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Abstract

Nanoparticle dynamics impact a wide range of biological transport processes and applications

in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was

recently developed to quantify dynamics of submicron particles in solutions from fluctuations of

intensity in optical micrographs. DDM is well-established for monodisperse particle populations but

has not been applied to solutions containing weakly-scattering polydisperse biological nanoparticles.

Here, we use brightfield DDM (b-DDM) to measure the dynamics of protein-rich liquid clusters,

whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than

10−5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion

coefficients from the dependence of the diffusive relaxation time on the scattering wavevector. We

establish that for weakly scattering populations an optimal thickness of the sample chamber exists,

at which the b-DDM signal is maximized at the smallest sample volume. The average cluster

diffusion coefficient measured using b-DDM is consistently lower than that obtained from dynamic

light scattering (DLS) at a scattering angle of 90◦. This apparent discrepancy is due to Mie

scattering from the polydisperse cluster population, in which larger clusters preferentially scatter

more light in the forward direction.
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I. INTRODUCTION

Diffusive dynamics play an important role in many biological transport processes, in-

cluding intracellular transport [1–3], bacterial motility [4], biofilm growth [5], and protein

aggregation, complexation, and crystallization [6–8], and additionally may affect the efficacy

of emerging nanomedicine-based therapies [9–12]. Understanding the role of dynamics in

both natural and engineered processes requires methods to quantify the motion of micro-

and nanoscale particles in complex biological media. Traditionally, scattering methods such

as dynamic light scattering (DLS) [13] have been used to measure the dynamics of sub-

micron particles. Measurements of biological dynamics in complex media in vitro or in

vivo, however, may be incompatible with DLS, which requires optically transparent sam-

ples and low concentrations of scatterers. In addition, many biological particles, including

bacteria, protein complexes, polyplexes, viruses, and cellular organelles, scatter light only

weakly. Optical microscopy coupled with particle-tracking techniques [14] circumvents some

of the limitations inherent to scattering methods and hence is widely employed to measure

microscale particle dynamics in biological settings. Biological particles, however, may be

smaller than the resolution limit of an optical microscope (∼400 nm), precluding the use

of standard brightfield microscopy. Fluorescence labeling of biological particles [15] and/or

super-resolution optical microscopy techniques [16] can allow access to the dynamics of par-

ticles smaller than the optical resolution limit, yet these methods also exhibit disadvantages

for dynamical measurements: fluorescent labels may perturb biological function, and the

acquisition times required for many super-resolution methods may be too long to access

the fast dynamics of submicron particles. There remains an unmet need for simple and

non-perturbing methods to measure dynamics of nanoscale biological objects in complex

media.

Differential dynamic microscopy (DDM) is a recently developed variant of digital Fourier

microscopy [17] that yields measurements of the dynamics of submicron particles [18]. In

DDM, the dynamics of particles in solution are obtained by analyzing the Fourier spectrum

of a time series of difference images [19]. The resulting function describes the decorrela-

tion of intensity fluctuations and contains the intermediate scattering function measured in

DLS [19]. DDM has two key advantages: first, it yields measurements of the dynamics of

particles whose size is smaller than the optical resolution limit [18, 19]; second, its simplest
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implementation requires only a standard optical microscope, incoherent (white light) illumi-

nation, and a digital video camera, although extensions to fluorescence [19] and confocal [20]

microscopy add specificity and resolution. As a result, this method has been used to char-

acterize the dynamics of monodisperse spherical [21] and anisotropic [22–24] nanoparticles

and bacteria [25–27] in complex geometries [28, 29]. Despite these achievements, two factors

currently limit the use of DDM for nanoscale biological particles. First, how to generate

sufficient DDM signal from weakly scattering biological systems while maintaining low sam-

ple volumes has not been addressed. Second, how dispersity in the particle size affects the

dynamics measured in DDM remains poorly understood. Fundamental understanding of the

effects of weak scattering and size polydispersity on DDM signal generation will allow this

method to be applied to characterize the dynamics of a wide range of biological particles.

Here, we demonstrate the applicability of brightfield DDM (b-DDM) to characterize

weakly scattering and polydisperse biological nanoscale objects. As model systems we use

undersaturated solutions of two proteins, hemoglobin A and lysozyme, that contain poly-

disperse protein-rich liquid clusters of radius 70–250 nm [30–38]. Hemoglobin A is the main

oxygen-transporting protein found in red blood cells; the presence of free heme in solution

(the prosthetic group of hemoglobin) promotes the formation of hemoglobin clusters [39].

Lysozyme is a well-studied and robust protein for which cluster formation is thought to be

due to conformational changes in the lysozyme dimer [40]. Both solutions scatter light only

weakly, and the properties of the clusters of both proteins remain constant over many hours

at room temperature. Using b-DDM, we obtain the average diffusion coefficient from the

wave-vector dependence of the diffusive relaxation time. First, we show that the signal-

to-noise ratio obtained in b-DDM depends on the thickness of the sample chamber; as a

consequence, the accessible range of wave vectors is maximized with minimal sample vol-

ume at an optimal chamber thickness. Second, we find that the average diffusion coefficient

of clusters obtained from b-DDM measurements is consistently smaller than that obtained

from DLS at a scattering angle of 90◦. We attribute the apparent discrepancy between

b-DDM and DLS to a combination of Mie scattering and polydispersity: b-DDM accesses

smaller scattering angles than DLS and hence captures more signal from the larger clusters,

which preferentially scatter more light in the forward direction. These results demonstrate

that DDM is a simple yet powerful tool for characterizing weakly-scattering and polydisperse

submicron particles, including many found in biological settings.
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II. METHODS

A. Reagents and solutions

Lyophilized lysozyme, purchased from Affymetrix, was dissolved at ∼200 mg ml−1 in pure

deionized (DI) water. Protein concentration was determined by absorbance measurements

using a Beckman Coulter DU 800 spectrophotometer and extinction coefficient ǫ = 2.64

ml mg−1 cm−1 at 280 nm. The solution was dialyzed for two days against DI water to

remove undesired low molecular weight salts. After dialysis, the solution was adjusted to a

concentration of 103 mg ml−1 and filtered through 0.45 µm Polyethersulfone (PES) syringe

filters prior to all measurements. The measured pH of this solution was 5.41 likely due to

acidic salts present in the lyophilized powder after purification.

