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We articulate an adaptive and reference-free framework based on the principle of random switching to detect

and control unstable steady states in high-dimensional nonlinear dynamical systems, without requiring any a

priori information about the system or about the target steady state. Starting from an arbitrary initial condition,

a proper control signal finds the nearest unstable steady state adaptively and drives the system to it in finite time,

regardless of the type of the steady state. We develop a mathematical analysis based on fast-slow manifold sep-

aration and Markov chain theory to validate the framework. Numerical demonstration of the control/detection

principle using both classic chaotic systems and models of biological and physical significance is provided.
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I. INTRODUCTION

Controlling nonlinear dynamical systems is a challenging task with applications in many fields. In a real world situation

a mathematical model of the underlying system is not always available, so one must rely on measured data or time series to

realize control. For low-dimensional chaotic systems, the problem of data-based control has largely been solved, thanks to

the seminal contribution of Ott, Grebogi, and Yorke (OGY) [1]. In particular, the OGY methodology enables stabilization of

a chaotic trajectory about one of the infinite number of unstable periodic orbits (UPOs) embedded in the underlying chaotic

invariant set by using small control perturbations. Control of high-dimensional nonlinear systems, however, remains to be an

outstanding problem, due to the many different types of complex behaviors that such systems can exhibit. To achieve control, it

is necessary to determine the target UPO. In the past three decades, various methods to calculate UPOs from system equations

were proposed [2–6]. There has also been a great deal of effort in detecting UPOs based on measured data [7–12]. In most

previous works, detecting UPOs and controlling chaos were done separately.

The goal of our work is to develop a single framework to detect and control unstable steady states (USSs) without requiring

knowledge of the underlying system or the target USS. This problem is particularly relevant to systems biology, where high-

dimensional gene regulatory networks (GRNs) typically possess a number of USSs that are important for system’s functionality.

In fact, USSs in GRNs are closely related to the fundamental concept of biological robustness [13] and have implications, e.g.,

in designing therapeutically effective strategies to treat tumor cells [14–16]. Recently, it was demonstrated experimentally using

synthetic biological circuits that USSs play an essential role in fundamental phenomena such as stochastic cell-fate determina-

tion [17]. From a dynamical point of view, in situations where there are multiple attractors, the stable manifold of an USS is

nothing but the boundary separating distinct basins of attraction. In systems biology, different attractors correspond to distinct

cell fate, e.g., a normal cell or a tumor cell. When a trajectory comes near the stable manifold, any random disturbance can cause

the system to approach a completely different attractor [17], leading to stochastic cell fates. To be able to detect and control the

USS is thus key to engineering and manipulating gene regulatory networks to achieve desired cell fate.

There were methods to stabilize USSs based on proportional feedback control [18–20], which require knowledge about the

mathematical model of the underlying dynamical system. If such information is not available, the precise location of a desired

USS in the phase space would be needed as a reference to enable control. A number of control techniques were proposed, such

as those based derivative feedback, low- or high-pass filters, and delayed feedback. These techniques, when implemented in an

adaptive manner, are capable of locating and stabilizing some particular types of USSs [21–27], but success still relies largely on

information about the USSs, such as the number of real positive eigenvalues of the Jacobian matrix [28] or the type of the USS

(e.g., saddle versus non-saddle type) [28–30]. In real world systems, particularly in dynamical systems of significant biological

and/or physical interest with multistability [17, 31–37], neither the exact models nor the accurate coordinates of the reference

point are known a priori. Developing a model-independent and reference-state free framework to simultaneously detect and

control USSs is thus an outstanding problem with broad interest.

In this paper, we articulate an effective framework based on random switching [38, 39] and adaptive control to precisely locate

unknown USSs in finite time with minimal energy consumption. Our scheme is completely model free and it does not require any

a priori information about any USS in the system. We are able to obtain rigorous mathematical support for the control/detection

framework, and we present numerical demonstration using a classic nonlinear dynamical system, and systems of significant

biological and physical interest, including a high-dimensional GRN and an infinite-dimensional time-delayed system.

