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Abstract

We investigate the phenomenon of protein induced tubulation of lipid bilayer membranes

within a continuum framework using Monte Carlo simulations coupled with the Widom inser-

tion technique to compute excess chemical potentials. Tubular morphologies are spontaneously

formed when the density and the curvature-field strength of the membrane bound proteins ex-

ceed their respective thresholds and this transition is marked by a sharp drop in the excess

chemical potential. We find that the planar to tubular transition can be described by a micellar

model and that the corresponding free energy barrier increases with increase in the curvature-

field strength, (i.e. of protein-membrane interactions), and also with increase in membrane

tension.
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I. INTRODUCTION

Highly curved membrane structures at the tens-of-nanometers length scale, such as

buds, vesicles, and tubules are essential functional intermediates in cell physiological pro-

cesses. These intermediates are orchestrated by the membrane remodeling activities of a

specialized class of proteins [1–8]. Proteins comprised of Bin-Amphiphysin-Rvs (BAR),

epsin-N-terminal homology (ENTH), and inverted-BAR (IBAR) domains are enriched in

cellular pathways involving traffic and transport in cells [1, 9]. It is shown that these

protein-domains induce membrane curvature on a lipid membrane bilayer [1, 10]; when

multiple proteins are localized to a region, they act cooperatively to induce/ stabilize

the afore mentioned morphologies that are otherwise unstable. Disc-like shapes in the

endoplasmic reticulum has been shown to be stabilized by DP1 (deleted-in-polyposis)

and reticulon class proteins [11], while membrane tubules are induced through ENTH

domains [12], BAR domains [1, 10], dynamin [13], Shiga toxin [14], and other proteins

such as Exo70 [15].

The molecular interaction of a curvature inducing protein with a bilayer membrane

has been extensively studied using all atom and coarse grained simulations for a various

classes of curvature remodeling proteins. These studies can be broadly classified into

those that focus on the properties of the curvature field at the molecular scale [15–18] and

those at focus on their membrane remodeling effects at the mesoscale [19–23]. On the

other hand, at the continuum scale, elasticity based theoretical and computational models

have been used to study membrane remodeling by treating the individual proteins as an

inclusion that modulates the curvature of the membrane surface [24–32]. Conventionally,

the elastic Hamiltonian (see eqn.(1)) governing the energy of the membrane is taken

to be the free energy of the system and in cases where membrane inclusions are also

considered the conformational entropy of these inclusions are accounted for by treating

them as interacting particles with well defined mixing energies [33–38]. However, in the

context of thermodynamics, the true free energy should also account for the entropic

contributions from the membrane degrees of freedom, which would involve explicit free

energy calculations that also account for thermal fluctuations of the system [39]. For

example, an umbrella sampling based coarse grained molecular simulation has been used

to determine the polymerization free energy of BAR domain protein on membranes with
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varying tension [40]. Recently we have introduced a number of free energy methods

derived from chemical physics [41] to delineate the free energy landscapes of membranes

remodeled by curvature inducing proteins [32, 42, 43]. In this article we use some of these

methods to predict the stability of emergent morphologies such as tubules, blebs, and

buds that arise due to the cooperative interactions of the proteins with the membrane.

Two theories based on stability/instability have been advocated to address the role of

cooperativity. Leibler and others [33, 44, 45] have proposed that the presence of these

proteins generates a curvature instability, which drives a morphological transition in the

liposome, the onset of which is related directly to the strength of the induced-curvature

field. The authors have developed an analytical model to describe the boundary that

separates the planar and tubular regions; the boundary depends on factors such as mem-

brane bending rigidity, tension, and induced-field strength. Sorre et. al. [37] presented a

thermodynamic theory (accounting for the protein’s translational entropy on the mem-

brane surface) that quantifies the force acting on a tether pulled from a giant unilamellar

vesicle in the presence of a curvature-coupling protein. However, the theory idealizes the

emergent membrane geometry to be that of a cylinder attached to a flat membrane.

Alternatively, tour-de-force coarse-grained molecular dynamics calculations of mem-

branes decorated with oligomerized networks of ENTH [18], N-BAR [17], and Exo70 [15]

domains have shown that in the presence of these proteins tubular and vesicular mor-

phologies are stable. A similar approach has been used to investigate the effect of protein

aggregation, cooperative interactions, and membrane elasticity [40, 46] on the formation

of highly curved membrane morphologies. The first class of models utilize a continuum

top-down approach to determine regions of curvature instability and have limited capabil-

ities in predicting emergent morphologies. The second class of models utilize a bottom-up

molecular approach to study microscopic mechanisms governing protein oligomerization

and membrane remodeling, but do not directly compare the thermodynamic stabilities of

the planar and tubular states.