Normal adult hemoglobin (Hemoglobin A) was obtained by lysis of red blood cells ob-

tained from a healthy donor following institutional and NIH regulations; for details of this

procedure, see Reference [41]. It was purified by ion-exchange chromatography and stored

in liquid nitrogen. A solution sample was thawed and diluted to 50 mg ml−1 in potassium

phosphate buffer at a concentration of 0.15 M and pH 7.35. The hemoglobin A concentration

was determined using Drabkin’s reagent (which converts hemoglobin to the cyan-met form)

and extinction coefficient ǫ = 0.6614 ml mg−1 cm−1 at 540 nm for cyan-met hemoglobin.

The solution was filtered through 0.22 µm PES syringe filters prior to all measurements.

B. Differential dynamic microscopy (DDM)

Samples for differential dynamic microscopy were sealed in glass chambers constructed

from cover glasses. Two 22 × 22 mm2 cover glasses (thickness 0.19–0.23 mm, Fisherbrand),

separated laterally by ∼ 10 mm, were attached to a rectangular cover glass with dimensions

of 48 × 65 mm2 (thickness 0.13–0.17 mm, Gold Seal) using an epoxy-based adhesive (Dev-

con). A 22 × 22 mm2 cover glass was then centered on top of the two cover glasses to create

an open chamber. One side of the chamber was sealed with epoxy. Protein solution was

introduced into the chamber through the open side, which was then closed with epoxy [21].

We assumed that the thickness of this chamber was 160 µm.

To study the effects of chamber thickness on the b-DDM signal, we also used Borosilicate

square capillaries (Vitrocom) with internal diameters of 500 µm and 800 µm. To access
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thicknesses smaller than 160 µm, we designed a wedge-shaped chamber. In this case, a

single 22 × 22 mm2 cover glass (thickness 0.19–0.23 mm, Fisherbrand) was attached using a

UV adhesive (Norland Adhesive) to a rectangular cover glass with dimensions 48 × 65 mm2

(thickness 0.13–0.17 mm, Gold Seal). A 22 × 22 mm2 cover glass was placed over the top to

create an open wedge-shaped chamber. One of the open sides was sealed completely using

UV adhesive; the other one was partially sealed. Protein solution was introduced from the

half-open side, which was subsequently sealed with UV adhesive.

To calibrate the thickness at different locations along the wedge-shaped chamber, we filled

it with a solution of fluorescently labeled poly(methyl methacrylate) (PMMA) particles.

The chamber was imaged with a confocal point scanner (VT-Eye, VisiTech International)

attached to an inverted microscope (Leica DM4000) with a 100× oil-immersion objective

(Leica Microsystems HCX PL APO, numerical aperture of 1.4) at wavelength 491 nm.

The thickness at a select location was evaluated as the difference between the highest and

lowest microscope stage positions at which fluorescently labeled PMMA particles were in

focus. This method was constrained to thicknesses lower than 80 µm. To determine higher

thicknesses in the same chamber, up to 125 µm, we assumed that the increase in thickness

was linear and extrapolated from the measured thicknesses using the distance from the thin

chamber edge.

For b-DDM data collection, protein solutions were imaged on a Leica inverted microscope

attached to an 100× oil immersion objective using a high speed 8-bit AOS camera (AOS

Technologies AG). The microscope was equipped with a condenser of numerical aperture

0.7; an electronic aperture inside the microscope was partly closed during measurements,

reducing the effective numerical aperture to NA ≈ 0.41 for hemoglobin and NA ≈ 0.23 for

lysozyme and introducing maximum angles (θmax) of 24.5
◦ and 14◦, respectively. We recorded

multiple series of 4200 images of size 480 × 640 pixels2 at a frame rate of 63 frames per

second. To extract the dynamics of cluster diffusion from micrographs, a DDM algorithm

was implemented as described in Reference [21]. Images separated by a fixed lag time τ

were subtracted to obtain the intensity difference ∆(x, y; τ) = I(x, y; t+τ)−I(x, y; t), where

I(x, y; t) was the intensity at position (x, y) measured at time t. τ ranged from 0.0158 s to 25

s. Because the size of clusters fell below the resolution limit of microscope, image subtraction

generated a speckle pattern. We computed the two-dimensional Fourier transform (FFT)

of ∆(x, y; τ) and averaged over all image pairs with the same τ . This procedure yielded a
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Fourier power spectrum ∆(ux, uy; τ), where ux and uy were the coordinates in Fourier space.

For a given τ , averaging was performed over 4200−nf image pairs, where nf = frame rate×τ .

The Brownian motion of clusters was not geometrically constrained, and as a result the 2-D

power spectra were isotropic. We therefore averaged the 2-D power spectra azimuthally

to obtain image structure functions ∆(q, τ), where q = 2π
√

u2x + u2y is the wave vector

magnitude.