In Sec. II, we describe the basic principle of random switching control and develop a mathematical theory using the classic

chaotic Lorenz system as a vehicle to gain insights into detection and control of USSs. In Sec. III, we demonstrate the working of

our random switching framework with examples from physics and biology. In Sec. IV, we present conclusions and discussions.

II. FRAMEWORK OF RANDOM SWITCHING CONTROL

We formulate our control/detection framework for systems described by ẋ = f(x), where the n-dimensional state variable

is x = [x1, . . . , xn]
⊤ ∈ R

n and the smooth vector field is f(x) = [f1(x), . . . , fn(x)]
⊤. The aim is to design a noninvasive

controller u(x) to detect and stabilize any unknown USS, denoted by x∗ = [x∗
1, . . . , x

∗
n]

⊤. The system under control can be

written as

ẋ = f(x) + u(x), (1)

which would converge asymptotically to x∗ such that f(x∗) = 0 and u(x∗) = 0. We choose the following general proportional

feedback controller:

u(x) = K · [y − g(x)], (2)
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where the diagonal matrix K = diag(k1, . . . , kn) characterizes the coupling between the system and the controller, y =
[y1, . . . , yn]

⊤ ∈ R
n represents a reference point of the target USS, and g(x) = [g1(x), . . . , gn(x)]

⊤ is a measurement function

or an output of the controlled system. For a real-world system, it is practically infeasible to control every dynamical variable.

However, as our mathematical analysis below indicates, controlling every component is unnecessary - an appealing feature of

our control scheme. Without loss of generality, we consider the challenging case where only one dynamical variable is subject

to control, i.e., we set the matrix K as ki = k 6= 0 and kj = 0 for j 6= i. To search for any unknown USS, we employ the

following random switching rule to adaptively adjust the reference value yi:

ẏi = ω(t)[gi(x)− yi], (3)

where ω(t) ∈ R is a switching parameter determined by ω(t) = ωσ(t), for t ∈ In , [n∆T, (n+ 1)∆T ) (n = 0, 1, 2, · · · ), ∆T
is the duration of the switching time, and σ(t) in each time interval In can be regarded as a discrete random variable taking its

values from the index set {+,−}. The corresponding probability is

P
{

σ(t) = +
∣

∣ t ∈ In
}

= P
{

σ(t) = −
∣

∣ t ∈ In
}

= 1/2. (4)

We see that ω+ (ω−) takes on positive (negative) values that can be adjusted to yield optimal searching.

To motivate a mathematical analysis of our control/detection framework, we perform a benchmark study using the classic

chaotic Lorenz system [40]: ẋ1 = σ(x2 − x1), ẋ2 = x1(ρ − x3) − x2, and ẋ3 = x1x2 − βx3, for σ = 10, β = 8/3, and

ρ = 28. There are three USSs: one of the saddle type denoted as P1(0, 0, 0), and the other two being focuses denoted as

P2,3

(

±
√

(β(ρ − 1)),±
√

(β(ρ − 1)), ρ− 1
)

, as shown in Fig.1(a). The controlled Lorenz system is

ẋ1 = σ(x2 − x1),
ẋ2 = x1(ρ− x3)− x2 + k(y − x2),
ẋ3 = x1x2 − βx3, and

ẏ = ω(t)(x2 − y),

(5)

where the measurement function is chosen to be g(x) = x2 and the controller k(y − x2) with the coupling strength k2 = k is

introduced into the second variable of the Lorenz system. Figure 1(b) shows the behavior of the controlled system, where one

control realization for each initial condition set is depicted. We see that all USSs can be controlled/detected. Under control, each