Open questions relevant to cell physiology still remain unanswered and include: what

is the nature of the emergent morphological state (cylinder, bud, bleb etc.), and what are

the morphological features at the mesoscale (e.g., protein density and organization, ge-

ometry)? What is the thermodynamic free energy landscape defining these morphological

states and their relative stabilities, the driving forces governing these transitions (e.g.,
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energetic vs. entropic costs of driving membrane curvature)? More significantly, what are

the roles of direct and membrane-mediated cooperative interactions of proteins in defin-

ing the transition free energy landscapes, (e.g., curvature contribution to the chemical

potential determines protein recruitment by which curvature gradients define the driving

force for transport).

Recent experimental work by Shi and Baumgart [47] have brought the focus back to

these questions, where they report a reversible transition between the tubule and planar

states, which is strongly influenced by protein surface density and membrane tension. It

is becoming clear that the precise control of spatial localization and temporal dynamics

of the curvature-inducing proteins is crucial not only to the regulation of membrane-

mediated trafficking such as endocytosis [42], exocytosis [15], but also in cell migration

[48]. The physical microenvironment around a cell such as matrix stiffness and dimen-

sionality will influence the physical variables on the membrane such as membrane stiffness

or tension [49], and will dictate the underlying trafficking and migratory stimuli in such

cells mediated by curvature inducing proteins.

II. METHODS

We address the biophysical challenges discussed above by utilizing a mesoscale compu-

tational model we have developed to describe protein-induced tubulation and combining

it with methods to delineate the free energy landscapes of protein-recruitment and mem-

brane morphological transitions [32, 42, 43]. The core methodology for performing the

simulations and free energy calculations are essentially the same as that reported in [43].

Here, we recapitulate only the essential details and enhancements to the methodology.

A. Continuum model for membrane and protein induced spontaneous curvature

field

Following the approaches in our previous works [32, 42, 43], the membrane is modeled

as a thin elastic sheet, which is discretized into a triangulated mesh with N vertices

and T triangles [50]. The energy of this surface is given by the discretized form of the
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Canham-Helfrich Hamiltonian [51],

H =
N∑

v=1

{κ
2

(C1,v + C2,v −H0,v)
2 + σbare

}
Av. (1)

κ and σbare are the bending rigidity and bare surface tension of the membrane [32, 43].

C1,v and C2,v are the principal curvatures at vertex v, computed as in [50], while Av

denotes the corresponding surface area. Protein induced curvature remodeling effects are

included through the spontaneous curvature field H0,v. If rv denotes the position of vertex

v and Ri denotes the position of protein i, then the effective spontaneous curvature at v,

due to the nP proteins on the surface, is computed as:

H0,v =

nP∑

i=1

C0 exp
(
−(rv −Ri)

2/2ε2
)
. (2)

Both the membrane and protein degrees of freedom evolve through the coupled set of

dynamically triangulated Monte Carlo moves described in [43]. There is no explicit inter-

action between protein fields besides a self avoidance potential that prevents two protein

fields being localized to the same vertex of the triangulated surface. All other protein

interactions are mediated through the Helfrich Hamiltonian. The results presented here

are for a membrane surface with N = 900 vertices, κ = 20kBT and σbare = 0. In our

previous work [43], we had noted that this model predicts a tubulation transition. In the

following discussion, we present our analysis of the tubulation transitions as a function of

the magnitude of the spontaneous curvature (C0), its variance (ε2), the number of proteins

on the membrane (nP ) and the excess area of the membrane (A/Ap) —defined as the ratio

of the curvilinear area (A) to its projection onto the x− y plane (Ap). All curvatures are

presented in units of a−1
0 with a0 = 10nm. The choice of the model parameters includ-

ing their method of estimation and justification is based on experimental data, and the

computational details regarding the simulations are available in our previous work [43].

B. Inhomogeneous Widom insertion

The behavior of the remodeled membrane is quantified in terms of the excess chem-

ical potential µex for nP protein-fields and is computed using the Widom field insertion

technique [43] as
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µex = −kBT ln

∫ 〈
e−β∆H〉

M
P(sM+1)dsM+1. (3)

Here ∆H = H (M + 1) −H (M) where M denotes the number of proteins on the mem-

brane, sM denotes the corresponding conformational space of the system and P is the

probability density to add the M + 1th protein field at site sM+1 which is taken to be uni-

form. The excess chemical potential in eqn. (3) is an average value which corresponds to

the chemical potential measured in bulk, while the same formulation can also be extended

to systems with spatially varying density [41]. In this article, we extend the simulation

methodology from [43] to compute spatially dependent excess chemical potentials. If r

denotes a state point in the configurational phase space, µex(r) its chemical potential, and

∆H(r) the energy change at r due to the insertion of the (M + 1)th protein at any point

on the membrane, then the spatially varying excess chemical is given by

µex(r) = −kBT ln

∫ 〈
e−β∆H(r)

〉
M
P(sM+1)dsM+1. (4)

In this study, r is binned (histogrammed) based on the values of the mean curvature

at different spatial locations, Hv = (C1,v + C2,v)/2, at each vertex v where the test-

protein-field is inserted. The tubular regions on the membrane are identified based on

the bimodal distribution in the histograms of mean curvature, as described in Sec. III. In

order to achieve adequate sampling for inhomogeneous Widom insertion calculations, each

membrane simulations are run for at least 3 million Monte Carlo steps. Data for Widom

test-field-insertion is collected only during the production phase which corresponds to

the second half of the simulation (i.e. the last 1.5 million MC steps) in order to ensure

membrane equilibration. In specific, the test-protein-field is inserted every 100 MC steps

at randomly chosen spatial locations (here we have limited the maximum number of

locations to 20) with the value of exp(−β∆H(r)) being recorded for every insertion move.

