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Abstract

We introduce and study a model of time-dependent billiard systems with billiard boundaries

undergoing infinitesimal wiggling motions. The so-called quivering billiard is simple to simulate,

straightforward to analyze, and is a faithful representation of time-dependent billiards in the limit

of small boundary displacements. We assert that when a billiard’s wall motion approaches the quiv-

ering motion, deterministic particle dynamics become inherently stochastic. Particle ensembles in

a quivering billiard are shown to evolve to a universal energy distribution through an energy diffu-

sion process, regardless of the billiard’s shape or dimensionality, and as a consequence universally

display Fermi acceleration. Our model resolves a known discrepancy between the one-dimensional

Fermi-Ulam model and the simplified static wall approximation. We argue that the quivering limit

is the true fixed wall limit of the Fermi-Ulam model.

PACS numbers: 05.45.-a, 05.40.-a

1



I. INTRODUCTION

Billiards are remarkably useful physical models; they allow a diverse range of classical

dynamics to be understood intuitively through easy-to-visualize particle trajectories and

are a natural setting for quantum and wave chaos [1], while the discrete time nature of

particle-billiard boundary interactions make classical billiards especially amenable to nu-

merical study. Time-dependent billiards (billiards with boundaries in motion) in particular

can be found in a wide range of applications: KAM theory [2–4], one-body dissipation in

nuclear dynamics [5], Fermi acceleration [2, 3, 6–12], and adiabatic energy diffusion [13, 14],

for example.

This work was originally motivated by the desire to study and simulate classical particle

trajectories in time-dependent billiard systems. The task is complicated by the boundary’s

displacement, which produces implicit equations for the time between particle-boundary

collisions. We propose a fixed wall simplification by considering the limit of infinitesimally

small boundary displacements. Our limit will be called the quivering limit, and the resulting

billiard system will be called a quivering billiard. The purpose of this paper is to show that,

although simple, quivering billiards are accurate descriptions of time-dependent billiards in

the limit of small boundary displacements, and to support our conjecture that any physi-

cally consistent, non-trivial, fixed wall simplification of a time-dependent billiard must be

physically equivalent to a quivering billiard. Using physical reasoning, we will argue that in

the quivering limit, deterministic billiard dynamics become inherently stochastic. Then, by

utilizing the simplifications allowed by stochastic methods and fixed billiard walls, we will

derive analytic expressions to describe energy evolution in a quivering billiard. Our investi-

gations will uncover universal behavior in time-dependent billiards when billiard motion is

close to the quivering limit, and our results will enable us to addresses several issues that

have been raised in previous Fermi acceleration and time-dependent billiard literature.

The outline of this paper is as follows. In Sec. II, we first define a quivering billiard

and determine its behavior in one dimension, and then generalize to quivering billiards in

arbitrary dimensions. The energy statistics of a single particle and a particle ensemble are

examined in Sec. III, and the results are discussed in the context previous literature in

Sec. IV. In Sec. V, we give examples of quivering billiards and present numerical analyses,

and we conclude in Sec. VI.

2



II. THE QUIVERING LIMIT

In this section, we define quivering as a particular limit of time-dependent billiard motion.

Because the dynamics are so poorly behaved in this limit, billiard systems can only be

described stochastically. For simplicity, we first work with a one-dimensional billiard with a

single moving wall, and then extend to arbitrary billiard motion in arbitrary dimensions.

A. The 1-D Fermi-Ulam Model

Consider a particle in one dimension bouncing between two infinitely massive walls. One

wall is fixed at x = 0, and the other oscillates about its mean position at x = L, where we

take L > 0. The particle’s energy fluctuates due to collisions with the moving wall, and

the dynamical system corresponding to the particle’s motion defines the well-known Fermi-

Ulam model [2, 3, 7–9]. Suppose that the moving wall oscillates periodically with period τ ,

characteristic oscillation amplitude a, and characteristic speed uc = a/τ . The moving wall’s

position x(t) and velocity u(t) at time t can be written as

x(t) = L+ g(t) (1)

u(t) =
dg

dt
,

where g(t) is some piecewise smooth τ -periodic function with mean zero. The wall velocity

scales like uc, and g(t) scales like a. To make the scaling obvious, we note that g(t) depends

on t only through the value of t mod τ , and we make the following substitutions:

Ψ(t) =
t

τ
mod 1 (2)

g(t) = a h(Ψ(t)).

The quantity Ψ(t) will be referred to as the wall’s phase. Here, h is regarded as a function

of Ψ, and h(Ψ(t)) means h(Ψ) evaluated for Ψ = Ψ(t). The quantity h(Ψ(t)) is just g(t)

rescaled to have a characteristic oscillation amplitude of unity. The state of the wall at time

t is thus

x(t) = L+ a h(Ψ(t)) (3)

u(t) = uc h
′(Ψ(t)),
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where the h′ denotes the derivative of h with respect to its argument Ψ.

We define the quivering limit of the Fermi-Ulam model by taking a, τ → 0 while holding

uc constant and leaving the dependence of h on Ψ fixed. In the quivering limit, the moving

wall’s position reduces to x(t) = L, so no implicit equations for the time between collisions

arise from the dynamics. This simplification comes at a price; when τ → 0, Ψ oscillates

infinitely fast in time, and u(t) does not converge to any value for any given t. That is,

in the quivering limit, u(t) becomes ambiguous to evaluate. Our task now is to physically

interpret and resolve this ambiguity.

Note that in the quivering limit, the wall makes infinitely erratic motions at finite speeds;

the nth derivative of g(t), scaling like a/τn, diverges for all n ≥ 2. An infinitesimal change

in the state of a particle results in a finite and essentially unpredictable change in the wall’s

velocity at the time of the next bounce. We assert that one could never, even in principle,

specify the state of the particle with enough precision to reliably predict the velocity of

the moving wall, and thus the change in particle energy, during the next collision. We

therefore claim that in the quivering limit, the dynamics of the Fermi-Ulam model become

inherently stochastic; deterministic particle trajectories defined on phase space transition to

stochastic processes defined on a probability space. Given any initial condition, the resulting

particle trajectory actually represents one possible realization drawn from an ensemble of

initial conditions infinitesimally displaced from one another. The wall’s velocity during a

collision will be treated as a random variable, and we now find the corresponding probability

distribution.

Consider again the moving wall with non-zero a and τ . Let P (u|0) be the probability

density for a stationary observer to measure the velocity u during a randomly timed snapshot

of the wall:

P (u|0) = 1

τ

∫ τ

0

dt δ(u− u(t)) (4)

=

∫ 1

0

dΨδ(u− uc h
′(Ψ)).

The reason for placing the conditional |0 in the argument of P will become apparent shortly.

We note that P (u|0) is normalized, so it is indeed a well-defined probability density. In

the quivering limit, uc and the dependence of h on Ψ remain constant, so P (u|0) remains

well-defined and unchanged. If the stationary observer were to measure the wall velocity

in the quivering limit, any observation, no matter how well-timed, would be an essentially
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FIG. 1. Spacetime diagram over one period of a moving wall’s motion. The smooth curve represents

the wall’s position, and particles approach the wall along the diagonal arrows to collide at times

ta, ta + δt, tb and tb + δt

random snapshot due to the wall’s infinitely erratic motion. We thus take P (u|0) to be the

probability for a stationary observer to measure the wall with velocity u when the wall is

quivering.

The particle bouncing between the walls effectively measures the wall’s velocity during

collisions, but the particle is not a stationary observer. Collisions with large relative speeds

of approach occur more frequently than collisions with small relative speeds of approach,

so there exists a statistical bias that favors collisions for which the wall moves towards the

particle. If the quivering dynamics are to be physically consistent with the Fermi-Ulam

dynamics, this statistical bias must be incorporated into the probability distribution used to

determine the wall’s velocity during collisions. The mathematical realization of the statistical

bias can be found with the aid of Fig. 1, a construction first employed by Hammersley [9]

and Brahic [2].

In Fig. 1, the position of the moving wall in the Fermi-Ulam model is plotted over one

period of motion in the interval (t0, t0+τ). Consider an ensemble of particles approaching the

moving wall with speed v. For the moment, we assume that v is larger than the maximum

wall velocity umax. The particles are launched from x = 0 at a uniform rate over a period

of duration τ such that they all collide with the wall during the interval (t0, t0 + τ). We

concern ourselves only with the first collision each particle makes with the moving wall.

