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Abstract

This work describes simulations of a red blood cell (RBC) in simple shear flow, focusing on the

dependence of the cell dynamics on the spontaneous curvature of the membrane. The results show

that an oblate spheroidal spontaneous curvature maintains the dimple of the RBC during tank-

treading dynamics as well as exhibits off-shear-plane tumbling consistent with the experimental

observations of Dupire et al. (J. Dupire, M. Socol, and A. Viallat, Proc. Nat. Acad. Sci. U.S.A.

109, 20808 (2012)) and their hypothesis of an inhomogeneous spontaneous shape. As the flow

strength (capillary number Ca) is increased at a particular viscosity ratio between inner and outer

fluid, the dynamics undergo transitions in the following sequence: tumbling, kayaking/rolling, tilted

tank-treading, oscillating-swinging, swinging, tank-treading. The tilted tank-treading (or spinning

frisbee) regime has been previously observed in experiments but not in simulations. Two distinct

classes of regime are identified: a membrane reorientation regime, where the part of membrane that

is at the dimple at rest moves to the rim and vice versa, is observed in motions at high Ca such

as tilted tank-treading, oscillating-swinging, swinging and tank-treading; and a non-reorientation

regime, where the part of the membrane starting from the dimple stays at the dimple, is observed

in motions at low Ca such as rolling, tumbling, kayaking and flip-flopping.
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I. INTRODUCTION

Experiments in the past several decades have established that in shear flow at low shear

rates, a suspended RBC behaves as a rigid body and undergoes a tumbling motion (here

denoted TU)1, while at higher shear rates in a sufficiently viscous fluid its orientation takes

on a constant angle with respect to the flow direction and the membrane rotates about

the interior in a so-called tank-treading (TT) motion1–4. More detailed observations have

revealed a number of variations on these basic motions. Goldsmith and Marlow1 observed

a rolling motion of the RBC in which the axis of revolution of the RBC is oriented in the

vorticity direction of shear flow. Bitbol5 and Yao et al.6 made very similar observations.

Recently, Abkarian et al.7 reported a swinging motion in which the orientation of the cell

oscillates about a fixed angle while simultaneously tank-treading. It has been shown by

Dupire et al.8,9 that there are domains in the parameter space in which the RBC dynamics

is chaotic and dependent on the initial conditions. They also showed that during motions

such as tumbling the cell is not necessarily reflection-symmetric with respect to the shear

plane. The observation of this wide array of motions even for an isolated particle in a simple

flow field raises serious challenges for computational and theoretical approaches to the un-

derstanding of RBC dynamics in flow. The aim of this work is to understand the dependence

of dynamical motion on the specifics of the membrane as well as the flow properties.

Jeffery analyzed the motion of a rigid axisymmetric particle in simple shear in the absence

of fluid or particle inertia10. The particle will take on one of infinitely many periodic orbits,

depending on its initial orientation. Each orbit is characterized by an orbit constant C

that can take values in 0 ≤ C < ∞; when C = 0 the axis of revolution aligns with the

vorticity direction for all time – the particle rolls – and when C =∞ the axis of revolution

traces out unit circle on the shear plane – the particle tumbles. For intermediate values of

C, the particle undergoes what is often called a kayaking motion during which the axis of

revolution of the particle rotates about the vorticity axis. Some motions of RBCs are similar

to Jeffery orbits, but many, such as tank-treading or swinging are not – further examples

of motions that cannot be mapped onto Jeffery orbits are described below. An important

first step in understanding the dynamics of fluid-filled deformable particles such as capsules,

vesicles and cells was taken by Keller and Skalak11(KS), who studied a model of a fluid-filled

ellipsoid in shear. For an ellipsoid of a given shape, by equating the rate of work done by

2



the external fluid with the rate of energy dissipation in the internal fluid, they were able

to predict a transition between a tumbling motion (as would happen for a rigid ellipsoid)

to a tank-treading motion, as the viscosity of the inner fluid was decreased. Skotheim and

Secomb12 and Abkarian et al.7 extended the KS theory by introducing an elastic membrane

to the ellipsoidal particle model and were able to predict an additional “swinging” motion,

as well as intermittency during the transitions between different motions. It should be noted

that the KS theory and its variants are two-dimensional, so out-of-shear plane RBC motions

such as those observed by Dupire et al.9 cannot be predicted.

A number of efforts have been made to understand the complex RBC dynamics in shear

flow via detailed direct simulations of the fluid and membrane dynamics. To model the RBC

appropriately, five key features need to be specified: (i) the viscosity ratio λ between the

inner and outer fluids (ii) the biconcave rest shape of the cell (iii) viscoelasticity13,14 of the

RBC membrane (iv) the natural state of each point on the RBC membrane (v) constitutive

equations for stretching (tangential) and bending (normal) elasticity. Research over the past

several decades has settled the first two points; however, the last three are still under active

study. The present work focuses on the last two points.