The reported values of the error bars in µex correspond to the standard deviation computed

over four replicate ensembles.

C. Computing membrane tension from the undulation spectrum

A planar membrane is characterized by the extensive variables entropy (S), surface

area (A), projected area (AP ), and the number of protein fields (nP ). If γ is the tension
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due to the frame (also called the frame tension), µm is the chemical potential of the

membrane, µ is the chemical potential of the protein field, and T is the temperature, then

at constant projected area (Ap) the suitable thermodynamic potential is given by,

dF (N, nP , σ, Ap, T ) = µmdN + µdnP − Adσ + γdAp − SdT. (5)

In this ensemble we initialize the system with set values of N , nP , AP , and T . The

surface tension σ represents the renormalized tension which can be estimated through the

fluctuation spectrum analysis discussed below.

The membrane is initialized in a 30 by 30 hexagonal lattice with a link length, l, which

can vary within the range of self avoidance constraints a0 and
√

3a0. The initial link length

sets the membrane projected area according to Ap = 900(la0)2
√

3/2. Upon equilibration,

thermal undulations tend to increase the curvilinear area of the membrane (i.e. A ≥ Ap)

and this defines an excess area reservoir which is dependent on the value of l. Hence, the

entropic tension depends on the value of the excess area reservoir, A/Ap, which can be

measured by analyzing the power spectrum of membrane undulations [43]. In the absence

of any spontaneous curvature field the power spectrum is given by,

kBT = 〈hqh−q〉Ap
[
κq4 + σq2

]
. (6)

Eqn. (6) can be used to measure the renormalization behavior of κ and σ as a function

of A/Ap as discussed in [43]. However, this simple relationship does not hold for a mem-

brane with nP > 0. In such a scenario the contributions from the spontaneous curvature

fields to the power spectrum should also be accounted for. The power spectrum which

incorporates the effect of the protein spontaneous curvature fields has been previously

derived in Ref. [43] and is given by,

〈H〉 =
Ap
2

∑

~q

∑

~q′

{[q2q′
2〈hqhq′〉 − q2〈hqh0,q′〉

− q′2〈h0,qhq′〉+ 〈h0,qh0,q′〉]κq+q′ + qq′ [〈hqhq′〉]σq+q′}. (7)

Here q and q′ correspond to two independent modes which are coupled to each other

through the elastic parameters κq+q′ and σq+q′ which represent the mode specific bending

rigidity and tension. h0,q is the Fourier transform of the spontaneous curvature field H0(r).

While this formalism for carrying out the fluctuation spectrum analysis in the presence
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of a finite number of non-zero curvature fields was presented in [43], its practical utility

was not demonstrated. Here we apply this formalism and show that it can be utilized to

compute the renormalized values of κ and σ in the presence of spontaneous curvature.

For a homogeneous distribution of κ and σ, κq+q′ = κδq,q′ and σq+q′ = σδq,q′ and eqn. (7)

reduces to

〈H〉 =
Ap
2

∑

~q

{[q4〈h2
q〉 − q2〈hqh0,q〉 − q2〈h0,qhq〉 + 〈h2

0,q〉]κ + q2 〈h2
q〉σ}. (8)

Each of the modes obey equipartition and hence the relation for the power spectrum in

terms of the various Fourier modes is given by

kBT = Ap{[q4〈h2
q〉 − q2〈hqh0,q〉 − q2〈h0,qhq〉 + 〈h2

0,q〉]κ + q2 〈h2
q〉σ}. (9)

The renormalized values of κ and σ, in the presence of spontaneous curvature inducing

protein fields, can be determined through a nonlinear fit of eqn.(9).

III. RESULTS AND DISCUSSION

A. Tubulation and bimodal distribution of membrane mean curvature

A membrane surface can display a number of equilibrium shapes that depend on the

bending stiffness, excess area, and the number of curvature inducing proteins on its sur-

face. Snapshots of the various conformations of a membrane with κ = 20 kBT as a

function of A/Ap and nP are shown in Fig. 1. It can be seen that the equilibrium shapes

vary between smooth planar conformations, for small A/Ap or nP , and rough protrusions

for large A/Ap or nP .

