image pro-177

cessing software Fiji [22, 23] to the detected filament lo-178

cations and subsequently measure the length of the skele-179

tonized filament by adding the distances between the180

filament pixels. The breakup of a filament is typically181

preceded by a growth of this measured filament length.182

We consider a simulated medium stabilized if it does not183

break up until the end of the simulation. The volume184

rendering engine Voreen [24] (version 3.0.1) is used for185

visualization.186187

FIG. 3. (Color online) Example of a cylindrical heterogeneity
with a gap. The system size is 20 × 20 × 20, the cylinder
radius r = 2 and the length of the gap l = 6. The cylinder
caps appear rounded due to the phase-field method.

A. Setup188

We want to statistically analyze the filament stability189

depending on gap size and simulation time and therefore190

vary the gap sizes and use randomized initial conditions.191

Using the same spatial resolution as in two dimensions,192

the three-dimensional simulations are carried out on a193

system of size 40×40×60 (x, y, z). At this size we expect194

no noticeable effects of the boundaries on the dynamics195

while the computational effort is kept at a tolerable level.196

Again, the time step for the Euler algorithm is ∆t =197

0.0005; the total simulation time for each simulation is198

500 time units or roughly 100 periods of the correspond-199

ing pinned 2D-spiral. As an additional stopping condi-200

tion, the simulation stops if the filament breaks up i.e. if201

more than one filament is detected in the medium. The202

gap size l in the cylinder of length 60 which is oriented203

in z direction and centered in the xy plane, is varied in204

steps of 2 ranging from 0 to 60, i.e. the results include205

one continuous cylinder (l = 0) and a medium without206

heterogeneities (l = 60).207

Our aim is to investigate the behavior of a scroll wave208

with a nearly straight filament which connects the two209

obstacle ends. Since filament tension has no effect on210

a perfectly straight filament, we used slightly perturbed211

initial conditions: We construct 13 distinct initial fila-212

ments from a linear combination of six sinusoidal modes213

with random amplitudes, each with a different random214

number generator initialization. The maximal perturba-215

tion amplitude, i.e. the maximum distance from the axis216

of the heterogeneity is limited to 1. For each initial fil-217

ament realized that way, simulations are carried out for218

all gap lengths.219

A radius r = 2 is used for the cylindrical hetero-220

geneities to investigate the predicted stabilizing effect of221

the shortened spiral wave period. Since we are only in-222

terested in the qualitative effects of the shortened period,223

it should not matter which exact radius is chosen as long224
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(a) t = 0 (b) t = 68.75

FIG. 4. (Color online) Initial (a) and final (b) filament of a
free scroll wave in the Barkley model described by Eq. (1)
and (2) with parameters a = 0.54 and b = 0.055. During
a simulation from t = 0 to t = 68.75, the filament grows
strongly and finally breaks up.

as it fulfills T < Tf . Not choosing the smallest radius225

r = 1.6 (see Fig. 2) reduces numerical artifacts result-226

ing from the phase-field method1. For comparison we227

also carry out simulations with r = 3.6 (i.e. T > Tf ) to228

be able to distinguish effects of a shortened period from229

general effects of a discontinuous heterogeneity.230

For each simulation, we evaluate the stability of the231

scroll wave by measuring the filament length. If the fila-232

ment does not break up until the end of the simulation,233

we consider the system to be stabilized by the hetero-234

geneity with the tested gap length.235

B. Results236

The evolution of the filament of a free scroll wave in a237

homogeneous medium is shown in Fig. 4, at t = 0 and238

t = 68.75. Due to negative filament tension, the filament239

has grown significantly and has finally broken up into240

three parts.241

The simulations described above are carried out for 13242

different realizations of the initial filament. In general,243

these simulations show that there are three types of sys-244

tems characterized by gap length: In systems with large245

gaps, the filament grows rapidly and breaks up during246

the simulation time in all simulated cases. Similarly, sys-247

tems with small gaps lead to stabilization of the filament248

in all 13 realizations. However there are also systems249

with intermediate gap lengths, where the growth and the250

breaking up of the filament depend on the initial condi-251

tions.252

1 At this radius the interface width of the phase field becomes
essential. In pilot simulations, the filament unpinned for ξ = 1
(interface width about 0.8) and remained pinned for ξ = 0.75 (in-
terface width around 0.6), here the parameter ξ from [15] governs
the interface width.

(a) l = 6 (b) l = 10

(c) l = 18 (d) l = 26

FIG. 5. (Color online) Filaments of scroll waves pinned to
discontinuous heterogeneities of radius r = 2 with different
gap lengths l = 6, 10, 18, 26 either at t = 500 (end of the sim-
ulated period) or for l = 26 at t = 278.75. For all obstacles
with l ≤ 20, the waves remain pinned and the filament is sta-
bilized in this realization; for the heterogeneities with larger
l, the wave unpins and breaks up.