Four trajectories from the ensemble are shown in Fig. 1, representing collisions with the wall
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at times ta, ta + δt, tb, and tb + δt. Because the launch times are uniformly distributed, the

fraction of particles that collide with the wall between ta and ta + δt will be proportional to

the interval δta = δt−∆a. Likewise, the fraction that collide between tb and tb + δt will be

proportional to δtb = δt+∆b. Using the geometry of Fig. 1 and the fact that tan(θ) = v, we

find the probability density for randomly selected ensemble member collide with the moving

wall at a time t within the interval (t0, t0 + τ) to be

P (u(t)|v) = 1

τ

(

1− u(t)

v

)

. (5)

Multiplying by a delta function and integrating Eq. (5) over a period of the wall’s motion

gives P (u|v), the probability density for a randomly selected ensemble member’s collision to

occur when the wall moves with velocity u:

P (u|v) = 1

τ

τ
∫

0

dt δ(u− u(t))

(

1− u(t)

v

)

(6)

=

1
∫

0

dΨ δ(u− uc h
′(Ψ))

(

1− uc h
′(Ψ)

v

)

= P (u|0)
(

1− u

v

)

.

Because the wall’s average displacement over one period of motion is zero, the product

uP (u|0) integrated over all wall velocities must also give zero, and P (u|v) is therefore nor-

malized and a well-defined probability density. The distribution P (u|v) has a statistical bias

towards larger negative u due to the flux factor 1− u/v. We will henceforth refer to P (u|0)
as the unbiased distribution and P (u|v) as the biased distribution. In the quivering limit,

P (u|v) remains well-defined and unchanged. As τ → 0, an ensemble of particles launched

over a period of wall motion from a fixed x is essentially equivalent to an ensemble of in-

finitesimally displaced initial conditions. We therefore take P (u|v) to be the conditional

probability density to observe a quivering wall with velocity u during a collision, given that

the particle approaches the wall with speed v > umax.

If a particle approaches the moving wall with speed v < umax, then P (u|v) will become

negative for some values of u, and Eq. (6) will make no sense as a probability density. These

u values correspond to impossible collisions for which the wall moves with positive velocity

away from the particle faster than the particle moves toward the wall. Such collisions occur

with probability zero, and we can account for this by simply attaching a step-function to
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the biased distribution, yielding

P (u|v) =











P (u|0)
(

1− u
v

)

, v ≥ umax

N(v)P (u|0)
(

1− u
v

)

Θ(v − u), v < umax,
(7)

where Θ(x) is the unit step function (equal to 0 for x < 0 and 1 for x ≥ 0) and N(v) is a v

dependent normalization.

Equation (7) determines the statistics of a particle’s energy evolution in a quivering Fermi-

Ulam system. As with any billiard system, the particle’s energy is simply the kinetic energy

1
2
mv2, where m is the particle’s mass and v is its speed. The particle bounces between the

two walls as if the system were time-independent, but when colliding with the quivering wall

at an incoming speed vi (the particle moves in the positive x direction to collide with the

moving wall, so vi is also the incoming velocity), a value for the wall velocity u is selected

using the biased distribution P (u|vi). The particle’s velocity just after the collision, vf , is

given by

vf = 2u− vi, (8)

and the corresponding energy change, ∆E, is given by

∆E = 2mu2 − 2muvi. (9)

Equations (8) and (9) are determined using the standard collision kinematics for a particle

in one-dimension colliding elastically with an infinitely massive moving object.

Before moving on to higher dimensions, we must address the possibility of particles escap-

ing the billiard interior. This issue will plague any fixed wall simplification of time-dependent

billiards, and is discussed in detail in Ref. [15]. From Eq. (8), we see that if 0 < u < vi ≤ 2u,

the particle does not turn around after a collision with the moving wall, but instead slows

down and continues forward. We refer to these types of collisions as glancing collisions.

For non-zero a and τ , just after a glancing collision, the particle continues forward slower

than the wall moves outward, so the particle will remain within the billiard interior. With a

fixed wall simplification, however, the wall does not actually move outward after a glancing

collision, so the particle will continue forward and escape the billiard interior. A particle

escaping through a hard wall is a non-physical by-product of setting a = 0, so in order to

make a physically reasonable fixed wall simplification, one must always devise a method to

handle glancing collisions. Our method for a quivering Fermi-Ulam system is devised as
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follows.

For non-zero a and τ , after a glancing collision occurs, the wall continues to evolve through

its period, and one of two possibilities will occur. The wall may slow down sometime after

the glancing collision and allow the particle to catch up and collide again, or the wall may

reverse its direction and move inward sometime after the glancing collision, also allowing

the particle to collide again. In either case, a second collision occurs after the first collision,

and as a and τ approach zero, the second occurs essentially instantaneously after the first.

Therefore, we treat a glancing collision in a quivering Fermi-Ulam billiard as a double colli-

sion. When a particle with speed vi (also the particle’s velocity) collides with the quivering

wall, we draw a u value from the distribution P (u|vi). If the selected value of u is such that

0 < u < vi ≤ 2u, the particle’s new speed vf (also velocity) is given by vf = 2u − vi, and

we draw a new u value from the distribution P (u|vf). If the second u value gives another

glancing collision, we again update the particle’s speed and then draw a third u value. The

process is repeated until a non-glancing collision occurs, and the whole event (which occurs

instantaneously) is treated as a single collision.

B. Arbitrary Time-Dependent Billiards

We now generalize to arbitrary billiards in arbitrary dimensions. Consider a time-

dependent billiard in d dimensions moving periodically through some continuous sequence

of shapes with period τ , characteristic oscillation amplitude a, and characteristic speed

uc = a/τ . The evolution of any one point on the boundary will be denoted by the path

q(t), where q(t+ τ) = q(t). For every t, the set of all boundary points {q(t)} is assumed to

define a collection of unbroken d−1 dimensional surfaces, which we refer to as the boundary

components, enclosing some d dimensional bounded connected volume. The outward unit

normal to the billiard boundary at the point q(t) is denoted by n̂(q(t)), and the velocity of

the boundary point q(t) is denoted by u(q(t)) = dq(t)/dt. The billiard shape evolves contin-

uously in time, and we assume that the boundary components remain unbroken throughout

their evolution, so u(q(t)) forms a smooth vector field with domain on the boundary {q(t)}
for any fixed t. Likewise, n̂(q(t)) forms a smooth field on {q(t)} for any fixed t, except

possibly at corners, where n̂(q(t)) is ill-defined and discontinuous. We denote the outward

normal velocity of the point q(t) by u(q(t)) = u(q(t)) · n̂(q(t)).
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Denote by q the average of q(t) over one period:

q =
1

τ

∫ τ

0

dtq(t). (10)

Noting that the boundary components remain unbroken throughout the period of motion,

it is straightforward to show that set of average boundary points {q} forms a collection of

unbroken d − 1 dimensional surfaces. The trajectory q(t) and normal velocity u(q(t)) of

any given boundary point can be written as functions of the corresponding average location

q and the time t:

q(t) = q + g(q, t) (11)

u(q, t) = ∂tg(q, t) · n̂(q(t)),

where g(q, t) is a piecewise smooth in time τ periodic function with a time average of zero.

g(q, t) scales like a and u(q(t)) scales like uc. Equation (11) depends on t only through the

value of Ψ(t) = t/τ mod 1, so we write

q(t) = q + ah(q,Ψ(t)) (12)

u(q, t) = uc ∂Ψh(q,Ψ(t)) · n̂(q(t)).

where ah(q,Ψ(t)) = g(q, t). Analogously to the one dimensional case, h is regarded as a

function of q and Ψ, and h(q,Ψ(t)) means h(q,Ψ) evaluated for Ψ = Ψ(t). The quivering

limit of an arbitrary dimensional billiard is defined by taking a, τ → 0 while holding uc

and the dependence of h on Ψ and q constant. In this limit, the billiard’s boundary points

become fixed in time at the average locations {q}, so the outward normal vectors become

fixed in time as well. Thus, in the quivering limit, we have

q(t) = q (13)

u(q, t) = uc ∂Ψh(q,Ψ(t)) · n̂(q)

= uc h
′(q,Ψ(t)),

where we write h′(q,Ψ(t)) = ∂Ψh(q,Ψ(t)) · n̂(q) for brevity. Any time-dependent billiard

taken to the quivering limit will be called a quivering billiard.

Analogously to the one dimensional case, we define the unbiased distribution for each q:

P (u|0,q) =
∫ 1

0

dΨδ(u− uc h
′(q,Ψ)). (14)

9



FIG. 2. (Color online) Collision geometry in a two-dimensional billiard. A particle with velocity v

approaches the point q on the billiard boundary, where the outward unit normal vector is n. The

dotted line represents the tangent line to the boundary at q

The biased distribution for each q can also be defined analogously to the one dimensional

case, but we must also consider the collision angle θ, depicted for two-dimensional billiard in

Fig. 2. For a particle approaching the boundary point q with speed v, θ is the angle between

the particle’s velocity vector and the d − 1 dimensional tangent surface to the wall at q,

and v sin(θ) thus gives the component of the particle’s velocity in the n̂(q) direction. If the

particle collides when the wall has normal velocity u, then the relative speed of approach

just before the collision is determined by v sin(θ) and u, so v sin(θ) determines the statistical

bias towards collisions with large negative u. We account for this by simply replacing v with

v sin(θ) in Eq. (7), yielding

P (u|v,q, θ) =











P (u|0,q)
(

1− u
v sin(θ)

)

, v sin(θ) ≥ umax(q)

N(v, θ)P (u|0,q)
(

1− u
v sin(θ)

)

Θ(v sin(θ)− u), v sin(θ) < umax(q),
(15)

Equation (15) determines the statistics of a particle’s energy evolution in a quivering billiard.