In our simulations, a tubule is a protrusion above the mean surface of the membrane,

as observed in Fig. 1. The tubulation transition itself is marked by the onset of a bimodal

distribution of the mean curvature, P (H), as depicted in Fig. 2 for κ = 20 kBT , A/Ap =

1.029, for two protein concentrations nP = 0 and 14 with C0 = 0.8a−1
0 . The characteristic

peaks at H = 0 and H > 0.5 seen for nP = 14 correspond to planar and tubular regions,

respectively, and the peak at higher mean curvatures is not observed for dilute protein

concentrations (data shown for nP = 0). Furthermore, Figs. 3(a-d) show the distribution

of mean curvature as a function of C0, nP , ε2, and A/Ap respectively. It is evident that
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FIG. 1. (color online). Representative snapshots of equilibrium membrane morphologies as

a function of nP and A/Ap. The membrane surfaces are colored based on the value of H0,v

(expressed in units of a−1
0 ) —an isolated Gaussian bump represents an individual protein field

while tubules, formed by the aggregation of multiple protein fields, are seen as sharp protrusions.

All protein fields shown have the parameters C0 = 0.8 a−1
0 and ε2 = 6.3 a2

0.

the tubulation transition is a function of the various parameters that characterize the

membrane-protein system. In Fig. 3, the absence of a bimodal distribution indicates that

the curvature remodeling effects are not strong enough to stabilize tubular structures,

and collectively the results indicate that the tubulation transition occurs only above a

threshold protein concentration, which is strongly influenced by both the characteristics

of the protein field — given by C0, ε
2 — and by the excess membrane area, A/Ap.

�0.5 0.0 0.5 1.0
H

10�4

10�3

10�2

10�1

P
(H

)

(a) (b)

tubules

nP = 0

nP = 14

planar region

single proteintubule

FIG. 2. (color online) a) Probability density of the membrane mean curvature for two protein

concentrations, nP = 0 and 14, for a protein field with C0 = 0.8 and ε2 = 6.3. b) Snapshot

corresponding to the membrane with nP = 14, that clearly illustrates co-existing planar and

tubular regions on the membrane.

The curvature distribution P (H) is a useful marker of tubulation, but can only be used

unambiguously when a large number of tubules are present. Also, its ability to predict the
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FIG. 3. (color online). Histograms of mean curvature for simulations with: (a) a range of

peak spontaneous curvatures C0, (b) several protein concentrations nP , (c) a range of curvature

field extents ε2, and (d) several different membrane excess areas A/Ap. All panels have the

parameters C0 = 0.8a−1
0 , ε2 = 6.3a2

0, nP = 14, and A/Ap = 1.029 unless otherwise stated. Mean

curvature cutoff of 0.5a−1
0 shown as vertical dotted line.

tubulation boundary is limited when non-tubular structures such as blebs, buds, etc. are

present. This is evident from examining the P (H) versus nP , as shown in Fig. 3(b); though

P (H) shows a clear bimodal distribution only above nP = 12, the protrusions appear even

for nP = 10, but the mode at larger values of H does not appear since these structures are

not persistent. Hence, to faithfully resolve the transition boundary, we have computed the

excess chemical potential, in order to quantify the nature of membrane tubule formation

induced by curvature remodeling proteins.

B. Excess chemical potentials as markers of tubulation

In particular, we utilize the inhomogeneous Widom insertion technique (described in

Sec. II B), which for our purpose involves the computation of three different excess chem-

ical potentials, namely: (a) µex in the entire system, (b) µexp in spatial regions where

H < 0.5, and (c) µext corresponding to the tubular regions, i.e. for regions with H ≥ 0.5.

The thresholds are consistent with (and derived from) the cutoff value (H = 0.5) that

separates the two modes in the P (H) distributions, see Fig. 3.

The equilibrium chemical potential µex as a function of nP , for protein induced curva-

ture field-strength of C0 = 0.8a−1
0 and ε2 = 6.3a2

0, for different values of the membrane
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FIG. 4. (color online). The various excess chemical potentials as a function of nP , for four values

of A/Ap. For each value of A/Ap, filled symbols with error bars denote µex, open symbols with

dotted lines represent µext , and solid lines correspond to µexp .

excess area is shown in Fig. 4. Shown alongside are the corresponding values of the excess

chemical potentials: planar region µexp vs. tubular region µext . We note that in an inho-

mogeneous phase showing spatial variation of density, the total chemical potential µ is a

constant, which is the sum of µex, which strongly depends on the underlying curvature at

a given location and µid(ρ), which depends on the density at the location. When nP < 5

the total excess chemical potential µex is indistinguishable from the chemical potential

obtained from the planar region µexp , as is clearly seen for the case of A/Ap = 1.029.

However, at the onset of tubulation where µext is well defined, µex is slaved to the values

of µext . This relation holds for all parameter values that can induce membrane tubules,

and this is shown for a range of C0, ε2, and A/Ap in Fig. 5.