The light scattered by monomers at small angles was negligible, and hence the b-DDM

signal was predominantly due to cluster diffusion. In the DDM theory derived for a monodis-

perse population of scatterers [18, 19], the structure function is fit to ∆(q, τ) = A(q)[1 −

exp {−τ/τ0(q)}] + B(q), where A(q) is a prefactor that depends on the generalized optical

transfer function of the optical setup, B(q) is the background, and τ0(q) is the charactistic

relaxation time of the scatterers at a wave vector q. Here we modified the standard DDM

fitting function to model a polydisperse population of scatterers, and fitted ∆(q, τ) of the

protein cluster solutions at each q using a modified cumulant fit [42],

∆(q, τ) =A(q)

[

1− exp

{

−
τ

τc(q)

}(

1 +
µτ 2

2

)]

+B(q).

(1)

In Equation 1, τc(q) is the wave-vector dependent cluster relaxation time; µτ 2c is a measure

of the relative polydispersity of the cluster population. The use of the polydisperse cumulant

function allowed us to describe curvature in ∆(q, τ) at the shortest time scales that could

not be well-fit using a single-exponential model (Figure 8 in Appendix A). We found that

τ−1
c ∝ q2, and thus the diffusion coefficient Dc was evaluated as the slope of the straight line

τ−1
c versus q2 (i.e. τ−1

c = Dcq
2).

The range of wave vectors was determined by the optical properties of the experimental

setup. The minimal accessible wave vector was qmin = 2π/l, where l was the largest dimen-

sion of the original images that were captured by the camera; using the typical l = 140 µm,

qmin = 0.045 µm−1. The maximum accessible wave vector was qmax = 2π/∆l, where ∆l was

the pixel dimension in the space of the image; using the typical ∆l = 0.21 µm, qmax = 28.7

µm−1. In practice, qmax was limited by the smallest resolvable distance that a cluster could

travel between two frames; we found that qmax = min {q′, q′′}, where q′ =
√

frame rate/D

and q′′ = 2πn sin (θmax)/λ, where n = 1.331 is the refractive index of water.
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C. Dynamic light scattering (DLS)

Light scattering data were collected with an ALV goniometer equipped with a He-Ne

laser (632.8 nm) and an ALV-5000/EPP Multiple tau Digital Correlator (ALV-GmbH, Lan-

gen, Germany). For light scattering experiments samples were placed in cylindrical cuvettes

of diameter 10 mm; to minimize contamination, all cuvettes were washed with soap and

rinsed with copious amounts of DI water prior to loading into the DLS instrument. Thirty

intensity correlation functions were acquired at 90◦ for 60 s each to obtain an average

intensity-intensity correlation function g2(τ) at lag times τ ranging from 0.1 µs to 10 s.

Light is scattered by the fluctuations of concentration, and the correlation function charac-

terizes the rate of diffusion of scatterers during decay of fluctuations [43]. Protein solutions

typically contain two scatterers with distinct diffusion times, protein monomers and protein-

rich clusters [31, 33, 34, 44, 45]. We therefore determined the characteristic diffusion times

τm and τc of the monomers and clusters, respectively, by fitting the normalized correlation

function with a square sum of two terms, a single exponential function corresponding to the

monomer population and a modified cumulant function [42, 46] to model the polydisperse

cluster population:

g2(τ)− 1 =

[

Am exp

{

−
τ

τm

}

+ Ac exp

{

−
τ

τc

}(

1 +
µτ 2

2

)]2

+ ǫ(∆t) (2)

where Am and Ac are related to the concentration of monomers and clusters, µτ 2c character-

izes the relative polydispersity of the clusters, and ǫ(τ) accounts for inevitable noise [45]. We

used τc to determine the cluster diffusivity Dc from τ−1
c = Dcq

2, where q = (4πn/λ) sin (θ/2)

is the scattering wave vector at 90◦C, λ = 632.8 nm is the wavelength of the incident red

laser, and n = 1.331 is the refractive index of DI water.

D. Calculation of the characteristic cluster size

We determined the average cluster radius Rc from Dc (measured using DDM or DLS)

using the Stokes-Einstein equation,

Rc =
kBT

6πηDc
(3)

In Equation 3 kB is the Boltzmann constant, T is the temperature, and η is the viscosity

of the protein and cluster solution. Determinations of the viscosity are made on solutions
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containing proteins and clusters; the volume fraction of clusters is less than 10−5 and hence

the clusters negligibly affect the background viscosity. In lysozyme solutions (103 mg ml−1)

this viscosity is determined from the dynamics of Optilink carboxylated polystyrene spheres

with diameter 2R = 0.424 µm, characterized by DLS, and Equation 3 [31]. For hemoglobin

A (50 mg ml−1), the solution viscosity was calculated using the relation [47]

η = η0 exp

(

[η]C

1− (k/ν)[η]C

)

(4)

where η0 = 0.937 mPa s is the viscosity of the phosphate buffer at 25◦C, [η] = 0.036 dl g−1 is

the viscosity increment, C is the HbA concentration in g dl−1, k is a crowding factor, and ν is

a shape factor coefficient for nonspherical particles so that k/ν = 0.42 [47]. For hemoglobin

at C = 50 mg ml−1, η = 1.14 mPa s; for lysozyme at C = 103 mg mg−1, η = 1.42 mPa s.

III. RESULTS AND DISCUSSION

A. Characterization of protein-rich clusters with b-DDM

We acquire optical microscopy movies of protein-rich liquid clusters, reported in a variety

of protein solutions [30–38, 48], diffusing in solution for two proteins in chambers of thickness

160 µm. Optical brightfield micrographs of a hemoglobin A solution at a concentration of 50

mg ml−1 show that the clusters are too small to be directly resolved (Figure 1(a)); the large

black spots correspond to dust and dirt in the microscope optical train. Subtracting two

micrographs that are separated by a fixed lag time τ generates an image with a diffuse speckle

pattern, as shown in Figures 1(b)–(d). These image differences usually have limited dynamic

range, with typical intensities in an 8-bit image ranging in absolute value from 1 to 20 (Figure

9 in Appendix A). The fluctuations increase as the lag time separating the micrographs is

increased, indicating that the cluster positions become increasingly decorrelated over time.