To summarize, we describe how one may construct a quivering billiard and determine a

particle’s trajectory, without the need to define a real, fully time-dependent billiard and

take the quivering limit. First, one must select a billiard shape by defining a surface {q},
then set boundary quivering by giving a value to uc and defining a scalar field h′(q,Ψ)

on {q}. If the constructed quivering billiard is to honestly represent some deterministic

billiard’s motion in the quivering limit, then h′(q,Ψ) should be chosen to be a smooth

function of q for any Ψ wherever n̂(q) in continuous. Using the field h′ and the value of

uc, one may then calculate the unbiased distribution P (u|0,q) from Eq. (14) for any q on
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the billiard boundary. For a particle in free flight inside the quivering billiard, the next

collision location is found deterministically using the geometry of the billiard boundary, just

as with a time-independent billiard. When a particle with velocity vi and speed vi collides

with the boundary at q with a collision angle θi, we draw a value of u from the distribution

P (u|vi,q, θi). The particle’s velocity component tangent to the boundary remains constant,

and the component normal to the boundary just after the collision, vf · n̂(q), is given by

vf · n̂(q) = 2u− vi · n̂(q) (16)

= 2u− vi sin(θi).

The corresponding change in energy, ∆E, is given by

∆E = 2mu2 − 2muvi sin (θi) . (17)

Analogously to the one dimensional case, if the selected value of u is such that 0 < u <

vi sin(θi) ≤ 2u, then a glancing collision occurs, and we draw a second value of u using

the same collision located and updated particle speed and collision angle, determined from

Eqs. (16) and (17).

III. ENERGY STATISTICS

In this section, we study in detail the statistical behavior of particles and ensembles in a

d-dimensional quivering billiard, with the aim of describing energy evolution of a ensemble

of initial conditions as a diffusion process. Our notation will be as follows: qb is the location

of a particle’s bth collision with the billiard boundary, θb is the bth collision angle, ub is the

selected value of the wall velocity during the bth collision (sampled using Eq. (15)), vb−1 is

the particle’s speed just before the bth collision, and ∆Eb is the change in particle energy

due to the bth collision, given by

∆Eb = 2mu2
b − 2mub vb−1 sin (θb) . (18)

In order to derive analytic results, we will assume that the initial particle speeds v0 are

much larger than uc, and we will solve to leading order in the small parameter ε = uc/v0.

We regard uc as an O(1) quantity, and v0 as an O(ε−1) quantity. This approximation allows

us to ignore glancing collisions in our analysis, and also allows us ignore the possibility
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of vb−1 sin(θb) ≤ umax(qb), so that the biased distributions at the time of collision always

take the form P (ub|vb−1,qb, θb) = P (ub|0,qb) (1− ub/vb−1 sin(θb)) (as opposed to the more

complicated Eq. (15)). The assumption ε ≪ 1 is not particularly restrictive; even if particles

begin with an initial speed comparable to or less than uc, energy gaining collisions are more

likely than energy losing collisions due to the flux factor in the biased distribution, and a slow

particle will gain roughly mu2
c of energy during a collision according to Eq. (18). Therefore,

a slow particle will more than likely gain speed uc ∼ O(1) during a single bounce, and after

1/δ bounces, where δ ≪ 1 is some small number, the particle will more than likely have a

speed v such that uc/v . δ ≪ 1. Thus, slow particles are very likely to eventually become

fast particles, and the assumption uc/v ≪ 1 will give a better and better approximation

over time.

In the analysis, it will prove useful to consider both the full dynamics and frozen dynamics,

as is done in Refs. [14, 16]. If the frozen dynamics are used at the bth collision, the energy

change ∆Eb is calculated, but the particle’s energy remains constant, and the angle of

reflection is equal to the collision angle θb. In other words, the frozen dynamics are identical

to those of a time-independent billiard, but we calculate and keep track of the ∆Eb’s that

would have occurred had the billiard walls been quivering. In the full dynamics, the particle’s

energy is actually incremented by the calculated value of ∆Eb, and the angle of reflection is

consequently altered.

A. Expectations

Consider single a particle with energy E0 released at time t0 in a d-dimensional quiv-

ering billiard. The resulting particle trajectory generates a sequence of energy increments

{∆E1,∆E2, ...,∆Eb−1,∆Eb,∆Eb+1, ...}. Let the operator {...}b denote the conditional ex-

pectation value of the quantity ..., given the outcomes of the previous b − 1 bounces. The

first b−1 bounces determine vb−1, qb, and θb, so the bth conditional expected energy change,

µb ≡ {∆Eb}b, can be calculated using the biased distribution P (ub|vb−1,qb, θb) and the
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expression for ∆Eb in Eq. (18):

µb ≡ {∆Eb}b (19)

=

∫

dubP (ub|vb−1,qb, θb)∆Eb

=

∫

dubP (ub|0,qb)

(

4mu2
b −

2mu3
b

vb−1 sin(θb)
− 2mub vb−1 sin(θb)

)

.

The integral in Eq. (19) is taken over all possible values of ub at qb.

Let Mn(qb) denote the n
th moment of the wall velocity at qb as measured by a stationary

observer:

Mn(q) =

∫

duP (u|0,q)un. (20)

By construction, M1(q) = 0 for all q. Otherwise, Mn(qb) generally scales like un
c . The

conditional mean thus simplifies to

µb =

∫

dubP (ub|0,qb)4mu2
b

(

1− ub

2vb−1 sin(θb)

)

(21)

= 4mM2(qb)

(

1− M3(qb)/M2(qb)

2vb−1 sin(θb)

)

.

Similarly, the conditional variance σ2
b is given by

σ2
b ≡ {(∆Eb)

2}b − {∆Eb}2b (22)

=

∫

dubP (ub|vb−1,qb, θb)
(

(∆Eb)
2 − {∆Eb}2b

)

= 4m2[M2(qb)]
2

(

v2b−1 sin
2(θb)

M2(qb)
− 3

vb−1 sin(θb)

[M2(qb)]2/M3(qb)

+ 3
M4(qb)

[M2(qb)]2
− 4 +

4M3(qb)/M2(qb)−M5(qb)/[M2(qb)]
2

vb−1 sin(θb)

− [M3(qb)]
2/[M2(qb)]

2

v2b−1 sin
2(θb)

)

.

The terms enclosed in the parentheses of Eqs. (21) and (22) are ordered in increasing powers

of ε. To leading order, we have

µb = 4mM2(qb) (23)

σ2
b = 4m2M2(qb)v

2
b−1 sin

2(θb)

The quantities µb and σ2
b are O(1) and O (ε−2), respectively; average energy gain is moderate,

and fluctuations are huge.
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B. Correlations

The conditional covariance between adjacent bounces, Covb,b+1, is defined by

Covb,b+1 ≡ {(∆Eb − {∆Eb}b) (∆Eb+1 − {∆Eb+1}b)}b (24)

= {∆Eb∆Eb+1}b − {∆Eb}b{∆Eb+1}b.

The conditional expectations in Eq. (24) are taken given the outcomes of the previous

b − 1 collisions, with the outcome of the bth collision yet to be determined. That is, we

must average over all possible realizations of the stochastic process Eb−1 → Eb−1 +∆Eb →
Eb−1+∆Eb+∆Eb+1, given the first b−1 collisions. Denote {∆Eb+1|ub}b+1 as the conditional

expectation of Eb+1, given the first b − 1 collision outcomes and supposing that ub is the

wall velocity during the bth collision. The expression for {∆Eb+1}b is then

{∆Eb+1}b =
∫

dubP (ub|vb−1,qb, θb){∆Eb+1|ub}b+1. (25)

The expression for {∆Eb∆Eb+1}b can be written similarly:

{∆Eb∆Eb+1}b =
∫

dubdub+1P (ub|vb−1,qb, θb)P (ub+1|vb,qb+1, θb+1|ub)∆Eb∆Eb+1 (26)

=

∫

dubP (ub|vb−1,qb, θb)∆Eb{∆Eb+1|ub}b+1.

The term P (ub+1|vb,qb+1, θb+1|ub) denotes the value of P (ub+1|vb,qb+1, θb+1) when vb, θb+1,

and qb+1 are determined given the first b− 1 collision outcomes while supposing that ub is

the wall velocity upon the bth collision. Equation (24) can thus be expressed as

Covb,b+1 =

∫

dubP (ub|vb−1,qb, θb){∆Eb+1|ub}b+1 (∆Eb − {∆Eb}b) . (27)

If the frozen dynamics are used at the bth collision, then vb, θb+1, and qb+1 are independent

of ub, so we have

{∆Eb+1|ub}b+1|F = {∆Eb+1}b+1|F = µb+1|F , (28)

where ...|F denotes the quantity ... evaluated using the frozen dynamics. µb+1|F carries no

ub dependence, so it can be brought outside of the integral in Eq. (27), giving

Covb,b+1|F = 0. (29)

Adjacent energy increments are thus statistically uncorrelated in the frozen dynamics.