The similarity in the values of µex (the excess chemical potential in bulk) and µext

(the excess chemical potential in the tubular region) indicates the presence of a strong

thermodynamic driving force to form tubulated regions on the membrane. The transition

behavior shows a bifurcation in the excess chemical potential versus density plane, and

the transition point for a given field-strength of curvature induction is a function of the

membrane excess area, A/Ap. As nP increases in the build-up to the transition µex

increases owing to repulsion between the protein fields. However, beyond the transition

point µex, µexp , and µext decrease. The observed decrease in µext in the tubular phase reflects

that fact that the curvature contribution to µex from the large mean curvatures of the

tubule dominates the free energy contribution. That the µexp for the planar phase also
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FIG. 5. (color online). Plot of the excess chemical potential vs protein number for a range of

both C0 and ε2 for several initial excess areas. Solid lines with correspond to µexp while points

with error bars correspond to µex. Panels a,c, and e depict data for a range C0 with ε2 = 6.3 a2
0

and corresponding excess areas (a) A/Ap = 1.013, (c) A/Ap = 1.016, and (e) A/Ap = 1.029.

Panels b,d, and f depict data for a range ε2 with C0 = 0.8 a−1
0 and corresponding excess areas

(b) A/Ap = 1.013, (d) A/Ap = 1.016, and (f) A/Ap = 1.029. The values of µext are similar to

that of µex and hence are not shown for clarity.

drops (albeit by a much smaller amount relative to its value prior to the transition) is a

reflection of the fact that the average density of the protein-fields in the planar region is a

constant and lower than the protein density just prior to the transition. This observation

can be rationalized by the fact that post-transition, addition of new protein fields results

in their incorporation in the tubular phase keeping the density in the planar phase at a

constant value, (see Fig. 4). That the fluctuations in the µex values are higher at the

transition region and are considerably lower pre- and post- transition along the nP axis

has to do with sampling rather than any onset of criticality. This is reconciled through the

P (H) distributions which show metastability in the free energy landscape of the planar

versus tubule phases, which is a not feature of a first-order-like transition. Moreover, as

we discuss below, the transition we observe in the model is a state transition (akin to a

micellar transition), and several features in our results outlined in Fig. 4 are in striking
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agreement with analogous behavior reported for micellar systems.

C. Membrane tubulation and its analogy to micellization

The thermodynamics of tubule formation can be related to a critical aggregation con-

centration nP,∗, analogous to a critical micelle concentration (CMC). An important pa-

rameter in micelle formation is the critical micelle number, or the number of surfactants in

each micelle. For tubule formation, this number is analogous to the number of membrane

proteins in each tubule. In our coarse-grained model for membranes, a single protein field

represents ζ protein units and hence the absolute number of proteins within each tubule

is given by Nppt = npptζ, where nppt is the number of coarse-grained protein fields in the

tubular region. nppt as a function of the total number of coarse-grained proteins, nP ,

for four different membrane excess areas, is shown in Fig.6(d). It can be seen that nppt

saturates to approximately 4, for all values of nP above a critical aggregation number nP,∗

whose value in turn depends on the elastic properties of the membrane and the parameters

characterizing the protein field.

In the classic analysis of micellar self-assembly [52, 53] the total surfactant concentra-

tion (ctot) is expressed in terms of the monomer concentration (c1) and the concentration

of an aggregate containing M surfactant molecules (cM) as,

ctot = c1 +McM (10)

≡ c1

(
1 +McM−1

1

(
exp

(
Mβ(µ0

1 − µ0
M)
)))

,

with (µ0
1 − µ0

M) being the chemical potential difference between the monomer state and

the aggregate.

In analogy, the proteins in the planar and tubular regions on the membrane correspond

to the monomers and aggregates respectively. Thus following eqn. (11), the equations gov-

erning the partitioning of proteins between the planar and tubular states can be rewritten

in terms of the protein numbers as

ζnP = ζn1 + ζnpptnN , (11)

with,

nN = (ζn1)ζnppt
(
exp

(
ζnpptβ(µexp − µext )

))
. (12)
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n1 is the number of protein fields in the planar phase (analogous to c1), nN is the

number of tubes each containing ζnppt proteins (analogous to the concentration of micelles

cM), and ζnpptnN is the total number of proteins partitioned into the tubular phase.

At the critical number of protein fields (nP,∗) that promotes membrane tubulation (see

discussions by Nelson [53]),

nP = nP,∗ and n1 = npptnN = nP,∗/2. (13)

Using eqns. (12) and (13) in eqn. (11) we obtain,

ζnppt exp
(
βζnppt

(
µexp − µext

))
=

(
ζnP,∗

2

)(1−ζnppt)

. (14)

Thus, the number of protein fields in the planar and tubular regions are related through

the equation,

nP = n1

(
1 +

(
2n1

nP,∗

)Nppt−1
)
. (15)

Notice that despite being a coarse-grained model the number of coarse grained protein

fields in the planar phase is related to the total number of proteins through the coarse

graining parameter, ζ, which appears in the exponent of eqn. (15) on the right hand

side. ζ, as will be shown later, can be determined either by fitting the observed values

of n1 to eqn. (15) or by analyzing how the critical protein density varies as a function of

membrane tension, as shown in Fig. 10 — our scaling analysis yields a value for ζ = 10.

Incidentally, this value of ζ shows an excellent fit of eqn. (15) to our simulation data as

shown in Fig. 7b. Methods to calculate the protein numbers in the planar and tubular

regions are described below.