USS may be regarded as an “attractor” with a basin. Figure 1(c) shows the approximate distribution of the basin volume for

each USS. According to the recently developed basin stability theory [41, 42], the extensive basin implied in Fig. 1(c) indicates

that the controller is quite robust against perturbation. Moreover, we find that, when the initial condition is chosen from the

interval between P2 and P3, the controlled system will converge to one of the USSs with probability one, and the probability to

converge to a specific USS is inversely proportional to the distance between it and the initial condition. Note that, if the random

variable ω(t) in the controlled Lorenz system is fixed (either ω+ or ω−), our control method reduces to the method based on

deterministic stable or unstable low-pass filters [43]. The results are shown in Figs. 1(d) and 1(e). In this case, however, not all

USSs can be stabilized simultaneously with a single low-pass filter. Intuitively, one might regard our random switching scheme

as some kind of averaging process of the two types of low-pass filtering. However, it is difficult to understand the key feature

of our framework that the probability of convergence to an USS approaches unity. In the following we provide a mathematical

analysis to understand the counterintuitive phenomenon.

First, we note that, in spite of random switching, our adaptive method possesses a fast-slow manifold separation [27], due

to the fact |ω| ≪ k for sufficiently large k. The rate of change in the reference signal y is thus much smaller than that of the

dynamical variable x, and dissipation introduced by the controller will drive the system to a low dimensional subspace. As a

result, starting from an initial condition, within a short time period the controlled system approaches a hypersurface defined by

ẋi = 0 (i = 1, 2, . . . , n). When this occurs, the slow variable y evolves according to Eq. (3) and the controlled variable x

preserves the relation ẋi = 0 (i = 1, 2, . . . , n). On the hypersurface, Eq. (3) becomes

ẏ = ω(t)[h(y)− y], (6)

where h(y) is a smooth function [the index i in Eq. (3) has been omitted for simplicity]. An example of the fast-slow manifold

separation for the controlled Lorenz system is shown in Fig. 2, with the corresponding hypersurface given explicitly by x2−y =
h(y)− y, where y = x2 − [(ρ− 1)x2 − x3

2/β]/k.

Without loss of generality, we assume that the dynamical system on the hypersurface is non-degenerate, i.e., the algebraic

equation h(y)− y = 0 has m distinct roots in the order y∗1 < y∗2 < · · · < y∗m, corresponding to the m USSs in the uncontrolled

system, respectively. In addition, we assume h′(y∗i ) − 1 6= 0 for i = 1, 2, . . . ,m. Now consider an initial condition between

two adjacent fixed points, y∗1 and y∗2 . The non-degeneracy assumption stipulates that the trajectory follows that determined by
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y0 = y(0) ∈ (y∗1 , y
∗
2), where h(y∗1)− y∗1 = h(y∗2)− y∗2 = 0 such that h′(y∗1) > 1 and h′(y∗2) < 1, as illustrated in Fig. 3(a). For

ω(t) ≡ ω+ (ω−), the fixed point y∗2 (y∗1) is attractive. Let y+1, y+2, . . . , y+n, . . . be the system states at each switching instant

n∆T for the case ω(t) ≡ ω+. We have limn→∞ y+n = y∗2 , as shown in Fig. 3(b). Analogously, letting y−1, y−2, . . . , y−n, . . .
be the corresponding states for the case ω(t) ≡ ω−, we have limn→∞ y−n = y∗1 , as shown in Fig. 3(c). In our control scheme,

ω(t) = ωσ(t) switches its value between ω+ and ω− randomly at each time instant n∆T and keeps its value unchanged for the

duration ∆T . As a result, the system state yn = y(n∆T ) takes on its value from the grid yi (i = 0,±1,±2, . . . ) stochastically

with the transition probability

P
(

yn+1 = yi+1

∣

∣ yn = yi
)

= P
(

yn+1 = yi−1

∣

∣ yn = yi
)

= 1/2.
(7)

The dynamics for yn can thus be regarded as a random walk without bounds on a one-dimensional grid.