To help clarify nomenclature we pause at this point to provide a number of definitions.

In general a natural shape or natural state for an element of an elastic material is one from

which any deformation would lead to elastic restoring forces. For a complex structure such

as an RBC membrane it is possible that the natural shape for shear elasticity (tangential

deformations) may be different that that for bending elasticity (normal deformations) so

that the overall natural shape of an element results from the balance of bending and shear

forces. Consistent with usage in the vesicle literature as described below, we denote the

natural shape for bending elasticity as the spontaneous curvature. Finally, the equilibrium

shape or rest shape of the RBC is determined by the interplay between membrane area,

enclosed volume and membrane mechanics. At rest, elements of the membrane could be

under stress (i.e. not in their natural state), but the forces acting on all elements are in

equilibrium.

Early work of Goldsmith and Marlow1 and recent experiments of Dupire et al.9 showed

that the RBC maintains its biconcave shape even during tank-treading and hypothesized

that this effect may come from anisotropic elastic properties or an inhomogeneous natural

shape. Similarly, it had been noted earlier by Fischer15 that RBCs have “shape memory”
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after experimentally observing that the same part of the membrane forms the dimple after

constant shearing for many hours. The return of material points to the same positions

relative to the equilibrium shape of the cell implies that material elements at different

positions have different natural shapes. Shape memory could arise from spatial variations

in either the natural state for shear elasticity or for bending elasticity or both.

In a first attempt to explain the biconcave shape of the RBC, Canham16 proposed that

the minimization of bending energy of the membrane would explain the stability of the

biconcave shape. However, starting from the same volume, oblate and prolate spheroids

will evolve into a biconcave discoid and a dumbbell respectively as volume is reduced, with

a dumbbell shape having lower energy and thus being a more stable shape; this is the

opposite of what one is looking for. Helfrich et al.17–19 suggested the need for a spontaneous

curvature having a negative value such that a biconcave shape is stable. In these and

many subsequent treatments, the spontaneous curvature was assumed to be constant over

the entire surface and treated as a free parameter that can be chosen in order to fit the

RBC shape. Zarda et al.20 studied both biconcave and spherical spontaneous shapes and

concluded that for a spherical shape, an unrealistically high value of bending modulus would

be required to explain the experimentally observed shape of osmotically swollen RBCs. A

biconcave spontaneous shape on the other hand is able to reproduce experimental swollen

shapes in the range of experimentally observed bending modulus. Fischer et al.21 concluded

that neither proposal of sphere or biconcave spontaneous shape explains all the shapes

obtained in the swelling experiment of the RBC but inclined toward the biconcave shape

as it reproduces shapes observed in swelling experiment for the experimentally known shear

and bending moduli.

Using an area-difference-elasticity (ADE) model that, in addition to including shear and

bending elasticity also takes account of the change in area of the inner and outer leaflets

of the cell membrane, Lim et al.22 showed that the biconcave equilibrium shape is reached

starting from an oblate spheroid having the same surface area A as the RBC and reduced

volume V0 (= Vob/(A
3/2/3

√
4π)) of 0.95, where Vob is the volume of oblate spheroid. If

an oblate spheroid is indeed the spontaneous shape, the resulting curvature would not be

uniform over the surface. Note that a spontaneous shape that is spatially-varying (like an

oblate spheroid) but still close to a sphere leads to a low energy barrier between dimple and

rim owing to weak inhomogeneity, such that weak shear flow may generate tank treading
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during which the biconcave shape is preserved. The choice of spontaneous shape is still far

from settled and future experiments may shed some light on the issue. In this work, we

will address the issue of spatially-varying spontaneous membrane curvature and how it will

affect the dynamics of the RBC under simple shear flow.

Now we turn to a brief review of simulations of RBCs in shear. Although attempts to

understand the RBC dynamics numerically spans the last two decades23–30, most of these

works focused primarily on RBC dynamics in the case where the RBC shape is symmetric

across the shear plane (or the dimple is centered on the shear plane). Recently, Dupont

et al.31 showed that an elastic capsule with a prolate spheroid rest shape with its axis

of symmetry oriented off of the shear plane will reach a unique final dynamical motion

for all initial orientations. Depending on Ca, they reported three final dynamical states:

rolling for lower Ca, wobbling in which capsule precesses around vorticity axis as Ca is

increased, a swinging-oscillating motion in which the long axis of capsule oscillates around

the shear plane with amplitude of oscillation decreasing with increase in Ca and resulting

in a in-plane swinging motion at high Ca. Wang et al.32 studied off-plane motion of oblate

and prolate capsules and concluded that the final dynamical state could depend on the

initial inclination angle. Similarly, Cordosco and Bagchi33 reported off-plane motion of