In order to compare the tubulation behavior in our simulations with eqn. (15), n1, nN

and nppt were calculated using a clustering algorithm with a mean curvature cutoff of

H = 0.5 a−1
0 , similar to the cutoff used in inhomogeneous Widom insertion. The values of

n1, nN and nppt, along with the number of vertices constituting a tube nvpt are shown in

Fig. 6. All reported data are averaged over four independent ensembles each containing

150 uncorrelated membrane conformations.

The distinction between a phase transition in a finite system versus a state transition

resulting in finite sized assemblies can be made by recognizing that the former would

produce an ordered phase whose extent will span the size of the system. However, given
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FIG. 6. (color online). Plot of several different tube statistics including a) the average number of

tubes at each concentration for several excess areas (ntubes), b) the average number of vertices per

tubule (nvpt), c) the average number of monomers (n1) and oligomers (npptnN ) in simulation

where monomers represent all proteins on the basal part of the membrane (closed symbols),

and the n-mers represent all proteins in tubules (open symbols), and d) the average number

of proteins per tubule (nppt). The legends in the panels correspond to four different values of

A/Ap.

that µex in the tubular phase is flat with increasing nP , following Israelachvili’s argu-

ment [52], multiple tubes of short (finite) lengths are entropically more favored rather

than a single long tube, for which µex versus nP should decrease monotonically post tran-

sition. The total number of proteins partitioned into the planar (n1) and the tubular

(npptnN) regions, computed for a membrane with A/Ap = 1.016, C0 = 0.8, and ε2 = 6.3,

are shown in Fig. 7; at the onset of tubulation, n1 saturates and the number of proteins

in the tubular regions increases linearly. A closer inspection of the tubule statistics (see

Fig. 6) reveals that with increasing nP , the number of protein per tube remains fixed with

nppt ≈ 4, while the number of tubes nN increases. These observations are characteristic

of a micellization like transition and this is further evidenced in Fig. 7 where our data

shows excellent agreement with the predictions of the micellar model. We rule out the

possibility that the flat behavior of µex versus nP is an artifact of our ensemble of holding

Ap fixed rather than maintaining a constant tension because the absolute value of the

µex of the tubular phase remains at a constant value for all values of nP post transition

for systems with different Ap. Beyond providing insight into how the thermodynamic

stability of the tubular phase is impacted by the independent variables nP and Ap, our
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results show that threshold density (the value of ncritP ) that marks the onset of the tubular

transition shifts to larger values with a decrease in the excess area A/Ap, which clearly

implies that membrane tension σ has a predominant effect on the transition.
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FIG. 7. (color online). (a) The various excess chemical potentials as a function of nP , for

A/Ap=1.016, C0 = 0.8, and ε2 = 6.3. The filled symbols with error bars denote µex, open

symbols with dotted lines represent µext , and solid lines correspond to µexp . (b) Total number

of protein fields in the planar (n1) and tubular (npptnN ) regions as a function of nP . nppt

corresponds to the average number of protein fields per tubule. The solid and dashed black lines

are the analytical fits to the micelle model described in eqn. (15).

D. Estimating membrane tension at tubulation

The membrane tension at the point of tubulation is an experimentally measurable

quantity and the computational results can be compared to experiments if the tension

at tubulation can be estimated accurately. As pointed out in Sec. II C the renormalized

tension for planar membranes can be computed by analyzing their undulation spectrum.

However, in the case of membranes with spontaneous curvature field, the long wavelength
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modes (i.e. small q) would violate equipartition if the conventional scaling relation given

in eqn. (6) is used. Hence, we explicitly take the contributions from the spontaneous

curvature field into account and estimate σ using eqn. (9). A comparison of the equipar-

tition relation for the best estimate of σ determined using eqn. (6) and eqn. (9) is shown

in Fig. 8, for a membrane with κ = 20 kBT , A/Ap = 1.029 and nP = 12. It can be

seen that the equipartition is better satisfied when the latter relation is used. The values

of σ, estimated using eqn. (9), as a function of nP for various values of A/Ap can be

found in the Appendix A. σ∗, the tension at tubulation is taken to be the value of mem-

brane tension at the tubulation point, where the chemical potentials satisfy the condition

µexp − µext ≥ µex. The membrane tension at the tubulation point as a function of A/Ap

for spontaneous curvature field with C0 = 0.8 is shown in Fig. 9 and we observe that the

tension for tubulation decreases with increasing excess area.
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FIG. 8. (Color Online). Plots of the right hand sides eqn. (6) and eqn. (9), obtained by

non-linear fitting procedures as a function of q. Data shown correspond to fits with a bin size

of 0.02 and a maximum q of 2, from a tubulated membrane corresponding to κ = 20 kBT ,

A/Ap = 1.029, and nP = 12.