Typically, the process of stabilizing an unknown USS terminates after several successive switches and the variation of y(t)
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FIG. 1. (Color online) (a) A chaotic attractor of the Lorenz system with three USSs (highlighted). (b) Time series x2(t) of the controlled

Lorenz system starting from different initial conditions. (c) Approximate distributions of the “basin” volumes of the USSs. The probability

of convergence to each USS is calculated using 100 independent control realizations. For the previous method, the time series x2(t) is used:

ω(t) ≡ ω+ (d) and ω(t) ≡ ω− (e), where ω+ = 1, ω− = −1, k = 130, and time window ∆T = 1. The initial conditions are from the

subspace defined by x1(0) = x2(0) = x3(0) = y2(0).
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FIG. 2. (Color online) For the controlled Lorenz system, an example of fast-slow manifold separation, where the dotted line is calculated by

setting ẋ1 = ẋ2 = ẋ3 = 0. Four different trajectories are shown.
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FIG. 3. Schematic illustration of random switching control: (a) function h(y) − y and two neighboring non-degenerated fixed points y∗
1 and

y∗
2 , (b,c) dynamics of the system ẏ = ω(t)[h(y)−y] starting from initial condition y0 for ω(t) ≡ ω+ and ω(t) ≡ ω−, respectively, (d) system

dynamics subject to random switching control ω(t) = ωσ(t), which can effectively be described as a random walk with absorbing boundaries.

is small: var[y(t)] < δ for some given small δ. To obtain a quantitative criterion, we define two stopping regions through two

ǫ-neighborhoods of the fixed points: (y∗1 , y
∗
1 + ǫ) and (y∗2 − ǫ, y∗2), where ǫ is related to δ and the stabilization process stops as

y(t) enters either region. Under this configuration, y(t) becomes a random walk on a finite grid with two absorbing boundaries:

{y−n
−

, . . . , y−1, y0, y+1, . . . , y+n+
}, as shown in Fig. 3(d). Here, n+ = ⌈ T+

∆T
⌉, where T+ is the first time that y(t) enters the

right region (y∗2 − ǫ, y∗2) if ω(t) ≡ ω+, and n− = ⌈ T
−

∆T
⌉ is similarly defined. Using the theory of Markov chains [44], we arrive

at the following lemma, which provides an understanding of the dynamical behaviors of the controlled system.

Lemma. Assume that the system ẏ = ω(t)[h(y) − y] starts from y0, which is selected from the interval between the two

adjacent fixed points y∗1 and y∗2 . Then, (i) this system finally enters one of the absorbing regions of y∗i with probability one, (ii)

the probabilities of absorption for y∗1 and y∗2 are n−/(n+ + n−) and n+/(n+ + n−), respectively, and (iii) starting from y0, the

expected time to the absorption state is n−n+∆T .

TABLE I. Coordinates of the USSs of system (8) and the corresponding estimated errors.

Approximated coordinates of the USSs Error

U1 (0.5, 1.66, 0.03, 0.06, 0.02, 2.53) O(10−4)

U2 (0.5, 0.75, 1.05, 0.38, 1.69, 0.83) O(10−4)

U3 (0.5, 0.19, 1.66, 0.50, 2.69, 0.10) O(10−5)
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FIG. 4. (Color online) Clusters formed in executing random switching control for the cell system (8), where the coupling strength is k2 = 8
and other parameters are ∆T = 10 and ω± = ±1.

III. NUMERICAL EXAMPLES

Network model of hematopoietic stem cells. We first present results of controlling and detecting USSs in a cellular differen-

tiation network model for hematopoietic stem cells [45]:

ẋ1 = eN − x1, ẋ2 =
5x1

1 + x1

1

1 + x4
3

− x2,

ẋ3 =
5x4

1 + x4

1

1 + x4
2

− x3, ẋ4 =
eM

1 + x4
2

− x4,

ẋ5 =

(

x1x4

1 + x1x4
+

4x3

1 + x3

)

1

1 + x4
2

− x5,

ẋ6 =

(

x1x4

1 + x1x4
+

4x2

1 + x2

)