For scroll waves pinned at both ends to discontinuous253

heterogeneities of different gap lengths l, the situation254

at the end of the simulation period is depicted in Figs.255

5(a) to 5(d). For the shown simulations, at small gap256

sizes l ≤ 20 the filament did not break up, the structure257

remains almost linear despite the negative filament ten-258

sion; the filament is stabilized between the two parts of259

the heterogeneity. Other simulations showed compara-260

ble results in that smaller gaps tended to stabilize the261

system.262

For gap sizes l > 20 the filament tends to grow in our263

simulations; the scroll wave unpins and eventually breaks264

up like the free filament does, although the growth is265

generally slower and the breaking up is delayed compared266

to the free scroll wave after the same simulation time.267

Figures 6(a) and 6(b) show simulations with the same268

initial conditions as Fig. 5 at t = 50. Here the hetero-269

geneities have a larger radius r = 3.6, which leads to270

T > Tf . Obviously the filaments are not stabilized; they271

unpin and break up even for the smallest simulated gap272

length. The result is the same for all other simulated gap273

lengths l.274

For the smaller radius r = 2, the evolution of filament275

lengths of systems with different gap sizes is shown in276

Fig. 7. Here the filament lengths, relative to the box277
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(a) l = 6 (b) l = 2

FIG. 6. (Color online) Filaments and obstacles with r = 3.6
(i.e. T > Tf ) at t = 68.75 (a) and t = 88.75 (b). The initially
pinned scroll waves break up and unpin; even for relatively
small gap lengths l = 6 and l = 2.

length, averaged over the 13 realizations for gap sizes 20,278

24, 26, 28, and 32 are shown over simulation time. The279

shaded regions denote the standard deviation among the280

corresponding filament lengths2. Each white dot corre-281

sponds to the termination of one realization due to fil-282

ament breakup. The curves end prematurely if all the283

scroll waves in all realizations have broken up before284

reaching the simulation time limit at t = 500. If at least285

one realization survives over the whole simulation time,286

the survival rate is shown. The survival rates are again287

shown in Fig. 8 as functions of time.288

In all systems with gap size l ≥ 28, the filaments in289

all realizations grow rapidly leading to their breaking up290

significantly before reaching the simulation time limit.291

Only l = 28 and l = 32 are depicted in Fig. 7, however292

the overall picture is the same for all larger l. For smaller293

gap sizes, the stabilizing effect of the heterogeneities in-294

creases, leading to no breaking up in the simulations for295

l = 20. Except for minor oscillations the average filament296

length stays constant at about 1.2 times the box length.297

For even smaller gap lengths, breaking up of filaments298

only occurs rarely. For example, for gap length l = 18299

this happened 1 out of 13 times.300

The two examples of an intermediate gap length, l = 24301

and l = 26, show the breaking up with some — in the302

case of l = 26 all but one — initial conditions after a cer-303

tain simulation time. In contrast, other initial conditions304

do not show an extreme growth of the filament during the305

simulation; the filaments survive over the whole simula-306

tion period. The survival of the filament thus is highly307

sensitive to the initial filament, since different realiza-308

tions only differ in the random deviation of the filament309

from the axis of the heterogeneity. The evolution of the310

surviving filaments at intermediate gap lengths shows no311

2 If a filament breaks up before reaching the simulation time limit
at t = 500, we included its final length before breakup into the
calculation of the standard deviation.