E. Comparison of tension at tubulation to experiments

We test our model predictions against the critical tubulation density for endophilins

reported by Shi and Baumgart [47]. Since, curvature-fields renormalize the values of

σ, for a given A the tension will depend on nP and differ from its value at nP = 0,

we first develop a quantitative relationship between membrane area A and membrane
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FIG. 9. (color online) Plot of σ∗, the membrane tension at tubulation as a function of A/Ap for

a membrane with C0 = 0.8 a−1
0 .

tension σ. In order to consider the effect of protein fields on renormalizing the tension

values, we implement the modified fluctuation analysis method described in Sec. II C. The

computed values of the critical tension, σ∗ versus tubulation density are shown alongside

the experimental data in Fig. 10. In order to make a direct comparison with experimental

data, we self consistently determine the length scale a0 by matching tubule diameters

obtained in simulations to that in experiments [12, 54, 55], which yields values of a0 in

the range 6 to 10 nm. In turn, a0 can be used to determine the corresponding protein

density in our simulations, where each protein field is a coarse grained representation of ζ

proteins, where ζ ≥ 1 can be regarded as the oligomerization number of protein domains

needed to establish a stable curvature field. Estimated protein concentrations match

those in experiments when the oligomerization parameter ζ ≈ 10 and we observe that the

computed values of σ∗, for all values of a0, are in good quantitative agreement with those

measured from experiments. This estimate of ζ also matches extremely well with the

value of the coarse grained parameter obtained through the micellar model, previously

shown in Fig. 7(b).

In addition to A/Ap (or membrane tension σ), both curvature field parameters C0 and

ε2 can also impact the onset of tubulation, as shown in Fig. 5, (see also Tables I and II

in Appendix B). For weakly curving protein fields C0 < 0.6, µex shows a monotonic in-

crease for the range 0 < nP < 30, implying the absence of a tubulation transition in this

regime. In contrast, when C0 > 0.6, µex displays the characteristic pitch-fork signature

of tubulation, with the onset occurring at lower values of nP with for both C0 = 0.7 and

19



0 3000 6000 9000

protein concentration
(
µm−2

)
0.00

0.05

0.10

0.15

0.20

0.25

σ
∗ (

m
N

/m
)

a0 = 10 nm(simulations)

a0 = 8 nm(simulations)

a0 = 6 nm(simulations)

Shi et. al. [10] (exp)

FIG. 10. (color online). Comparison of experimental (filled symbols) [47] and simulation data

(open symbols) for the averaged membrane tension and protein concentration at the point of

tubulation. Simulation data are shown for three different values of the length scale a0. In

simulations, the protein concentration is calculated as ζncritP /Ap, where the coarse graining

parameter ζ ≈ 10.

0.8. The critical tubulation density, however, remains unaltered with change in the value

of ε2, see Fig. 5. Complementary to the critical tubulation density, (ncritP ), we can esti-

mate the saturation density of the proteins on the bilayer (ρmax) using the relationship,

ρmax ∝ exp (−µmax/kBT ) [56], where µmax is the value of the excess chemical poten-

tial just prior to tubulation; the values of µmax for different C0, ε
2, A/Ap are provided in

Fig. 5, (see also Tables I and II in Appendix B). Based on our results, we find that ρmax

and ncritP both decrease with increasing C0. Hence, proteins inducing a strong curvature

field, can induce a morphological transition at lower densities, but also experience higher

membrane-curvature mediated repulsive interactions, which limits their coverage on the

membrane. The trends for ncritP and ρmax versus C0 as gleaned from our computed excess

chemical potential landscape are currently being tested in experiments tracking membrane

tubulation in three different protein systems. This predictive ability extends the utility

of our model/simulations in defining the mechanisms of subtle yet important morpho-

logical transitions in soft biological systems, in delineating the thermodynamic stability

of the underlying states; it further shows that the approach can be used to guide new

experiments. We advocate that this thermodynamic description at the microscopic reso-

lution discussed here will significantly impact and inform cellular mechanisms (including

dynamics) mediated by emergent membrane morphologies driving intracellular trafficking
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and cell motility [57].
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Appendix A: Renormalization of tension with protein number

As described before the renormalized values of κ and σ, in the presence of spontaneous

curvature inducing protein fields, can be determined through a nonlinear fit of eqn.(9).

Figs. 11a and 11b show the values of κ and σ, estimated using eqn.(9), as a function

of protein field number for several excess areas. Since the Monge-Gauge approximation

is valid only for small deformations we limit our analysis only to the planar regions on

the membrane—in case of membranes with tubules these regions are neglected. It can be

seen in Fig. 11b that the presence of proteins alters the in-plane undulatory modes of the

membrane which is evidenced by an increase in the renormalized tension with increase in

protein number. As expected, the excess area and membrane tension are inversely related

with the membrane sustaining high tension when the excess area reservoir is small and

vice-versa, as shown in Fig. 11b. Furthermore, we also observe that tensed membranes can

be stabilized when the protein concentration is high and vice-versa. On the other hand,

our analysis shows that the membrane softens (i.e. κ decreases) either with increase in

excess area or protein concentration, which is shown in Fig. 11a. The value of tension at

tubulation (σ∗), defined as the tension of a membrane when µexp −µext ≥ µex, points to the

fact that the membrane requires a critical excess area for tubulation transitions to occur.