1

1 + x4
3

− x6,

(8)

where x2 and x3 represent the expression levels of two lineage-specific counter-acting suppressors Gfi-1 and Egr(1,2), respec-

tively, they are activated by their transcription factors x1 and x4, and regulate the downstream genes x5 and x6. This model

in fact describes the interplay between the two suppressors during cellular differentiation for neutrophil and macrophage cell

fate choices, which is a paradigmatic model for characterization of USSs in biological networks [46, 47]. Setting parameters

as eM = eN = 0.5, we apply our random switching control to x2, an experimentally accessible dynamical variable [45]. A

representative result is shown in Fig. 4, where 100 independent control runs are carried out and the initial value of x2 is chosen

randomly from the interval [0, 1]. We see that the controlled values of x2 form four clusters, where the convergent points about

the three USSs are indicated as clusters 1-3 and the divergent cases are marked by the dots on the line x2 = 0. Calculating

the center of each cluster of the convergent points, we obtain the approximate locations of the USSs, as listed in Table I, where

U1 and U3 correspond biologically to two cell fate states, and U2 is an unstable intermediate state that separates the two basins

of convergence. The results here agree well with the previous results on the same system [46], obtained using a much more

sophisticated method.

A gene regulatory network. We next present a biophysically detailed GRN model of 16 variables, which was derived to

understand the mechanism of endogenous circadian rhythm in mammalian cells [48]. (The detailed model equations can be

found in Appendix.) Without control, sustained oscillations of period about 24 hours can be observed, as shown in Fig. 5(a).

When switching control is applied to one of the dynamical variables (Mp), we obtain the biologically significant [48] steady

state solution with all components being positive, as shown in Fig. 5(b).

Time-delayed Mackey-Glass system. We also study control-based detection of USS for an infinite dimensional dynamical

system, the time-delayed Mackey-Glass system:

ẋ =
ax(t− τ)

1 + [x(t − τ)]b − cx
, (9)

where τ is the time delay, a, b, and c are parameters. This system was originally proposed to model the dynamics of regeneration

of blood cells [49], and it has been a paradigmatic model for higher-dimensional nonlinear dynamical systems. For example, for
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FIG. 5. (Color online) (a) Dynamics of 3 mRNA in the circadian rhythm model with sustained oscillation. (b) Convergence to the biologically

significant USS with switching control.

τ = 3.18, a = 2, b = 10, and c = 1, the system exhibits hyperchaos with multiple positive Lyapunov exponents [12]. We apply

the following switching control:

ẋ =
ax(t− τ)

1 + [x(t − τ)]b − cx
+K(y − x),

ẏ = ω(t)(x− y), ω(t) = ωσ(t), t ∈ In,
(10)

where K = 10, ω+ = 1, ω− = −1, and ∆T = 5. We obtain three USSs, as shown in Fig. 6.

Coupled mechanical oscillators. To give an example of physical significance, we consider a system of coupled mechanical

oscillators in a parameter regime that exhibits multistability. While a stability analysis of each single oscillator is feasible, to

identify all the steady states of coupled oscillators, stable or unstable, is generally a challenging task. To be concrete, we test a

pair of bidirectionally coupled, dissipation-less Duffing oscillators [50]:

ẋ1 = x2,
ẋ2 = x1 − x3

1 + c1(y1 − x1),
ẏ1 = y2,
ẏ2 = y1 − y31 + c2(x1 − y1),

(11)

where c1,2 are coupling coefficients. A single oscillator, without coupling, is a Hamiltonian system with three equilibria and

various types of periodic orbits, as shown in Fig. 7(a). With weak coupling there are more unstable equilibria and chaos can

arise, as shown in Fig. 7(b). We select x2 and y2 to be the variables to implement random switching control. Because of lack

of damping, an arbitrarily low value for the cutoff frequency is required. To overcome this difficulty, we implement both linear

and derivative feedbacks [21] in the controller, with random switching applied to the linear feedback term only. In total, there

are 9 unstable equilibria. Starting from different initial conditions, the probabilities of convergence to the 9 equilibria are shown

in Fig. 7(c). The multistable nature of the system is indicated in Fig. 7(d).
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FIG. 6. (Color online) For the Mackey-Glass system with different initial conditions x(t) ≡ x0 for t ∈ (−τ, 0), three controlled/detected