Under the assumption ε ≪ 1, the frozen dynamics closely resemble the full dynamics over
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the time scale of a few bounces [14]. Over such a time scale, we can regard the full dynamics

trajectory as a stochastic perturbation of the deterministic frozen dynamics trajectory. Let

qb+1|ub = qb+1|F + δqb+1|ub be the (b + 1)th collision location when the full dynamics are

used at the bth bounce, given the first b− 1 collisions and supposing that ub is the observed

wall velocity upon the bth collision. Equation (23) then gives, to leading order in ε

{∆Eb+1|ub}b+1 = 4mM2(qb+1|ub) (30)

= 4mM2(qb+1|F ) + 4m∇M2(qb+1|F ) · δqb+1|ub.

where the gradient ∇M2 is constrained to act along directions tangent to the billiard bound-

ary at qb+1|F . In the appendix, we solve for ‖δqb+1|ub‖ to leading order in ε and find

‖δqb+1|ub‖ = 2Lb|F
cos(θb)

sin(θb+1|F )
|ub|
vb−1

, (31)

where Lb|F is the distance between the bth and b + 1th collision locations in the frozen

dynamics. Combining Eqs. (27), (30), and (31), gives to leading order in ε

Covb,b+1 =

∫

dubP (ub|vb−1,qb, θb) (4m∇M2(qb+1|F ) · δqb+1|ub) (∆Eb − {∆Eb}b) (32)

=

∫

dubP (ub|0,qb)

(

4m∇M2(qb+1|F ) ·
δqb+1|ub

‖δqb+1|ub‖

× 2Lb|F
cos(θb)

sin(θb+1|F )
|ub|
vb−1

)(

4mu2
b − 2m

u3
b

vb−1 sin(θb)
− 2mubvb−1 sin(θb)

−4mM2(qb) + 4mM2(qb)
ub

vb−1 sin(θb)

)

= −16m2Lb|F
cos(θb) sin(θb)

sin(θb+1|F )
∇M2(qb+1|F ) ·

∫

dubP (ub|0,qb)
δqb+1|ub

‖δqb+1|ub‖
ub|ub|.

All but the leading order terms are dropped in the last line of Eq. (32). With exception to

the one-dimensional case, Covb,b+1 is thus an O(1) quantity. In a one-dimensional billiard,

the frozen and full dynamics always give the same collision location, so {∆Eb+1|ub}b+1 =

{∆Eb+1}b+1|F , and consequently, Covb,b+1 is identically zero.

The conditional correlation ρb,b+1 is defined as the normalized conditional covariance, and

is given by

ρb,b+1 =
Covb,b+1

σb{σb+1}b
. (33)

To leading order in ε, the conditional expectation {σb+1}b can be taken as the frozen dynam-

ics value in Eq. (33). Therefore, the conditional correlation ρb,b+1 is O(ε2) (with exception
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to the one-dimensional case, where ρb,b+1 = 0). This quantity is very small, and correla-

tions between more distant collisions will further diminish due to the mixing of particle

trajectories induced by the stochastic wall motion. We thus conclude that, in any dimen-

sion, correlations between energy increments effectively decay over the time scale of a single

collision.

C. Ensemble averages

Consider now a microcanonical ensemble of independent particles with energy E0 released

at time t0. The resulting trajectories will generate an ensemble of statistically independent

energy increment sequences, and we denote ∆Ei,b as the bth recorded energy increment of

the ith particle. Define the ensemble averaged bth energy increment 〈∆Eb〉 as

〈∆Eb〉 =
N→∞

N
∑

i=1

∆Ei,b

N
, (34)

and the ensemble averaged bth conditional mean 〈µb〉 as

〈µb〉 =
N→∞

N
∑

i=1

µi,b

N
, (35)

where µi,b = {∆Ei,b}b. Equation (22) shows that the bth conditional variances σ2
i,b ≡

{(∆Ei,b)
2}b − {∆Ei,b}2 are finite and bounded from above. Noting this, and the fact that

the series
∞
∑

k=1

k−2 converges, we deduce

lim
N→∞

N
∑

k=1

σ2
k,b

k2
< ∞. (36)

By Kolmogorov’s strong law of large numbers [17], Eq. (36) assures that, with probability

unity,

〈∆Eb〉 = 〈µb〉 . (37)

Combining Eqs. (37),(35), and (23) gives, to leading order in ε,

〈∆Eb〉 =
N→∞

N
∑

i=1

4mM2(qi,b)

N
(38)

= 4m 〈M2(qb)〉 ,
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where qi,b denotes the b
th collision location of the ith particle. By similar law of large number

arguments, we also have, to leading order in ε,

〈

u2
b

〉

= 〈M2(qb)〉 , (39)

where
〈

u2
b

〉

=
N→∞

N
∑

i=1

u2
i,b

N
, (40)

and ui,b is the wall velocity during the bth collision of the ith particle. To leading order, we

thus have

〈∆Eb〉 = 4m
〈

u2
b

〉

. (41)

D. Energy diffusion

We now consider the normalized energy distribution of an ensemble of independent par-

ticles, denoted by η(E, t). We have thus far shown that energy of any one ensemble member

evolves stochastically, in small increments, with correlations in energy changes effectively

decaying over a characteristic time scale given by time between collisions. A particle’s en-

ergy evolution is therefore effectively a Markov process describing a random walk along an

energy axis, so following Refs. [13, 14], we assert that η(E, t) evolves like a diffusion process

and obeys a Fokker-Planck equation:

∂tη(E, t) = −∂E [g1(E, t)η(E, t)] +
1

2
∂2
E [g2(E, t)η(E, t)] . (42)

The functions g1(E, t) and g2(E, t), the drift and diffusion terms, respectively, are to be

determined in this section. The energy of any one particle in a quivering billiard evolves

discretely in time, so the continuous time evolution implied by Eq. (42) will be an accurate

description of the ensemble only down to a coarse-grained time scale. The time scale must

be large enough to ensure that most particles in the ensemble experience at least a few

bounces off the billiard wall, but small enough to ensure the energy change experienced

by most particles is small compared to their total energy. Generally speaking, a diffusive

description of a stochastic process is only accurate over time scales larger than the process’s

typical correlation time [14, 16]. We have established that energy correlations for any one

particle effectively decay over the time scale of a single collision, thus, the diffusion approach

to energy evolution in a quivering billiard is justified on any time scale over which η(E, t)
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can be described by a continuous evolution.

The drift term g1(E
′, t′) is defined as the rate of ensemble averaged energy change for an

ensemble of particles all with energy E ′ at time t′. Specifically,

g1(E
′, t′) =

∆t→0

〈E(t′ +∆t)− E(t′)〉
∆t

, (43)

where E(t′) = E ′ for all particles in the ensemble, and 〈E(t′ +∆t)〉 is the ensemble averaged

particle energy at time t′ +∆t. We can not actually take the limit ∆t → 0 because g1 has

no meaning over time scales for which the evolution of η appears discontinuous. Instead, we

will let ∆t be the average time for which the ensemble members make B bounces after time

t′, and we will find corresponding ensemble averaged change in energy. We assume that B

is small enough so that the particle energies change very little relative to E ′ over the time

∆t, so that ∆t is the smallest coarse-grained time scale for which Eq. (42) is valid for an

ensemble with common energy E ′. We let EB be a particle’s energy B bounces after t′, and

find from Eq. (37)

〈EB − E ′〉 =
〈

B
∑

∆Eb

〉

(44)

=
B
∑

4m
〈

u2
b

〉

.

We denote the coarse grained squared wall speed by u2(t′;B), defined as the time average

of 〈u2
b〉 over the first B bounces after t′:

u2(t′;B) =
B
∑ 〈u2

b〉
B

. (45)

We thus have

〈EB − E ′〉 = 4m u2(t′;B)B (46)

The time scale ∆t corresponding to the B bounces after t′ is the ensemble averaged total

free flight time over which the B bounces occur. If we denote by ∆tb a particle’s bth free

flight time after t′, we have

∆t =
B
∑

〈∆tb〉 . (47)

We are assuming small wall velocities, so the particles’ speeds change very little relative to

their initial speed
√

2E ′/m over the B bounces. Therefore, to leading order in ε, we have

∆tb =

√

m

2E ′
lb, (48)
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where lb denotes a particles bth free flight distance after t′. We now define the coarse grained

free flight distance, l(t′, B) by time averaging the ensemble average of lb over the first B

bounces after t′:

l(t′;B) =

B
∑ 〈lb〉

B
(49)

Substituting Eqs. (49) and (48) into Eq. (47) gives

∆t = B l(t′;B)

√

m

2E ′
, (50)

and substituting for B in Eq. (46) gives

〈EB − E ′〉 = ∆t
4
√
2m u2(t′;B)

l(t′;B)
E ′ 1

2 . (51)

Equation (51) gives the ensemble averaged change in energy over the time ∆t after t′ for

an ensemble of particles with energy E ′. Comparing to Eq. (43), we see that dividing both

sides of Eq. (51) by ∆t gives us g1(E
′, t′). We thus have,

g1(E, t) =
4
√
2m u2(t)

l(t)
E

1
2 , (52)

where we have switched from primed to unprimed variables, and the dependence on B has

been suppressed.