oblate, prolate and biconcave capsules. Unlike Dupont et al.31 and Wang et al.32, they

included membrane bending stiffness in their formulation and considered a spatially uniform

spontaneous curvature in case of biconcave capsules. They observed rolling as a dominant

mode in the physiological relevant viscosity ratio case λ ∼ 5, tank-treading/wobbling mode

at λ < 1 and an intermittent regime at low Ca and low λ where dynamics are dependent on

initial orientation. It has to be noted that both Bitbol5 and Dupire et al.9 experimentally

observed rolling dynamics in a dextran solution where the viscosity ratio was less than

unity. The discrepancy between simulation and experiment may result from the use of a

spatially uniform spontaneous curvature that corresponds to a biconcave shape34. In order

to model the RBC membrane correctly, an assumption of the spontaneous shape has to be

made and finding the appropriate shape has been a challenge for both theoreticians and

experimentalists.

Recently, attempts were made to understand the effect of spontaneous shape on the final

dynamics of the RBC. Peng et al.35 studied the effect of the non-biconcave spontaneous

shape on the RBC dynamics and concluded that for a RBC to retain its biconcave shape
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during tank-treading, as pointed out by Dupire et al.9, the spontaneous curvature has to be

non-biconcave. With a biconcave spontaneous curvature, under no condition were they able

to achieve tank-treading without significantly disturbing the initial shape. Cordosco et al.36

also studied non-biconcave spontaneous shapes and concluded that the spontaneous shape

makes a significant difference in cell dynamics depending upon the viscosity ratio. They saw

the dimple in the RBC remain intact for both the biconcave and oblate spontaneous shapes.

Though Peng et al. and Cordasco et al. explored RBC dynamics with non-biconcave spon-

taneous curvature, in both works, they imposed an spatially uniform spontaneous curvature

c0.

RBC membranes differ from model lipid bilayers in that they have embedded proteins

with an underlying spectrin cytoskeleton and an asymmetric bilayer leaflet composition37;

all of these have been shown to modify c0
38–41. In particular, proteins have been shown to

preferentially bind via curvature-sensing mechanism42. Based on these evidence, one may

argue c0 will be spatially inhomogeneous. Though shape memory originating from shear

elastic energy is expected to be dominant, we show that the shape memory arising from the

inhomogeneity in the spontaneous curvature plays an important role as well.

One possible reason for this counterintuitive result is that all the nontrivial dynamics

of a deformable RBC in flow might be viewed in the following light: the dynamics of a

rigid RBC in shear are highly degenerate, because there are infinitely many possible Jeffery

orbits for the cell to follow, each corresponding to a different orbit constant. This degeneracy

is a consequence of the Stokes flow reversibility constraint for a rigid object in flow, and

deformability removes this constraint, breaking the degeneracy. How this degeneracy is

broken depends on the specific details of the elasticity of the cell: evidently, different elastic

behavior can break the degeneracy in different ways.

In the present work we focus on how RBC dynamics in shear depend on the specifics of the

model, e.g. spontaneous curvature as well as parameters such as Ca, λ and initial orientation.

The rest of the paper is organized as follows: in Sec. II, we present the RBC model and the

numerical algorithm. This is followed by the validation of our numerical method for bending

calculation and RBC model in Sec. III. Next, in Sec. IV we present detailed results of single

RBC dynamics in simple shear flow. Concluding remarks are presented in Sec. V.
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II. MODEL FORMULATION

A. Red blood cell model

We consider an isolated fluid-filled deformable cell with a biconcave discoid rest shape

between two parallel plates in linear shear flow as shown in Fig. 1. The plates are far enough

apart that the simulations essentially represent the result for the unbounded domain. The

discoid radius is a, which for a human RBC is about 3.9µm; further discussion of how the

rest shape of the cell is specified will be given below. The undisturbed flow velocity in

simple shear flow is given as u = γ̇y, where γ̇ is the wall shear rate. The interior and

suspending fluids are assumed to be incompressible and Newtonian with viscosity λµ and µ,

respectively. The suspending fluid, blood plasma, is generally considered to have viscosity

of about 1.10 - 1.35 mPa.s43 and the interior cytoplasmic viscosity is 5.8 - 5.95 mPa.s44,45.