USSs.
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IV. DISCUSSIONS AND CONCLUSIONS

To summarize, we articulate a model-independent, random switching control scheme to stabilize and therefore uncover all

USSs, regardless of their type, in high-dimensional dynamical systems. The method is mathematically justified using the concept

of fast-slow manifold separation and the Markov-chain theory, and numerically validated using examples of biological and

physical significance. USSs are particularly important for biological networks, as they are fundamental to phenomena such as

cell fate determination. Our control/detection framework may provide a platform to understand biological systems of current

interest. Also this framework will be potentially useful for investigating similar problems in fractional dynamical systems [51].

There are a number of issues associated with success of control/detection. Firstly, the switching duration ∆T has a direct

effect on control performance. Starting from a random initial condition, from the standpoint of control energy it is desired to find

the nearest USS. According to our Lemma, the probability ratio for a pair of adjacent USSs is n+/n−, where n+ = ⌈T+/∆T ⌉
and n− = ⌈T−/∆T ⌉, and T+ and T− are determined by the distances between the starting position and the respective steady

states. To approximate T+/T− by n+/n−, we need to choose the switching window ∆T as small as possible to minimize the

control energy. However, if ∆T is too small, the expected value of the convergence time, given by n−n+∆T ∼ T−T+/∆T ,

will be large. There is thus a trade-off between control energy and time when choosing the value of ∆T . Secondly, in our

analysis, the dynamical system for y(t) is assumed to be non-degenerate, which is reasonable because a scalar measurement

function g(x) generally preserves the topological property of the USSs [29]. Thirdly, the quantity ω(t) in Eq. (3) is the cutoff

frequency of the low-pass filter [30], so its absolute value should be smaller than the system damping coefficient. The coupling

strength k should be larger than some threshold to stabilize the USSs and to realize the fast-slow manifold separation. To satisfy

the threshold requirement, some adaptive schemes for varying k, e.g., k̇ = σ[g(x)− y], can be considered [52].

To detect USSs and to control the system into a USS are two related issues but they are usually treated separately in the

literature. Our random switching scheme represents a unifying scheme to accomplish both tasks in a single framework. Not
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FIG. 7. (Color online) (a) Dynamics of an uncoupled Duffing oscillator with three equilibria. (b) Chaotic behavior in the weakly coupled

Duffing oscillator system for c1,2 = 0.1. Our control method yields all 9 unstable equilibria, marked as red squares. (c) The probabilities of

convergence to the 9 equilibria. (d) Composition of the subplots in (c), where the surface in (d) corresponds to the highest probability from the

subplots in (c).
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only that, with respect to each task, our scheme has advantages. In fact, our method takes advantages of both stable and unstable

filters, while reducing the computational cost. These features can be argued, as follows.

For detection, our random switching framework requires no a priori information about the system or the USSs. In particular,

compared with the previous proportional or time-delayed feedback control methods [18–20], our method does not require the

position of the steady state; it can find the unknown steady state adaptively. In addition, previous works [21–23, 25–30] showed

that stable filters can detect all USSs of the saddle type, while unstable filters can detect all USSs of the non-saddle type. In order

to detect all USSs, it is necessary to scan through the space of initial conditions twice. However, our random switching scheme

is capable of detecting both saddle and non-saddle types of USSs, requiring searching through the initial condition space only

once.