The diffusion term g2(E
′, t′) is defined as

g2(E
′, t′) =

∆t→0

〈

(E(t′ +∆t)−E(t′))2
〉

∆t
, (53)

where E(t′) = E ′ for all particles in the ensemble, and 〈E(t′ +∆t)〉 is the ensemble averaged

particle energy at time t′ + ∆t. An expression for the diffusion term can be found by

employing similar methods used to find the drift term. Alternatively, g2(E, t) can be found

by invoking Liouville’s theorem, as in Ref. [16]. Combing Liouville’s theorem and the Fokker-

Planck equation allows one to deduce a fluctuation-dissipation relation:

g1(E, t) =
1

2Σ(E)
∂E [Σ(E)g2(E, t)] , (54)

where Σ(E) is the microcanonical partition function of a single particle with energy E in

the corresponding frozen billiard. In a d dimensional billiard, the microcanonical partition

function is given by [14]

Σ(E) =
1

2
VdΩd (2m)

d

2 E
d

2
−1, (55)
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where Ωd is the d-dimensional solid angle, and Vd is the d-dimensional billiard’s volume.

Combining Eqs. (52),(54), and (55), we find

g2(E, t) =
4

d+ 1

4
√
2m u2(t)

l(t)
E

3
2 . (56)

This method of determining g2 allows for an additive constant, but this constant must be

identically zero; when E = 0, the particles are motionless and there can be no drift or

diffusion of energies, so we must have g1(0, t) = g2(0, t) = 0.

With our expressions for g1 and g2, we may rewrite the Fokker-Planck equation:

∂tη(E, t) =
2α(t)

d+ 1
∂E

[

E
1+d

2 ∂E

(

E
2−d

2 η(E, t)
)]

(57)

where we define α(t) as

α(t) ≡ 4
√
2m u2(t)

l(t)
. (58)

Equation (57) can be simplified by defining a rescaled time s:

s =

∫ t

t0

dt′α(t′), (59)

which gives

∂sη(E, s) =
2

d+ 1
∂E

[

E
1+d

2 ∂E

(

E
2−d

2 η(E, s)
)]

(60)

Equation (60) can be solved by separation of variables. We assume a solution of the form

φ(s)f(E), and upon making the substitutions F (E) = E
3−d

4 f(E) and z = E
1
4 one finds a

first order homogeneous linear differential equation for φ(s) and a Bessel equation of order

d−1 for F (z). The details of the separation of variables, including existence, uniqueness, and

boundary conditions, are given in Ref. [18] and will be omitted here. We also acknowledge a

similar, much older, one-dimensional solution given in Ref. [7]. The separation of variables

solution is

η(E, s) = E
d−3
4

∫ ∞

0

dk A(k)Jd−1(kE
1
4 )e−

sk
2

8(d+1) , (61)

where Jd−1 is an ordinary Bessel function of order d − 1, and the amplitudes A(k) are

found by taking a Hankel transform of the initial ensemble η(E, 0). When the ensemble

begins in the microcanonical distribution with energy E0, we have η(E, 0) = δ(E − E0),

and a closed form expression for A(k) results. The energy distribution η(E, s), subject to

η(E, 0) = δ(E − E0), is then

η(E, s) =
1

4E
1
2
0

(

E

E0

)
d−3
4

∫ ∞

0

dk kJd−1(kE
1
4
0 )Jd−1(kE

1
4 )e−

sk
2

8(d+1) . (62)
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Making use of an identity of Bessel integrals utilized in Eq. (22) of Ref. [18], we can solve

the integral in Eq. (62) and simplify the expression to

η(E, s) =
d+ 1

sE
1
2
0

(

E

E0

)
d−3
4

Id−1

[

4(d+ 1)

s
E

1
4
0 E

1
4

]

e
−

2(d+1)
s

(

E
1
2
0 +E

1
2

)

, (63)

where Id−1 is a modified Bessel function of order d − 1. Using this energy distribution, we

can find the ensemble averaged energy as a function of time:

〈E(s)〉 = d

d+ 1

s2

4
+
√

E0 s+ E0. (64)

Equation (63) is only valid under the assumption ε ≪ 1. If we begin with an ensemble

where ε is order unity or larger, over sufficiently long time, the slow particles inevitably

gain so much energy that the fast particle assumption holds and Eq. (63) becomes valid

asymptotically. We can thus find a universally valid asymptotic energy distribution by

considering Eq. (62) or Eq. (63) in the limit of very large s. Specifically, if k ≪ d/
√
E0 for

all k2 ≫ 8(d+1)/s, which implies that s ≫ 8
√
E0(d+1)/d, one can approximate Jd−1(kE

1
4
0 )

by the lowest order term in its Taylor expansion over the non-negligible contributions to the

integral in Eq. (62), and the solution reduces to

ηa(E, s) =
1

2EΓ(d)

[

2(d+ 1)

s
E

1
2

]d

e−
2(d+1)

s
E

1
2 , (65)

where Γ is the gamma function. One can easily verify that ηa(E, s) is normalized and obeys

the Fokker-Planck equation. Using the asymptotic energy distribution Eq. (65), we find the

ensemble averaged energy at a large times to be

〈E(s)〉a =
d

1 + d

s2

4
. (66)

The results of this section are summarized as follows. In the quivering limit, correlations

in particle energy decay over the time scale of a single collision, and as a result, the energy

distribution of an ensemble evolves diffusively, regardless of the shape and dimensionality of

the billiard boundary. Ensembles universally evolve to the asymptotic energy distribution

given in Eq. (65), and ensemble averaged energy asymptotically grows quadratically in time.

Before discussing the implications and broader context of these results, we comment on the

interpretations of the coarse grained quantities l and u2.

If the particular billiard shape is ergodic, then their exists a characteristic ergodic time
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scale over which ensembles uniformly explore the entire billiard boundary. Invoking ergodic-

ity and replacing time averages with phase space averages, we deduce that, over time scales

greater than the ergodic time scale, l will be the billiard’s mean free path, and u2 will be

the second wall moment M2(q) uniformly averaged over the billiard boundary. This implies

that, over time scales greater than the ergodic time scale, g1 and g2 are time-independent

and that α is merely a constant. In this case, the expression for g1 in Eq. (52) is equivalent

to the wall formula, which was originally used to model energy dissipation from collective

to microscopic degrees of freedom in nuclear dynamics [5]. In non-ergodic billiards, or over

time scales shorter than the ergodic time scale in ergodic billiards, l and u2 will generally be

time-dependent and can not be interpreted in terms of properties of the billiard shape alone.

Nevertheless, they are still well-defined properties of the ensemble; l is simply the ensemble’s

average free flight distance over the coarse grained time scale, and u2 is the average squared

wall velocity for the collisions taking place over the coarse grained time scale.

IV. DISCUSSION

A. Approximate Quivering

The quivering limit is most certainly an idealization of time-dependent billiard motion;

no real billiard boundary can actually move with zero amplitude and period. However, if the

idealized system is defined in a physically consistent manner, then we expect that for smaller

and smaller a and τ , real time-dependent billiards will be better and better approximated by

quivering billiards. We now clarify how small a and τ must actually be for a time-dependent

billiard to be well-approximated by a quivering billiard.

In Refs. [3] and [4], Lieberman, Lichtenberg, and Cohen studied the Fermi-Ulam model

numerically and analytically using dynamical systems theory. It was shown that the energy

evolution of a particle in the Fermi-Ulam model is generically diffusive and can be described

by a Fokker-Planck equation for particle speeds such that, using our notation from Sec. IIA,

v ≪ uc

√

L/a. The value uc

√

L/a is associated with the stability of periodic orbits in v-Ψ

space, where v and Ψ are the particle velocity and wall phase during collisions, respectively.