To characterize the dynamics of these clusters, we apply b-DDM and investigate the

behavior of the azimuthally averaged structure function ∆(q, τ). At a constant lag time τ ,

∆(q, τ) exhibits a pronounced maximum at a particular wave vector q, as shown in Figure 2

for a solution containing hemoglobin A clusters. The existence of the maximum is related to

the optical transfer function and is characteristic of b-DDM measurements [24]. Increasing

the lag time shifts this maximum to lower q and its height increases, as also seen in other

b-DDM measurements [19].
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τ = 11.11 sτ = 1.59 s

τ = 0.159 s50 µm

(d)(c)

FIG. 1. (Color online) (a) Representative brightfield micrograph of a hemoglobin A solution with

concentration 50 mg ml−1. (b)–(d) Representative subtractions of two images at lag times τ , as

indicated in the panels. The scale bar for all images is shown in panel (a).
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q [µm-1]
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FIG. 2. (Color online) Structure function ∆ as a function of wave vector q at lag times τ specified

in the plot, obtained with brightfield differential dynamic microscopy for a hemoglobin A solution

with concentration 50 mg ml−1.

At a constant scattering wave vector q, ∆(q, τ) first increases monotonically at short lag

times and reaches a plateau at long lag times, as shown for solutions containing hemoglobin

A and lysozyme clusters in Figure 3(a) and (b), respectively. For a fixed q, the structure

function ∆ can be fitted to a cumulant model (Equation 1), from which we extract the

q-dependent characteristic relaxation time τc(q), signal coefficient A(q), background term
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B(q), and polydispersity µτ 2c . The background term B(q) is nearly constant at all wave

vectors and does not differ significantly between the two proteins (Figure 10 in Appendix

A), consistent with the suggestion that B(q) depends on the electronic noise of the sensor and

the power spectrum of the optical train of the microscope [19]. Hemoglobin A generates a

measurable DDM signal for q = 0.5−6.5 µm−1; by contrast, lysozyme generates a measurable

signal for a smaller range of wave vectors, q = 1 − 3.7 µm−1. Here a measurable signal is

one for which the quotient A(q)/B(q), one metric of the signal-to-noise ratio [21], is greater

than or equal to 0.055 (Figure 11 in Appendix A). In the polydispersity term, µ is the

second cumulant of the intensity-weighted diffusion time distribution and larger values of µτ 2c

(which is approximately independent of the scattering vector for q > 1, as shown in Figure

12 in Appendix A) correspond to a more polydisperse cluster population. Here the lysozyme

solutions are more polydisperse (µτ 2c ≈ 0.16) than the hemoglobin A solutions (µτ 2c ≈ 0.075).

For both proteins, the reciprocal relaxation time 1/τc(q) scales linearly with q2 (Figure 4)

and a linear fit goes through the origin. These features indicate that the dynamics of the

clusters is purely diffusive. We calculate the average diffusion coefficient for each cluster

from the slope of the fit line and obtain Dc = 0.760× 10−12 m2 s−1 and 1.59× 10−12 m2 s−1

for hemoglobin A and lysozyme clusters, respectively. From the Stokes-Einstein equation

(Equation 3) where η is the viscosity of the protein solution, the characteristic radii of

hemoglobin A and lysozyme clusters are 232 nm and 95 nm, respectively. The hemoglobin

A clusters are larger and thus scatter more light, leading to a greater DDM signal-to-noise

ratio as compared to that of lysozyme clusters, consistent with the structure functions shown

in Figure 3.

B. Do thicker chambers yield stronger DDM signal?

The DDM measurements reported in Figures 2 and 3 are performed in thin chambers

of thickness ∼ 160 µm. Many biological samples are difficult to purify or obtain in large

volumes, and so the use of thinner chambers and hence smaller sample volumes is desirable.

The brightfield DDM method generates signal from a thickness that is greater than the focal

volume of the optical train but can be limited by the sample thickness. The minimum sample

thickness required to neglect finite size effects in the DDM signal is Lmin > 1/∆q, where

∆q is the uncertainty in the scattering wave vector due to the finite numerical aperture
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FIG. 3. (Color online) Structure function ∆ as a function of lag time τ at three wave vectors

q, indicated in the plots, for solutions of (a) hemoglobin A at concentration 50 mg ml−1 and (b)

lysozyme at concentration 103 mg ml−1. Lines are best fits to Equation 1.

of the condenser and the polychromaticity of the illumination source [19]. We calculate

(∆q/q)2 ≈ 0.0307 using the expression from Reference [19] and obtain Lmin = 11 µm and

0.83 µm at the minimum and maximum q of 0.5 and 6.5 µm−1, respectively, accessible with

hemoglobin A solutions. We can therefore neglect finite size effects for chambers whose

thickness exceeds 11 µm.

To determine the chamber thickness required to generate signal in DDM for weakly

scattering protein clusters, we measure the intensity differences (Figure 13 in Appendix A)

and the image structure function ∆(q, τ) for hemoglobin clusters in chambers of thickness

ranging from 25 to 800 µm, for which we expect finite-size effects to be negligible. The

dependence on chamber thickness arises from the fact that planes farther from the object

plane contribute progressively less to the DDM signal [19]. At a low wave vector (q = 0.88
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FIG. 4. (Color online) The reciprocal relaxation time 1/τc as a function of the wave vector q

for hemoglobin A solution with concentration 50 mg ml−1 (squares) and lysozyme solution with

concentration 103 mg ml−1 (triangles). τc scales as q−2 and the intercept is insignificant (linear

fits pass through the origin), as expected for freely diffusing clusters.