This can be seen in Fig. 9 which shows the divergence of σ∗ at smaller values of A/Ap.
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FIG. 11. (color online). Plot of the values of (a) κ and (b) σ obtained by nonlinear fitting of

the complex spectrum eqn. (9) with tubules removed. A bin size of 0.02 in q and a maximum q

of 1 were used for these fits.

Appendix B: 〈µexp − µext 〉 dependence curvature field parameters

The critical density for tubulation shows a dependence on both membrane tension, and

the curvature field parameters C0 and ε2. Plots of the various chemical potentials, µex,

µexp , and µext , as a function of C0, ε2 and A/Ap are shown in Fig. 5. The critical number

of protein fields required to stabilize membrane regions with mean curvatures above the

cutoff value of H > 0.5a−1
0 is a strong function of C0 and ε2. It should be noted that

depending on the value of C0, the regions corresponding to H > 0.5a−1
0 can either be blebs

(a spherical bud) or tubules, with the former being predominant for C0 ≈ 0.6a−1
0 and the

latter being stable for C0 ≥ 0.8a−1
0 (see [58]). The formation of regions with curvatures

above the cutoff is accompanied by a drop in the value of chemical potential µex as seen in

all the panels in Fig. 5. The scaling of µex preceding tubulation is consistent with earlier

results reported in Tourdot et. al. [43].

The excess chemical potential µex increases with increase in nP and peaks at nP = ncritP ,
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with peak value µmax. The critical number of protein fields required to form blebs or tubes

is taken to be the value of nP = ncritP at which this drop occurs. However, the values of

ncritP can be also determined by analyzing the behavior of the various chemical potentials.

We take ncritP to be the minimum value of nP at which the chemical potentials obey

the relation µexp − µext > µex. Tables. I and II show the values of the various chemical

potentials and critical protein number for various systems shown in Fig. 5.

The Widom insertion technique gives reliable estimates for the chemical potentials

for a wide range of parameters characterizing the membrane-protein system especially

when the mean curvature distributions, P (H), show a broad distribution whose range is

much greater than C0/2. It should be noted that when a protein field with spontaneous

curvature C0 is inserted on a membrane surface the dominant contributions to µex come

from membrane regions with 2H ≈ C0.

Hence, in analyzing the effects of C0 and ε2 on the morphological transitions, we only

consider values of A/Ap > 1.013, which clearly satisfy this criterion for P (H), see Tables. I

and II, for our results.
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TABLE I. Values of µmax, µexp − µext , and ncritp as a function of C0 and A/Ap for fixed value

of ε2 = 6.3a2
0. Values of (-) represent parameters where no tubules were observed or less than

three values were obtained to in order calculate the corresponding standard deviation.

C0 〈µexp − µext 〉nP>n
crit
P

µmax ncritP

A/Ap (units of a−1
0 ) (units of kBT ) (units of kBT ) (±1)

1.029

0.5 11.7 ± 3.0 9.8 ± 6.6 14

0.6 17.2 ± 4.8 16.0 ± 5.6 15

0.7 24.5 ± 3.9 19.5 ± 7.5 5

0.8 28.5 ± 3.2 41.7 ± 3.9 6

1.016

0.5 14.1 ± 3.1 26.4 ± 1.5 22

0.6 23.2 ± 3.1 33.5 ± 6.3 16

0.7 24.2 ± 4.3 34.8 ± 2.2 15

0.8 29.3 ± 3.6 72.8 ± 3.9 15

1.013

0.5 - - -

0.6 28.9 ± - 46.1 ± 6.7 24

0.7 25.0 ± 6.0 44.3 ± 2.0 18

0.8 51.4 ± 3.8 80.4 ± 1.2 22
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TABLE II. Values of µmax, µexp − µext , and ncritp as a function of ε2 and A/Ap for fixed value of

C0 = 0.8a−1
0 . Values of (-) represent parameters where no tubules were observed or less than

three values were obtained in order to calculate the corresponding standard deviation.

ε2 〈µexp − µext 〉nP>n
crit
P

µmax ncritP

A/Ap (units of a2
0) (units of kBT ) (units of kBT ) (±1)

1.029

2.3 9.4 ± 1.8 4.6 ± 1.8 8

4.3 23.4 ± 3.0 11.7 ± 7.1 5

6.3 30.6 ± 4.1 46.4 ± 4.1 8

8.3 33.2 ± 3.2 73.5 ± 8.2 12

1.016

2.3 12.1 ± 3.9 10.4 ± 0.8 16

4.3 28.2 ± 5.3 29.3 ± 1.0 12

6.3 42.8 ± 15.1 62.1 ± 1.9 16

8.3 48.8 ± 11.7 107.6 ± 7.4 14

1.013

2.3 13.6 ± - 15.5 ± 0.4 28

4.3 36.2 ± 4.2 36.8 ± 1.4 18

6.3 48.9 ± 8.1 79.4 ± 2.7 18

8.3 60.3 ± 13.6 134.4 ± 0.7 20
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