For control of a nonlinear dynamical system, it is generally desired that the system be driven to the nearest steady state in

finite time but, with a single stable or unstable filter, this would not be possible since the type and the location of the nearest

USS are a priori unknown. In contrast, our random switching scheme can adaptively drive the system to the nearest USS with

high probability, as exemplified in Fig. 1(c), which is mathematically guaranteed (Lemma). Another issue is that, in situation

where there are only saddle type of USSs or only non-saddle type of USSs, a single stable or unstable filter may drive the system

into an irrelevant attractor far away from the desirable working region of the phase space, as shown in Fig.1(e). However, our

scheme typically drives the system to some USS near the initial condition with high probability, thereby avoiding any undesirable

divergence to some distant attractor.
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APPENDIX: A 16-DIMENSIONAL GENE REGULATORY NETWORK

We consider a model for the dynamics of endogenous circadian rhythm in mammalian cells, which consists of 16 kinetic

equations [48]. The equations for the three basic variables, namely, mRNA Per, Cry, and Bmall, are

dMp

dt
= vsP

Bn
N

Kn
AP +Bn

N

− vmP

MP

KmP +MP

− kdmpMP ,

dMC

dt
= vsC

Bn
N

Kn
AC +Bn

N

− vmC

MC

KmC +MC

− kdmcMC ,

dMB

dt
= vsB

Km
IB

Km
IB +Bm

N

− vmB

MB

KmB +MB

− kdmbMB.

There are also 4 variables for phosphorylated and non-phosphorylated proteins PER and CRY in the cytosol, which are

governed by

dPC

dt
= ksPMP − V1P

PC

KP + PC

+ V2P
PCP

Kdp + PCP

+ k4PCC − k3PCCC − kdnPC ,

dCC

dt
= ksCMC − V1C

CC

KP + CC

+ V2C
CCP

Kdp + CCP

+ k4PCC − k3PCCC − kdncCC ,

dPCP

dt
= V1P

PC

Kp + PC

− V2P
PCP

Kdp + PCP

− vdPC

PCP

Kd + PCP

− kdnPCP ,

dCCP

dt
= V1C

CC

Kp + PC

− V2C
CCP

Kdp + CCP

− vdCC

CCP

Kd + CCP

− kdnCCP .
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Next, there are 4 variables/equations for the phosphorylated and non-phosphorylatedPER− CRY complex in the cytosol and

nucleus:

dPCC

dt
= −V1PC

PCC

Kp + PCC

+ V2PC

PCCP

Kdp + PCCP

− k4PCC + k3PCCC + k2PCN

− k1PCC − kdnPCC ,

dPCN

dt
= −V3PC

PCN

Kp + PCN

+ V4PC

PCNP

Kdp + PCNP

− k2PCN + k1PCC − k7BNPCN

+ k8IN − kdnPCN ,

dPCCP

dt
= V1PC

PCC

Kp + PCC

− V2PC

PCCP

Kdp + PCCP

− vdPCC

PCCP

Kd + PCCP

− kdnPCCP ,

dPCNP

dt
= V3PC

PCN

Kp + PCN

− V4PC

PCNP

Kdp + PCNP

− vdPCN

PCNP

Kd + PCNP

− kdnPCNP .

In addition, there are 4 variables/equations for the phosphorylated and non-phosphorylated protein BMAL1 in the cytosol and

nucleus:

dBC

dt
= ksBMB − V1B

BC

Kp +BC

+ V2B
BCP

Kdp +BCP

− k5BC + k6BN − kdnBC ,

dBCP

dt
= V1B

BC

Kp +BC

− V2B
BCP

Kdp +BCP

− vdBC

BCP

Kd +BCP

− kdnBCP ,

dBN

dt
= −V3B

BN

Kp +BN

+ V4B
BNP

Kdp +BNP

+ k5BC − k6BN − k7BNPCN + k8IN

− kdnBN ,

dBNP

dt
= V3B

BN

Kp +BN

− V4B
BNP

Kdp +BNP

− vdBN

BNP

Kd +BNP

− kdnBNP ,

Finally, there is an equation describing the inactive complex between PER− CRY and CLOCK −BMAL1 in the nucleus:

dIN
dt

= −k8IN + k7BNPCN − vdIN
IN

Kd + IN
− kdnIN .

We use the model parameters as in Ref. [48]. Demonstration of successful control to yield the biologically significant USS is

shown in the main text.
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