different behavior compared to the evolution of filaments312

in small gap systems over longer times. Even those fila-313

ments which break up at a later point in simulation time314

may at first show a similar evolution as the surviving315

ones. We were not able to identify a sharp boundary316

between intermediate and small gap lengths, where no317

initial condition would lead to filament breakup. The318

evolution of the average filament lengths in Fig. 7 looks319

similar for all l for short simulation times up to t ≈ 100.320

Thus, it seems to be impossible to decide whether a scroll321

wave will break up based on the transient during the first322

15 to 20 rotational periods only.323

V. OTHER INITIAL CONDITIONS324

In the previous section we have shown that for one325

very special kind of initial conditions heterogeneities of326

adequate size stabilize scroll waves that would break up327

without the presence of these heterogeneities. The scroll328

waves we presented in this article so far were initiated329

with an almost straight filament and thus, were almost330

cylindrically symmetric. In the following we will test331

whether stabilization can be observed for other scroll332

waves. The radius of all heterogeneities is kept at r = 2.333

Because the stabilization effect was observed for all in-334

vestigated system sizes, we limit ourselves to a system335

size of 20× 20× 20 in order to reduce computation time.336

A. Toroidal scroll wave337

The initial conditions shown in Fig. 9(a) correspond to338

those in the simulations presented in [12]. A quarter of339

a toroidal scroll wave connected to one heterogeneity is340

used as initial conditions. In contrast to the previously341

described initial conditions, the corresponding filament342

does not connect both heterogeneities (see Fig. 9(a)).343

During simulation the filament grows due to the nega-344

tive filament tension and eventually reaches both hetero-345

geneities. For small gap sizes l ≤ 14, the filament is346

stabilized at t = 100 as shown in Fig. 9(b).347

B. Initially broken up scroll wave348

As the previous initial conditions have shown, the ef-349

fect of stabilization occurs at least for some favorable350

initial conditions: there is only one filament which al-351

ready connects initially to at least one of the two hetero-352

geneities. We now use an already broken up scroll wave353

as initial condition. Figures 10(a) and 10(b) show ini-354

tial and final (at t = 200) state of the simulation for a355

gap length l = 6. As one can see, again, the filament is356

stabilized. In further simulations, other similarly broken357

up scroll waves are used as initial conditions. These sim-358

ulations yield essentially the same results, although the359

time needed for stabilization to occur varied.360
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FIG. 7. (Color online) Averaged relative filament length for different gap sizes l. The standard deviations between realizations
for gap lengths 20, 26 and 32 are shown as shaded regions. White dots denote times when the filament in one of the 13
realizations breaks up. Survival rates are shown for those simulation ensembles where the time limit was reached before all
simulations broke up.
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FIG. 8. (Color online) Kaplan-Meyer plot (filament survival
rates without breakup) for different gap lengths.

(a) (b) t = 100

FIG. 9. (Color online) Sketch of the initial filament and scroll
wave (a) and filament at t = 100 (b); gap length l = 14. The
small remaining second filament in the background will be
driven out of the system a few simulation steps later.

(a) t = 0 (b) t = 200

FIG. 10. (Color online) Initial filament (a) and filament at
t = 200 (b); gap length l = 6. Even this example of a broken
up scroll wave is stabilized by the two heterogeneities with
gap length l = 6.

VI. DISCUSSION361

We have seen that in the two-dimensional Barkley362

model spiral waves pinned to small circular obstacles ro-363

tate faster than a freely rotating spiral or a wave pinned364

to a larger heterogeneity.365

Varying obstacle size and system geometry provides in-366

sight into stabilization mechanisms of three-dimensional367

scroll waves. The pinned parts of the scroll waves rotate368

faster if the heterogeneities have a sufficiently small ra-369

dius r. In this case stabilization occurs with a mechanism370

corresponding to [11], since the higher frequency around371

the heterogeneity governs the whole medium.372

In the demonstrated cases, the free part of the fila-373

ment is located in between the two heterogeneities and374

its growth is limited despite its negative filament tension,375

given that the gap length l is small enough.376
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At this point the question arises if this stabilization377

is an effect of the shorter period of a spiral wave at the378

chosen r or if it is a more general property of a scroll379

wave pinned to a heterogeneity with gap length l. This380

question can be answered by looking at simulations with381

a larger radius (see Fig. 6), which show no stabilization382

at all. Because the simulation setup is exactly the same383

except for the increased radius of the heterogeneities, we384

can conclude that the shortened period of the pinned385

wave is the reason for the observed stabilization in three-386

dimensional simulations.387

This dependency on the radius and thus on the spiral388

periods of the pinned filaments is also in accordance with389

the observation of [12], where it is shown that filaments390

with positive tension self-wrap faster around cylindrical391

heterogeneities with smaller radii (and do not stabilize392

at all for too large radii).393

We have shown that stabilization depends mainly on394

the geometry of the heterogeneities, i.e. the radius r and395

gap length l. Especially for intermediate gap sizes, the396

time until breakup varied strongly, with smaller gaps397

tending to longer times. To obtain significantly better398

statistics for small gap lengths l, much longer simulations399

are required.400

Except for the cases in which a too large r or l makes401

stabilization impossible at all, a necessary condition for402

stabilization is that at some point during the evolution403

of the system, one of the initially growing filaments is404

attached to both parts of the heterogeneity. The pinned405

wave then drives away other activity patterns over time.406

We have shown that this type of stabilization can happen407

even when the simulated medium is initially in a turbu-408

lent state (see Fig. 10).409

VII. CONCLUSION410

The presence of adequately shaped heterogeneities can411

not only prevent turbulence in excitable media but even412

terminate initially induced turbulence and stabilize the413

medium. Thus the dynamics of the medium with obsta-414

cles can be less complex than the dynamics of a homo-415

geneous medium. This extends previous studies [25–27]416

which used external stimulation, either directly through417

pacing or by changing the medium’s excitability, to sup-418

press spatio-temporal chaos in three-dimensional media.419

In contrast, the method presented here only depends on420

a local change of the geometry.421

Further studies should investigate other, more complex422

shapes of heterogeneities, e.g. curved ones as well as the423

behavior for even longer simulation time. Finally, our424

findings may be of relevance for systems with turbulent425

activity in heterogeneous excitable media, such as fibril-426

lation in cardiac muscle.427
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