At particle speeds much below uc

√

L/a, Refs. [3] and [4] show that periodic orbits in v-

Ψ space are unstable, dynamical correlations are small, and trajectories in v-Ψ space are
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generally chaotic (the language of the day labelled such trajectories stochastic as opposed to

chaotic). At particle speeds above uc

√

L/a, periodic orbits begin to stabilize, correlations

become important, and the presence of elliptic islands and invariant spanning curves inhibit

energy growth [3] [4]. In a one-dimensional quivering billiard, correlations vanish, trajectories

are stochastic, and particle energy evolves diffusively, so, based on Lieberman, Lichtenberg,

and Cohen’s work, we see that a quivering billiard is a good description of the Fermi-Ulam

model when v ≪ uc

√

L/a. As a becomes smaller and smaller with uc held fixed, elliptic

islands and invariant spanning curves move away to regions of larger and larger particle

speeds, correlations become smaller and smaller due to the more and more erratic wall

motion, and quivering becomes a valid approximation for wider and wider ranges of particle

speeds. As a approaches zero in the idealized limit, the infinitely erratic wall motion destroys

correlations, elliptic islands and spanning curves occur only at infinite energy, and quivering

becomes an exact description for all particle speeds. The same reasoning can be applied

to higher dimensional time-dependent billiards; as a becomes smaller and smaller with uc

held constant, correlations become smaller and smaller and non-diffusive dynamics occur at

higher and higher energies. We thus claim that when v ≪ uc

√

lc/a for all possible particle

speeds v that could be observed in a simulation or experiment, where lc is a characteristic

free-flight distance, an arbitrary-dimensional time-dependent billiard will be approximately

a quivering billiard.

Due to the inevitable increase in particle energy, the speed bound inequality v ≪ uc

√

lc/a

implies that quivering will closely approximate a real billiard simulation or experiment only

up to some maximum time tmax. The value of tmax depends on the particles’ initial energy

distribution, but we can estimate its scaling behavior in situations where the actual energy

distribution is able to evolve the asymptotic distribution given in Eq. (65). In such cases,

the average particle speed at large times can be estimated from the asymptotic ensemble

averaged energy given by Eq. (66), and we find v ∼ t u2
c/lc. Substituting this estimate for

v into the speed bound inequality yields t ≪ (lc/a)
1/2 (lc/uc) = (lc/a)

3/2τ . We thus have

tmax ∼ (lc/a)
1/2 (lc/uc) = (lc/a)

3/2τ . As expected, in the quivering limit, tmax diverges.
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B. Consistency

Quivering wall motion corresponds to volume preserving billiard motion with negligi-

ble correlations in particles’ energy changes. Therefore, if the quivering limit is actually

physically meaningful, then the results obtained in Sec. III should agree with previous time-

dependent billiard literature for the special case of volume preserving billiard motion with

negligible correlations in energy changes. We now highlight three such examples.

In Ref. [4], 〈∆E〉 and 〈(∆E)2〉 are calculated for a single collision in the Fermi-Ulam

model, assuming periodic wall motion (which corresponds to volume preserving billiard mo-

tion on average) and no correlations in the wall velocity between collisions. The authors

also assume, without explicitly stating, that the wall velocity is an even function of time.

The expressions obtained in Ref. [4] are in fact identical to our expressions for {∆Eb}b in

Eq. (21) and {(∆Eb)
2}b, which can be found by adding {∆Eb}2b to Eq. (22), under the as-

sumption that all odd moments of the wall velocity M2n+1 vanish. The odd moments vanish

in a quivering billiard when we take the quivering limit of wall motion defined by an even

function of time, so our results agree perfectly with those of Ref. [4].

Reference [14] studies the energy evolution of ensembles of independent particles in chaotic

adiabatic billiards in two and three dimensions. A Fokker-Planck equation to describe the

evolution of the energy distribution is proposed, and expressions for the corresponding drift

and diffusion coefficients are derived. These results are obtained for general adiabatic billiard

motion, under the assumption that correlations in a particle’s energy changes decay over

the mixing time scales corresponding to the frozen chaotic billiard shapes. The expressions

for g1 and g2 are given in terms of a diffusion constant D, and an explicit expression for D

is given using the quasilinear approximation - the assumption that energy changes between

bounces are completely uncorrelated. Under the quasilinear approximation, assuming vol-

ume preserving billiard motion, the expressions for g1 and g2 in Ref. [14] are identical to

our two and three-dimensional expressions for g1 and g2 in Eqs. (52) and (56), respectively,

for ergodic billiards, over time scales greater than the ergodic time scale. Our results are

thus consistent with those of Ref. [14]. It is remarked in Ref. [14] that it is not precisely

clear under what conditions the quasilinear approximation will be valid for time-dependent

billiards in general, but roughly speaking, the approximation requires the billiard shapes

and motion to be “sufficiently irregular.” Our results help clarify this issue; the quasilinear
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approximation is justified when a time-dependent billiard is approximately quivering, and

the quasilinear approximation is in fact exact, not an approximation, in the quivering limit.

In Ref. [5], it is shown that the velocity distribution for independent particles in a time-

dependent irregular container is asymptotically universally an exponential. This work as-

sumes an isotropic velocity distribution, volume preserving billiard motion, and a three-

dimensional billiard. If we assume an isotropic velocity distribution in a quivering billiard,

we can change variables from energy to velocity in Eq. (65), and we find the asymptotic

velocity distribution fa(v, s) in arbitrary dimensions

fa(v, s) =
1

ΩdΓ(d)

(

2(d+ 1)

s

√

m

2

)d

e−
2(d+1)

s
||v||. (67)

In agreement with Ref. [5], the isotropic velocity distribution in a quivering billiard is uni-

versally an exponential in all dimensions. For a three-dimensional chaotic quivering billiard,

where s = αt and chaotic mixing ensures an isotropic velocity distribution, Eq. (67) is

identical to the velocity distribution obtained in Ref. [5].

C. Fermi acceleration

Equation (66) shows that the ensemble averaged growth is unbounded, increasing

quadratically in time. Unbounded average energy growth in time-dependent billiards is

known as Fermi acceleration. Fermi acceleration was originally proposed by Fermi as the

mechanism by which cosmic rays gain enormous energies through reflections off of moving

magnetic fields [6], and since become an active field of research in its own right. The current

research generally seeks to determine under what conditions time-dependent billiards allow

for Fermi acceleration, and to understand how the dynamics of sequence of frozen billiard

shapes affects the energy growth rate. In Refs. [2–4, 7], it was established that sufficiently

smooth wall motion in the one-dimensional Fermi-Ulam model prohibits Fermi acceleration,

and that non-smooth wall motion allows for Fermi acceleration that may be much slower

than quadratic in time. While the one-dimensional billiard is always integrable, higher

dimensional billiards allow for integrable, pseudo-integrable, chaotic, or mixed dynamics. In

Ref. [19], it was conjectured that fully chaotic frozen billiard shapes are a sufficient condition

for Fermi acceleration in multi-dimensional time-dependent billiards, and the energy growth

rate in such billiards was thought to be quadratic in time [10, 19]. It has since been shown
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that the problem is a bit more subtle; certain symmetries in the sequence frozen billiard

shapes can prohibit or stunt the quadratic energy growth in chaotic billiards [11]. The prob-

lem is complicated for non-chaotic multi-dimensional billiards as well. Integrable billiards

may prohibit [20] or allow [21] quadratic or slower Fermi acceleration, while exponential

Fermi acceleration is possible for pseudo-integrable billiards [22] and billiards with multiple

ergodic components [10, 12, 23–25] with possibly mixed or pseudo-integrable dynamics.

Given the complexities observed in the previous literature, our result in Eq. (66) is

surprising; in the quivering limit, regardless of the dimensionality or underlying frozen

dynamics, time-dependent billiards universally show quadratic Fermi acceleration. The

apparent contradiction between our work and previous work is due to a difference in the

limits studied. Both our work and the previous literature, because of the inevitable speed

up of particles, analyze time-dependent billiards in the adiabatic limit, where the wall speed

is much slower than the particle speed. In the previous literature, however, the period of

billiard oscillations is typically fixed and non-zero (with numerical results often presented as

a function of the oscillation amplitude), so in the adiabatic limit, the typical time between

collisions is always much shorter than the billiard’s oscillation period. In our work, the

oscillation period approaches zero, so the time between collisions is always much larger than

the oscillation period, even in the adiabatic limit where particles move much faster than

walls.

D. Fixed wall simplifications

An alternative simplification similar to the quivering billiard has been frequently em-

ployed in the literature. The so-called static wall approximation (sometimes called the

simplified Fermi-Ulam model) was originally introduced in [3] in order to ease the analytical

and numerical study of the Fermi-Ulam model, and through the years has become a stan-

dard approximation assumed valid for small oscillation amplitudes, often studied entirely

in lieu of the exact dynamics. See Ref. [3, 4, 15, 19, 26–29] for example. Using the nota-

tion of Sec. II, assuming v ≫ uc so that we may ignore glancing collisions for the sake of

simplicity, the dynamics of the one-dimensional Fermi-Ulam model can be described by the
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deterministic map,

vb = vb−1 − 2u(tb), (68a)

tb = tb−1 +
2L

vb−1
+

g(tb) + g(tb−1)

vb−1
, (68b)

while the corresponding static wall approximation is given by the deterministic map,

vb = vb−1 − 2u(tb), (69a)

tb = tb−1 +
2L

vb−1
. (69b)

In the above maps, vb−1 is the particle’s velocity just before the bthcollision, and tb is the time

of the bth collision. An analogous static wall approximation can be constructed for higher

dimensional billiards [19, 26, 29]. Like the quivering billiard, the static wall approxima-

tion eliminates the implicit equations for the time between collisions by holding the billiard

boundary fixed. The two models differ because the static wall approximation assumes u(tb)

to be a well behaved function. It is common practice to consider stochastic versions of

the maps (68) and (69), where u(tb) is replaced by u(tb + ζ) for some random variable ζ

[3, 15, 19, 26, 28, 29]. The stochastic case simulates the effects of external noise on the

system and allows one to average over ζ when determining ensemble averages, which often

facilitates analytical calculations.