µm−1) the signal above the noise (i.e. A(q)/B(q)) is sufficiently large, allowing each ∆(q, τ)

to be fit to Equation 1 and the relaxation time scale τc(q) to be extracted (Figure 5(a)) [21].

At higher wave vectors, however, A(q)/B(q) < 0.055 for the thinnest sample chambers and

these ∆(q, τ) cannot be fit to Equation 1 (Figure 5(b)). Reducing the chamber thickness

below ∼ 160 µm restricts the range of wave vectors from which τc(q) can be extracted, in

accord with the theoretical prediction from Reference [19]. Nonetheless, over the accessible

range of wave vectors for each thickness the inverse relaxation time 1/τc(q) scales with q2;

moreover, all points lie on a single line, confirming that the diffusion coefficient of the clusters

remains constant across chambers of different thickness. This result suggests that there

exists an optimal chamber thickness for biological samples (here ∼ 160 µm for hemoglobin

A solutions), which minimizes the total sample volume while still allowing the maximum

range of wave vectors to be accessed. This optimal thickness, which must depend on the

properties of the sample and of the optical setup, can be determined from the ratio of

the signal-to-noise A(q)/B(q) (shown in Figure 14 in Appendix A). We found that the

signal-to-noise criterion A(q)/B(q) ≥ 0.055 established for bulk solutions also applies to the

thickness measurements; only those thicknesses and wave vectors satisfying this criterion

yield relaxation times that scale diffusively with the cluster size.
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FIG. 5. (Color online) Structure function ∆(q, τ) as a function of lag time τ for a hemoglobin

A solution at concentration 50 mg ml−1, measured in chambers of indicated thicknesses, at a

wave vector (a) q = 0.88 µm−1 and (b) q = 2.92 µm−1. (c) The reciprocal relaxation time 1/τc,

obtained from the fit of ∆(q, τ) to Equation 1, as a function of the wave vector q for a hemoglobin

A solution with concentration 50 mg ml−1 measured in chambers of varying thickness; symbols

and colors correspond to those used in (a) and (b). Inset: same dependence for the two thinnest

chambers (of thickness 25 µm and 53 µm), showing that the noisy and weak b-DDM signal can be

measured only for a limited range of q.
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FIG. 6. (Color online) Autocorrelation function (g2 − 1)1/2 of scattered light as a function of lag

time τ for (a) a hemoglobin A solution with concentration 50 mg ml−1 and (b) a lysozyme solution

with concentration 103 mg ml−1. All dynamic light scattering measurements were performed at a

detector angle of 90◦, corresponding to a scattering vector q = 18.7 µm−1.

C. Comparison with DLS

To verify the diffusion coefficients and cluster sizes obtained using b-DDM, we measure

the characteristic relaxation time scale using dynamic light scattering (DLS) at a single

scattering angle of 90◦ in a cuvette of internal diameter 8 mm. The dynamic correlation

functions (g2 − 1)1/2 of hemoglobin A (Figure 6(a)) and of lysozyme (Figure 6(b)) solutions

exhibit two distinct relaxations, indicating the presence of objects of two different charac-

teristic sizes. From fitting each dynamic correlation function using the method of cumulants

(Equation 2) we obtain the characteristic relaxation time of the (polydisperse) clusters [45],

τc. Using the Stokes-Einstein equation (Equation 3), we calculate an average radius of 144

nm and 72 nm, respectively, for hemoglobin A and lysozyme clusters; these values are in

agreement with previous determinations for both proteins [31, 33]. Notably, the character-

istic sizes for hemoglobin A (232 nm) and lysozyme (95 nm) determined using DDM are

greater than those determined using DLS.

We consider several potential origins for the discrepancy between the sizes measured

by DDM and by DLS. First, in earlier experiments [21] we showed that DLS and DDM

experiments on monodisperse polymer particles of radii 50–200 nm yield identical particle

sizes; this finding suggests that collective motion within the sample chambers does not lead

to the observed discrepancy. Second, the relative polydispersities at higher q are equal within

errors of each measurement (Figure 12 in Appendix A), suggesting that the discrepancy does

not arise from differences in the sensitivities of the camera used in the DDM experiment
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and of the correlator used in the DLS experiment. Finally, the decorrelation times measured

in DDM (Figures 4 and 5) and in DLS [38] both scale diffusively with the wave vector, i.e.

1/τ ∝ q2, as expected for a dilute suspension of spherical scatterers; this result suggests that

any asphericity of the clusters does not give rise to the discrepancy.

D. Effect of polydispersity on apparent cluster sizes

Instead, we apply Mie theory to understand the origin of the discrepancy between the

sizes from DDM and DLS. First, we show that the Mie scattering limit is applicable to

these systems. For a particle of diameter 2R interacting with light of wavelength λ in a

medium of refractive index n, the size parameter x = 2πRn/λ determines the relevant

scattering limit: Mie scattering applies for x > 0.4. The illumination source used in the

microscopy experiments has a broad distribution of wavelengths; using an average wave-

length of λ0 = 550 nm for the incident white light, x = 2.18 and 1.09 for hemoglobin A

and lysozyme clusters, respectively. The size of the particles is comparable to the wave-

length of incident light, and so we consider the Mie solution to Maxwell’s equations, which

describes the scattering of an incident plane wave from a collection of spheres. The Mie

solution is written as a series expansion in terms of spherical harmonic functions [49],

which in turn are typically expressed in terms of the associated Legendre polynomials

Pm
l (cos θ) = (1−cos2 θ)m/2

2ll!
dl+m(cos2 θ−1)l

d(cos θ)l+m . The angular dependence of the Mie angular functions

πn(cos θ) = (1/ sin θ)Pm
l (cos θ) and τn(cos θ) = dPm

l (cos θ)/dθ thus determines the intensity

of scattered light as a function of the scattering angle [50]. The function πn exhibits fore-

aft symmetry for even n, with lobes directed forwards (i.e., 0◦) and backwards (i.e., 180◦);

for odd n, however, the backward lobe vanishes. Similarly, τn exhibits fore-aft symmetry

for odd n, but the backward lobe vanishes for even n. This angular dependence leads to a

forward-directed bias in the scattering intensity that becomes more pronounced as the index

l is increased. Furthermore, as the size of the scattering objects is increased, more terms

in the series expansion are incorporated in the scattering diagram [51]. Larger scatterers,

which scatter more strongly overall, also preferentially scatter more in the forward direction

compared to smaller scatterers.