In Refs. [28, 29], Karlis et al. show that the stochastic static wall map and its analogue

for the two-dimensional Lorentz gas give one half the asymptotic energy growth rate of the

stochastic Fermi-Ulam map. This inconsistency exists even for small a, so Karlis et al. con-

clude that (69) is not a valid approximation of (68). We add that the same factor of two

discrepancy can be observed between our quivering billiard expression for g1 and the corre-

sponding expressions obtained from the deterministic static wall maps given in [3, 4, 19, 26].

In an early study of the Fermi-Ulam model, Ref. [7] obtains a drift term that is actually in

agreement with the static wall approximation value, but a careful reading reveals that the

authors make a series of simplifications that inadvertently reduce their Fermi-Ulam model

to the static wall approximation. Ref. [28] corrects for the energy inconsistency to a high

degree of accuracy in the stochastic case by introducing the hopping wall approximation.

The hopping wall approximation assumes wall motion slow enough such that the moving

wall’s position at the bth bounce can be approximated by its position at the (b−1)th bounce,

or by its position at the time of the particle’s collision with the fixed wall just after the
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(b− 1)th bounce. This approximation allows g(tb) in Eq. (68b) to replaced by either g(tb−1)

or g(tb−1 + L/vb−1). An analogous hopping wall approximation for two dimensions is pre-

sented in [29]. Like the static wall approximation, the hopping wall approximation eliminates

the implicit equations for the time between collisions, which eases numerical and analytical

study. Based on the hopping wall approximation’s more accurate asymptotic energy growth

rate, Karlis et al. conclude in Refs. [28, 29] that the energy discrepancy between the Fermi-

Ulam model and the static wall approximation is due to dynamical correlations induced by

small changes in the free flight time between collisions which are neglected in the static wall

approximation.

Based on the results of this paper, we propose an alternative explanation of the energy

discrepancy. The energy discrepancy is observed because the static wall approximation is

simply unphysical, and it can not accommodate for the fact that, due to the relative mo-

tion between the particles and walls, collisions with inward moving walls are more likely

than collisions with outward moving walls. In fact, defining the quivering billiard without

the flux factor in the biased distribution (so that the biased and unbiased distribution are

equal) reproduces the asymptotic energy growth rate predicted by the stochastic static wall

approximation. Evidently, the last term in Eq. (68b) is responsible for the bias towards

inward moving wall collisions in the exact Fermi-Ulam model, and hopping wall approxima-

tion’s estimate of this term is responsible for its more accurate energy growth rate. Although

the static wall approximation is a mathematically well-defined dynamical system, it is an

ill-posed physical system for the following reasons. If a billiard boundary is truly static such

that (68b) somehow reduces to (69b), then we must have a → 0. But if a → 0, then uc → 0

and the billiard becomes trivially time-independent unless τ → 0 as well. However, if both a

and τ → 0, then u(t) can not be a well-behaved function as required by the definition of the

static wall map, and, as argued in Sec. II, the wall velocity becomes stochastic. This logic

seems to be unavoidable; if the walls are to be genuinely fixed, then physical consistency

demands that the wall motion must be non-existent or stochastic. Based on this reasoning,

we propose the following conjecture: any physically consistent, non-trivial, fixed wall limit

of a time-dependent billiard must be physically equivalent to the quivering limit, and the

corresponding quivering billiard as defined in this paper yields the correct dynamics and

energy growth rate (by physically equivalent, we mean equivalent energy and velocity statis-

tics). Of particular note, corrections to the free flight time between collisions are not needed
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to achieve the correct energy growth rate.

V. EXAMPLES AND NUMERICS

We now give explicit examples of quivering billiards in one and two dimensions and sup-

port the previous sections’ analyses with numerical work. Consider first a one dimensional

Fermi-Ulam model with one wall oscillating at a constant speed. Following the notation of

Sec. II, the position of the moving wall about its mean position is given by

g(t) =











a[−1 + 4Ψ(t)], 0 ≤ Ψ(t) < 1
2

a[1 − 4(Ψ(t)− 1
2
)], 1

2
≤ Ψ(t) < 1,

(70)

and the corresponding wall velocity is given by

u(t) =











4uc, 0 ≤ Ψ(t) < 1
2

−4uc,
1
2
≤ Ψ(t) < 1.

(71)

The numerical analyses of this Fermi-Ulam model are presented in Figs. 3 and 4. The

histograms in Fig. 3 show of the evolution of the energy distribution of 105 particles of mass

m = 1 in a microcanonical ensemble with initial speed v0 = 1 at time t = 0, and the curves

show the analytical solution for this system in the quivering limit as predicted by Eq. (63).

For this simulation, we set L = 1.0, a = 10−5, and τ = 10−2, which gives uc = 10−3.

We see good agreement, with some small deviation apparent beginning at t = 5000. We

suspect that the deviation is due to the faster particles interacting with the elliptic islands

in phase space, which is not accounted for in the quivering billiard. By the time t = 15000,

a sufficient number of the particles have gained enough energy such that the system is no

longer approximately quivering. Further energy gain is stunted by elliptic islands, so we see

an excess of probability (an excess relative to the quivering billiard energy distribution) begin

to build up at low energies. Figure 4 shows the same Fermi-Ulam model, with uc = 10−3, for

successively smaller and smaller values of a and τ at time t = 5000. As a becomes smaller,

we see the actual energy distribution converge to the distribution predicted by the quivering

billiard.

The quivering limit of the Fermi-Ulam model given in Eqs. (70) and (71) is found by

following the procedures described in Sec. II. We first obtain the unbiased distribution,

P (ub|0) =
1

2
δ(ub − 4uc) +

1

2
δ(ub + 4uc), (72)
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FIG. 3. (Color online) Energy distribution η(E, t) of 105 particles following the exact Fermi-Ulam

dynamics with small wall oscillation amplitude a = 10−5 at times t = 100, 1000, 5000, and 15000.

The histograms are generated from numerical simulations, and the smooth curve is the analytical

solution Eq. (63) for the energy distribution of a particle ensemble in the corresponding quivering

billiard.
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FIG. 4. (Color online) Energy distribution η(E, t) at t = 5000 of 105 particles following the exact

Fermi-Ulam dynamics for successively smaller wall oscillation amplitudes a. The histograms are

generated from numerical simulations, and the smooth curve is the analytical solution Eq. (63) for

the energy distribution of a particle ensemble in the corresponding quivering billiard. The case for

a = 10−5 is shown in the t = 5000 plot in Fig. 3

and then the biased distribution P (ub|vb−1),

P (ub|vb−1) =











1
2

(

1− ub

vb−1

)

[δ(ub − 4uc) + δ(ub + 4uc)] , vb−1 > 4uc

δ(ub + 4uc), vb−1 ≤ 4uc.
(73)

The drift and diffusion terms corresponding to this quivering billiard are found by following

the procedures Sec. IIID. We note that M2(qb) = 16u2
c for the moving wall, and M2(qb) = 0

for the stationary wall, so Eq. (45) yields u2 = (1/2) 16u2
c. The coarse grained free flight
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FIG. 5. (Color online) Energy distribution η(E, t) of 105 particles at t = 100, 1000, 5000, and

15000 in a quivering billiard corresponding to the quivering limit of the Femi-Ulam model used

in Fig. 3. The histograms are generated from numerical simulations, and the smooth curve is the

analytical solution for the energy distribution given by Eq. (63).

distance is given simply by l = L, so we find

g1(E) =
32
√
2m u2

c

L
E

1
2 = αE

1
2 (74)

g2(E) =
64
√
2m u2

c

L
E

3
2 = 2αE

3
2 .

The drift and diffusion terms are independent of time, so the rescaled time s is simply s = αt.

Using the same values for L, m, and uc the we used in the Fermi-Ulam simulation, we find

α ≈ 4.53×10−5. Figure 5 shows the evolving energy distribution in the simulated quivering

billiard, with the analytical result predicted by Eq. (63) superimposed. Our analytical

solution agrees very well with the numerical simulation.