We employ a Mie scattering model [52] to estimate the difference in magnitude of the

intensity of forward- and laterally-scattered light for hemoglobin A clusters. (Additional
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details on the Mie scattering model calculations are given in Appendix B.) Our DLS ex-

periments use homodyne detection, in which only the scattered light is captured by the

photodetector. By contrast, DDM is a heterodyne near-field scattering method: the light

scattered from the clusters interferes with the transmitted light. Hence in DDM the inten-

sity of scattered light is proportional to the scattered electrical field [53]. To confirm that

the heterodyne condition was satisfied for our experiments, we calculated the distributions

of the intensity difference. The distributions of the intensity difference were Gaussian at all

τ , confirming that the heterodyne condition was satisfied (Figure 9 in Appendix A).

Still, the DDM structure function is derived from fluctuations in intensity. Under the

Gaussian approximation, valid for these experiments, the DDM structure function is pro-

portional to the square of the scattered electrical field, as in homodyne DLS, and hence

proportional to the scattered intensity. (A short derivation applicable to our experiment

is given in Appendix C.) Indeed, Giavazzi et al. pointed out that ∆(q, τ) is the two-

dimensional generalization of the photon structure function measured in DLS experiments

[19]. In our experiments, the homodyne and heterodyne detection schemes contain the same

information and we therefore use the Mie model for both the DDM and DLS signals.

For calculations of the DLS scattering intensity, we use the excitation wavelength of

λ = 633 nm in our experimental DLS setup and a scattering angle of 90◦. For calculations

of the DDM scattering intensity, following Reference [19] we assume that the distribution

of wavelengths in the illumination source can be described by a Gaussian function centered

at a wavelength λ0 = 550 nm. At a scattering angle of 90◦, the intensity of scattered light

exhibits a local maximum at a particular radius (Figure 7(a)), arising from morphological

resonances due to constructive interference [51]. At a scattering angle of 0◦ the intensity

monotonically increases with radius (Figure 7(b)). For a given particle radius, the scattered

intensity is greater at 0◦ than at 90◦, as expected in the Mie scattering regime. The DDM

experiments for hemoglobin A access scattering angles ranging from approximately 1.8 to

24.5 degrees, as calculated from the minimum and maximum scattering vectors q = 0.5 and

6.5 µm−1 via q = (4πn/λ0) sin (θ/2). We therefore also report the Mie scattering intensity

at an angle of 24◦ (Figure 7(c)).

The protein-rich liquid clusters are not monodisperse but instead exhibit a distribution

of sizes. To assess the effect of cluster size polydispersity on the DDM signal intensity,

we assume that the cluster size distribution can be described by a Gaussian function of
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FIG. 7. (Color online) (a)–(c) Scattering intensity of hemoglobin A clusters as a function of cluster

radius predicted using Mie scattering theory for (a) dynamic light scattering, using a wavelength

λ = 633 nm and a scattering angle of θ = 90◦; (b) b-DDM, using a wavelength range λ = 450−650

nm and a scattering angle of θ = 0◦; (c) b-DDM, using a wavelength range λ = 450 − 650 nm

and a scattering angle of θ = 24◦. (d), (e) Calculated scattering intensity distributions containing

clusters with a Gaussian size distribution (N) centered at 140 nm and of width (d) σ = 2.25 nm

(σ/Rc = 0.016) and (e) σ = 40 nm (σ/Rc = 0.28). Inset in (d): Discrepancy between the peak

positions predicted for DLS and DDM as a function of size distribution width σ.

characteristic width σ that is centered near the average radius of hemoglobin A clusters

measured using DLS, Rc = 140 nm. We sum the Mie scattering intensities for hemoglobin A

clusters of each radius, weighted by the Gaussian function, and thereby obtain the scattered

intensity for a polydisperse distribution of cluster sizes. When the characteristic width

σ is small (σ/Rc ≈ 0.016), the distributions of scattered intensity at 0◦, at 24◦, and at

90◦ strongly overlap with the distribution of cluster radii (Figure 7(d)), indicating that the

characteristic radius measured at each angle is nearly identical. By contrast, when the cluster

radii are more broadly distributed (σ/Rc ≈ 0.28) the position of the maximum in scattering

intensity is shifted to larger radius compared to that of the Gaussian radius distribution (N),

as shown in Figure 7(e). Moreover, this shift is more pronounced at scattering angles of 0◦

and 24◦, corresponding to the angular range accessed in the DDM experiments, than at 90◦,

corresponding to the angle in the DLS experiments. This result indicates that polydispersity
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can generate the discrepancy between the DDM and DLS characteristic sizes. We quantify

the predicted discrepancy between the characteristic sizes measured using b-DDM and DLS

as (Rc,DDM − Rc,DLS)/Rc,DLS for the 0◦ scattering intensity and the 90◦ scattering intensity

and find that this discrepancy increases monotonically with σ (inset to Figure 7(d)). As

the cluster size distribution broadens, the characteristic size measured by DDM becomes

progressively larger compared to that measured by DLS.

IV. CONCLUSIONS

We show that DDM can be used to monitor the dynamics of weakly scattering and

polydisperse biological nanoscale objects, protein-rich liquid clusters, and to characterize

the sizes of the clusters. Increasing the thickness of the sample chamber enhances the signal

from weakly scattering objects and hence increases the range of wave vectors accessible

with DDM; increasing above a certain thickness, here approximately 160 µm for hemoglobin

A, produces no further increase in the DDM signal. We note that the optimal thickness

must depend on the concentration, size, and refractive index mismatch of the scatterers and

on the bit depth of the camera. The characteristic size measured by DDM is consistently

larger than that measured by DLS at a scattering angle of 90◦. Using the Mie scattering

solution, we show that larger clusters preferentially contribute to the low-angle DDM signal,

leading to a bias towards longer relaxation times and hence larger average sizes. This bias

increases with the width of the cluster size distribution. This result neglects absorption

from the clusters or scattering medium, which does not significantly affect the accuracy of

data collected using scattering methods; for example, the slight absorption of hemoglobin

A does not affect cluster sizes measured using DLS [54] and we expect that it also does not

significantly alter the shift in characteristic size using DDM.

Although here we focus on the dynamics of a well-characterized model system, our re-

sults are broadly applicable for polydisperse nanoparticles that weakly scatter light. Weakly

polydisperse protein clusters exhibit near-exponential decays in DDM. This result is in con-

trast to the stretched exponential dynamics of nanoparticles in homogeneous porous media

measured using DDM [28], which may reflect local environmental heterogeneity [55]. This

comparison suggests that DDM could be used to identify the physical origins of dynamical

processes. When combined with optical methods used for concentrated suspensions [20] or
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extended analyses used for nonspherical objects [24, 27], we therefore expect that DDM will

provide a simple, inexpensive, and rapid method to characterize the diffusive dynamics of a

broad range of polydisperse nanoparticles in complex biological environments.

Appendix A: Supplemental Figures

In this Appendix we provide additional figures (Figures 8 - 14) to justify statements

made in the main text. In Figure 8 we show that the DDM data cannot be adequately

fit with a single-exponential fitting model. In Figure 9 we show that the histograms of

intensity difference values (which have limited dynamic range) can be fitted by a Gaussian

distribution, satisfying the heterodyne condition. In Figure 10 we show that the background

term B(q) is nearly constant at all wave vectors and does not differ significantly between

the two proteins. In Figure 11 we show that the criterion for a measurable signal in our

DDM setup is A(q)/B(q) ≥ 0.055. In Figure 12 we show that the relative polydispersity is

approximately independent of the scattering wave vector for q > 1 µm−1. In Figure 13 we

show the histograms of absolute intensity difference measured for a solution of hemoglobin

A in chambers of thickness ranging from 25 – 800 µm. Finally, in Figure 14 we show that

the criterion for a measurable signal established in Figure 11, A(q)/B(q) ≥ 0.055, is also

valid for chambers of varying thickness.

Appendix B: Mie scattering calculations

The Mie scattering solution of Maxwell’s equations, first developed by Ludvig Lorenz [56]

and independently by Gustav Mie [49], describes the relation between transverse components

of electric and magnetic fields of scattered electromagnetic wave from a dielectric (potentially

absorbing) spherical particle of radius R with respect to incident fields of electromagnetic

wave. The Mie solution assumes that the tangential components of the electric and magnetic

fields are continuous across the surface of the spherical particle. The resulting components of

the scattered electric and magnetic fields are described in terms of an infinite series expansion

of vector spherical harmonics. For a detailed derivation of the Mie solution, see Reference

[50]; here, we give only the formulas needed for a computational Mie approach.

For an incident plane wave, the scattering amplitudes in the Mie solution S1(θ) and S2(θ)
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are given by

S1(θ) =
∞
∑

n=1

2n+ 1

n(n + 1)
{anπn(cos θ) + bnτn(cos θ)} (B1)

and

S2(θ) =
∞
∑

n=1

2n+ 1

n(n + 1)
{anτn(cos θ) + bnπn(cos θ)} (B2)

The Mie angular functions πn(cos θ) and τn(cos θ) describe the angular dependence of the

scattering radiation and are given in terms of the associated Legendre polynomials P 1
n as

πn(cos θ) =
1

sin θ
P 1
n(cos θ) (B3)

and

τn(cos θ) =
d

dθ
P 1
n(cos θ) (B4)
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The scattering coefficients an and bn are obtained by matching the tangential electric

and magnetic fields at the surface of the dielectric sphere (at r = R). These coefficients are

typically given in terms of the Ricatti-Bessel functions ψn and ξn (Reference [50]) as

an =
mψn(mx)ψ

′
n(x)− ψn(x)ψ

′
n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′
n(mx)

(B5)

and

bn =
ψn(mx)ψ

′
n(x)−mψn(x)ψ

′
n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′
n(mx)

(B6)

where m = n − iκ is the complex index of refraction and x = 2πRn/λ is the Mie size

parameter for a particle of radius R scattering light of wavelength λ in a medium of refractive

index n. The Ricatti-Bessel functions are defined as

ψn(z) =
(πz

2

)
1

2

Jn+ 1

2

(z) (B7)

and

ξn(z) =
(πz

2

)
1

2

Hn+ 1

2

(z) (B8)

In Equations B7 and B8, Jn+ 1

2

(z) is the half-integer-order Bessel function of the first kind

and Hn+ 1

2

(z) is the half-integer-order Hankel function of the second kind.
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In the far field, the transverse components of the scattered electric field are given by

(Reference [50])

Esθ ∼ E0
eikr

−ikr
cosφS2(cos θ) (B9)

and

Esφ ∼ E0
eikr

−ikr
sinφS1(cos θ) (B10)

where eikr/(−ikr) represents the outgoing spherical wave. Finally, the scattered intensity

parallel to the scattering plane is I1 = I‖ = |S2|
2 and that perpendicular to the scattering

plane is I2 = I⊥ = |S1|
2, with the total scattering intensity thus given by I = I1 + I2.