For pedagogical purposes, we now construct and simulate a two-dimensional quivering

billiard. For the billiard shape, we have chosen the six-circle clover introduced in Ref. [14],

depicted here in Fig. 6. We set the normal wall velocities along the billiard boundary to be,

u(q, t) =











uc|n̂(q) · x̂|, 0 ≤ Ψ(t) < 1
2

−uc|n̂(q) · x̂|, 1
2
≤ Ψ(t) < 1,

(75)

where n̂(q) is the outward unit normal to the wall at q and x̂ is the unit vector in the

x-direction. This choice of wall velocities gives in the quivering limit,

P (ub|0,qb) =
1

2
δ(ub − uc|n̂(qb) · x̂|)+

1

2
δ(ub + uc|n̂(qb) · x̂|) (76)

P (ub|vb−1,qb, θb) =











(

1− ub

vb−1 sin(θ
b
)

)

P (ub|0,qb), vb−1 > uc|n̂(qb) · x̂|

δ(ub + uc|n̂(qb) · x̂|), vb−1 ≤ uc|n̂(qb) · x̂|.
(77)
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FIG. 6. The six-circle clover billiard, constructed from sections of six adjacent equi-radii circles.
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FIG. 7. (Color online) Energy distribution η(E, t) of 105 particles at t = 100, 1000, 5000, and

15000 in a two-dimensional chaotic quivering billiard. The histograms are generated from numerical

simulations, and the smooth curve is the analytical solution for the energy distribution given by

Eq. (63).

The six-circle clover constructed from equi-radii circles is fully chaotic [14], so over time

scales greater than the clover’s ergodic time scale, u2 is just M2(q) averaged uniformly over

the billiard boundary. For any q on the boundary, we have M2(q) = u2
c |n̂(q) · x̂|2, and from

Fig. 6, we see the outward normals n̂(q) are distributed uniformly around a unit circle, so

we have u2 = (1/2) u2
c . The coarse grained free flight distance l, over time scales greater

than the ergodic time scale, is just the billiard’s mean free path. For a two dimensional

ergodic billiard, the mean free path is given by πA/S, where A is the billiard’s area and S

is the billiard’s perimeter [14]. If the radius of the circles used to construct the six-circle

clover is R, then the geometry of Fig. 6 gives A = R2(4
√
3+π) and S = 4πR. We thus have
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for the drift and diffusion coefficients,

g1(E) =
2
√
2m u2

c

l
E

1
2 = αE

1
2 (78)

g2(E) =
8
√
2m u2

c

3 l
E

3
2 =

4

3
αE

3
2 .

where l = R(
√
3 + π/4) is the mean free path.

Figure 7 shows the energy evolution of a microcanonical ensemble of 105 particles in

a quivering clover, with the distribution Eq. (63) superimposed. The particles have mass

m = 1 and initial energy E0 = 1/2. We constructed the clover with circles of radius R = 1

and set uc = 6.35 × 10−3 to give α ≈ 4.53 × 10−5. Again, we see good agreement between

the distribution predicted by Eq. (63) and the simulated energy distribution.

VI. SUMMARY AND CONCLUSIONS

In this work, we have defined a particular fixed wall limit of time-dependent billiards,

the quivering limit, and explored the evolution of particles and ensembles in the resulting

quivering billiards. We have conjectured that any physically consistent, non-trivial, fixed

wall limit of a time-dependent billiard must be physically equivalent to the quivering limit,

and we have shown that the simplifications allowed by a physically consistent fixed wall

limit come at a price: deterministic billiard dynamics become inherently stochastic. Al-

though quivering is an idealized limit of billiard motion, we have shown that for smaller

and smaller oscillation amplitudes and periods, time-dependent billiards become better and

better approximated by quivering billiards. Billiards that quiver or approximately quiver

behave universally; particle energy evolves diffusively, particle ensembles achieve a universal

asymptotic energy distribution, and quadratic Fermi acceleration always occurs, regardless

of a billiard’s dimensionality or frozen dynamics. The mechanism for this quadratic Fermi

acceleration is analogous to a resistive friction-like force, present due to the fluctuations

induced by the erratic wall motion, as described by the fluctuation-dissipation relation in

Eq. (54).

Through this work, we have gained some insight into issues that have been discussed in

the previous literature. Namely, we concluded that in the quivering limit, the quasilinear

approximation is exact, not an approximation. Also, we showed that the often used static

wall approximation fails because it is unphysical and can not take into account the statistical

33



bias towards inward moving wall collisions. Energy gain in the static wall approximation is

a purely mixing effect; unbiased fluctuations in particle velocity produce an average increase

in particle velocity squared, analogous to a Brownian random walk where unbiased fluctua-

tions in position produce an average increase in squared distance from the initial position.

From this observation, and the fact that the static wall approximation gives one half the

asymptotic energy growth rate observed in exact systems, we conclude that in the quivering

limit, half of the average energy gain observed in a time-dependent billiard is due to the

mere presence of fluctuations, and half is due to the fact that energy gaining fluctuations

are more likely than energy losing fluctuations.

We close by acknowledging that we have not given a rigorous mathematical proof show-

ing that deterministic time-dependent billiards become stochastic quivering billiards in the

quivering limit. One possible approach toward such a proof would be to define some sort of

space of time-dependent billiards consisting of systems with different oscillation amplitudes

and periods, define a metric to give some notion of distance in this space, and prove that par-

ticular sequences in this space with successively smaller amplitudes and periods are Cauchy

sequences. One could then determine what properties the space of systems would need to

posses in order to assure that these Cauchy sequences converge to limits, and then study the

limits by studying the sequences that converge to them. Instead of a rigorous mathematical

approach, we have taken a more intuitive approach and have attempted to justify our work

by using physical reasoning and by showing consistency with previous results. We hope that

the evidence is convincing enough to mitigate our mathematical deficiencies.
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Appendix

FIG. 8. Incoming and outgoing particle trajectories at the bth collision location qb in the full and

frozen dynamics, assuming a collision wall velocity ub. The full dynamics trajectory is perturbed

by an angle δθ|ub relative to the frozen dynamics trajectory. nb is the outward normal to the

boundary at qb.

FIG. 9. The geometrical relationship between qb, qb+1|F , and qb+1|ub. qb and qb+1|F denote the

bth and (b + 1)th collision locations in the frozen dynamics, respectively, while qb+1|ub denotes

the (b + 1)th collision location in the full dynamics. nb and nb+1 are the outward normals to the

boundary at qb and qb+1|F , respectively.

Here, we find ‖δqb+1|ub‖, the magnitude of the perturbation to the frozen dynamics

(b + 1)th collision location due to the energy gained or lost at the bth collision in the full

dynamics. In the frozen dynamics, the collision angle θb is equal to the angle of reflection.
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Let θb + δθ|ub be the reflected angle in the full dynamics, assuming a wall velocity of ub at

the bth collision. We denote vb−1 as the incoming particle speed at the bth collision, vT as the

velocity component tangent to the wall, vP as the reflected particle’s velocity component

perpendicular to the wall in the frozen dynamics, and vP |ub as the reflected perpendicular

velocity component in the full dynamics. The collision kinematics give vP |ub = vP − 2ub.

The perturbation δθ|ub can be found using the geometry in Fig. 8. Note that tan(θb) =
vP
vT

and tan(θb + δθ|ub) =
vP |ub

vT
. Expanding tan(θb + δθ|ub) to first order in δθ|ub, we find

tan(θb + δθ|ub) =
vP |ub

vT
(A.1)

= tan(θb) +
1

cos2(θb)
δθ|ub

=
vP
vT

+
1

cos2(θb)
δθ|ub.

Noting that vP |ub = vP − 2ub and vT = vb−1 cos θb, we solve for δθ|ub to find

δθ|ub = 2 cos(θb)
ub

vb−1
. (A.2)

Figure 9 shows the geometry of the bth and (b+1)th collisions in both the full and frozen

dynamics, where ‖δqb+1|ub‖ is the length of the line segment C ′D′. We assume that δθ|ub is

small enough such that the wall appears flat between the frozen and full dynamics’ (b+1)th

collision locations. The triangle A′B′C ′ in Fig. 9 is similar to the triangle ABC in Fig. 8,

so we have |BC|
|AC|

= |B′C′|
|A′C′|

= 2|ub|
vb−1

. We note that |A′C ′| is the distance between the bth and

(b+ 1)th collision locations in the frozen dynamics, so we denote |A′C ′| = Lb|F and find

|B′C ′| = 2|ub|
vb−1

Lb|F . (A.3)

All angles in Fig. 8 can be found in terms of θb, θb+1|F , and δθ|ub. By applying the Law of

Sines to the triangle B′C ′D′, we find

|C ′D′| = 2Lb|F
cos(θb)

sin(θb+1|F )
|ub|
vb−1

. (A.4)

We thus have

‖δqb+1|ub‖ = 2Lb|F
cos(θb)

sin(θb+1|F )
|ub|
vb−1

. (A.5)
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