This calculation is true not only for our (homodyne) DLS setup but also for our (double-

frame heterodyne) DDM setup, as we have shown that the DDM structure function is also

proportional to the scattering intensity (Equation C10).

In a typical Mie scattering algorithm, the coefficients an and bn are first calculated for

values of n = 1, . . . , N , where N ≈ x + 4x1/3 + 2 [50]. Next, the functions πn(cos θ) and

τn(cos θ) are calculated using the recursion relations for the associated Legendre polynomi-

als. Finally, the scattering amplitudes S1(θ) and S2(θ) are calculated as a function of the

scattering angle θ. In our calculations we use the Matlab functions for Mie scattering and

absorption by C. Mätlzer [52] and report the total scattering intensity I.
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Appendix C: Relationship of the DDM signal to the scattering intensity

Differential dynamic microscopy originated in the double-frame analysis in heterodyne

near-field scattering (HNFS) [53]. Briefly, the DDM method is based on the Fourier analysis

of the intensity image differences [19]. The key idea for DDM (as for all near-field scattering

methods) is that the Fourier components of the intenstiy distribution in the image-differences

can be put in one-to-one correspondence with the Fourier components in terms of the sample

refractive index [19].

Let I(r, t1) and I(r, t2) be the intensity of images at times t1 and t2 separted by a time

difference τ = t2 − t1. In the DDM analysis, the intensity difference between these two

images is first calculated as

δIt(r; τ) = |I(r, t2)− I(r, t1)| (C1)

This process removes the potentially large and heterogeneous background signal. Next, the

Fourier power spectrum of the intensity difference δIt(r; τ), a robust statistical estimator of

the energy content [57], is calculated as

∣

∣

∣
δÎt(q; τ)

∣

∣

∣

2

=

∣

∣

∣

∣

∫

(δIt(r; τ)) e
−q·rdr

∣

∣

∣

∣

2

(C2)

Finally, the expectation value of this spectrum is calculated by averaging over all starting

times t1 to generate the structure function

∆(q; τ) =

〈

∣

∣

∣
δÎt(q, τ)

∣

∣

∣

2
〉

(C3)

The DDM structure function ∆(q; τ) is the two-dimensional generalization of the pho-

ton structure function in DLS [18, 19]. Hence for Brownian diffusion of a population of

monodisperse scatterers, ∆(q; τ) obtained from the DDM analysis can be fitted with a sin-

gle exponential function to extract the diffusion time of particles, just as the square root of

the intensity-intensity correlation function can be fitted with a single exponential function

to extract the diffusion time of monodisperse particles in DLS. Below, we show that ∆(q; τ)

is proportional to the intensity of the scattering field (Is(r)), which is enhanced by a static

pre-factor equal to the intensity of the transmitted beam (I0(r)). The intensity of the scat-

tered light is directly proportional to concentration fluctuations, which are caused by the

Brownian motion of particles.
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Next, we show how to extract the DDM signal from a double-frame HNFS analysis. In

HNFS [53], the static electric field E0(r) corresponding to the transmitted beam interferes

with the time-dependent weak scattered field Es(r, t) to produce the transmitted field

Et(r, t) = E0(r) + Es(r, t) (C4)

The intensity of the transmitted beam It = |Et(r, t)|
2 can be written as

It(r, t) = Et(r, t) · Et(r, t) (C5)

where E is the complex conjugate of E. Substituting Equation C4 and neglecting the

scattered intensity (which is small compared to the transmitted intensity), the intensity at

a given time t is

It(r, t) =E0(r) · E0(r) + E0(r) · Es(r, t)

+ E0(r) · Es(r, t)
(C6)

The static transmitted intensity can be eliminated by calculating the intensity difference

δIt(r, τ) = It(r, t + τ) − It(r, t). δIt(r, τ) can thus be written in terms of the scattered

electric field Es(r, τ) = Es(r, t2)−Es(r, t1) as

δIt(r, τ) = E0(r) · Es(r, τ) + E0(r) ·Es(r, τ) (C7)

Equation C7 can be transformed to Fourier space. By applying properties of Fourier

transforms, it can be shown that the Fourier transform of the intensity difference can be

written as

δÎt(q, τ) = E0(q) ∗
(

Es(−q, τ) + Es(q, τ)
)

(C8)

Finally, the spectrum of the double-frame heterodyne signal, |δÎt(q, τ)|
2, can be calculated

from Equation C8, yielding
∣

∣

∣
δÎt(q, τ)

∣

∣

∣

2

= I0(q) · (Es(−q, τ) ∗ Es(−q, τ) + Es(q, τ) ∗ Es(q, τ) + Es(−q, τ) ∗ Es(q, τ)

+Es(q, τ) ∗ Es(−q, τ))

(C9)

The first two terms contain the scattered intensity whereas the last two are “shadowgraph”

terms. The shadowgraph terms are eliminated after averaging over all initial times t [58, 59],

leading to
〈

∣

∣

∣
δÎt(q, τ)

∣

∣

∣

2
〉

= I0(q) · Is(q, τ) (C10)
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By comparing Equations C3 and C10, we conclude that the DDM signal is proportional

to the scattered intensity. We note that this analysis holds for the case when number

fluctuations can be neglected (and hence is not applicable, for example, to the case of dilute

scatterers in convective flow).
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[11] W. G. Kreyling, S. Hirn, W. Möller, C. Schleh, A. Wenk, G. Celik, J. Lipka, M. Schäffler,
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