The RBC membrane is a lipid bilayer with embedded lipids and proteins and an underlying

spectrin protein layer. It has a thickness of about 4 nm46, and can be considered as a thin

and soft shell. Its mechanical response can be split into in-plane shear elasticity and out-

of-plane bending elasticity. The membrane in-plane shear elasticity modulus G ∼ 2.5 - 6

µN/m47,48 while its bending modulus KB ∼ 2.7− 9× 10−19 N.m49,50 ∼ 65-215 kBT , where

kB is the Boltzmann constant and T is the temperature. (Thus thermal fluctuations can

usually be neglected at room temperature.) The shear modulus of the RBC will be expressed

by the non-dimensional capillary number Ca = µγ̇a/G. The bending modulus of the RBC

is expressed nondimensionally by κ̂B = KB/a
2G, which is O(10−3 − 10−2), so bending is

often neglected in numerical models. Nevertheless, there are several physical mechanisms51,52

for bending moments to develop over the RBC surface. A number of studies have shown

bending to affect shape53,54 and dynamics55,56; our goal is to systematically examine the

effect of the bending stresses and spontaneous curvature on the RBC dynamics. Dynamical

modes presented in Sec. IV A show dependence on bending modulus κ̂B as well. Furthermore,

incorporation of bending is important in simulations because it prevents numerical buckling

and wrinkling of the membrane57. Hence, bending energy is included in our formulation.

We take κ̂B = 0.03, which corresponds to KB ∼ 11× 10−19 Nm.

The total strain energy of the RBC membrane Γ can be written as:

E =
KB

2

∫
Γ

(2κH + c0)2dS +KB

∫
Γ

κG dS +

∫
Γ

W dS, (1)

7



Figure 1: Schematic of the 3D orientation of RBC. The initial angle between the shortest principal axis of

inertia ψ3 of the RBC and the vorticity direction (z-axis) is ξ0, the angle between the flow direction (x-axis)

and the projection of the axis of revolution onto the shear plane is θ0.

where κH , κG are the mean and Gaussian curvature of the surface respectively, KB and KB

are the bending moduli, c0 is the spontaneous curvature, defined as c0 = −2H0, where H0 is

the mean curvature of the spontaneous shape and W is the shear strain energy density. In

Eq. 1, the first two terms come from the bending or Canham-Helfrich energy16,17 and third

term represents the shear strain energy stored in the RBC membrane. Several models for

W are studied, as we discuss below. There is a strong energy penalty for local area change

in these models but a strict inextensibility constraint is not imposed.

The first variation of total energy E gives the total membrane strain force density fm,

fm = f b + f s, (2)

where f b and f s are bending and shear elastic force densities, respectively. These are further

discussed below and in the Appendix. Note that the bending energy leads to forces both

normal and tangential to the membrane while the in-plane strain energy leads only to a

tangential force.

It should be noted that the equilibrium rest shape of the membrane can be different from

the spontaneous shape. In the case where the natural shape for shear elasticity and the

spontaneous shape for bending elasticity are not the same, the membrane is under stress
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even at rest. Indeed, micropipette and fluorescence imaging experiments58 and subsequent

Monte Carlo simulations59 suggest the presence of residual stress in the rest state. For

our model, Fig. 2 shows the equilibrium shape with an initial biconcave shape and three

different spontaneous shapes for the bending elasticity: (i) sphere, (ii) oblate spheroid, and

(iii) biconcave discoid. In the biconcave discoid case, the expression of Evans and Fung60 is

used:

y =
a

2

√
1− r2(C0 + C2r

2 + C4r
4), (3)

where r2 = x2+z2 ≤ 1, C0 = 0.2072, C1 = 2.0026 and C2 = −1.1228. The biconcave discoid

shape is used as natural shape for shear elasticity in all the cases. The reduced volume V0

for the oblate spheroid (case (ii)) is 0.95. The major axis a of oblate spheroid is kept same

as nominal radius of the biconcave shape. As seen in Fig. 2, even when the spontaneous

shape is a sphere or oblate spheroid, the equilibrium rest shape is still a biconcave discoid;

the net effect of a non-biconcave spontaneous shape is a slightly more shallow dimple.

We now address the evaluation of bending force density, f b. The Gauss-Bonnet theorem

ensures that the second term in Eq. 1 is a constant when no topological changes are involved.

Thus, there is no force density associated with that term. The force density due to bending

is thus given by first variation of first term in Eq. 1. We have built on the previous work of

Zhong et al.61 and Capovilla et al.62 and extended their result to include a spatially-varying

c0. The revised Zhong-Helfrich expression in our formulation for the force density is given

as:

f b = KB

[(
∆s(2κH + c0) + (2κH + c0)(2κ2

H − 2κG − c0κH)
)
n+

1

2
∇s(2κH + c0)2

]
, (4)

where ∆s is the Laplace-Beltrami operator, n is the outward normal to the surface and

∇s is the surface gradient operator (see appendix for derivation). The last term gives

the tangential force density coming from the Canham-Helfrich Hamiltonian. An equivalent

expression of force density for the case of inhomogeneous c0 can be seen in the work of Zhao26

et al. where they chose biconcave discoid as the spontaneous shape. Note that the bending

energy leads to forces both normal and tangential to the membrane while the in-plane strain

energy leads only to a tangential force.

This tangential term is absent in most studies of vesicle and cell motion. In the case of

perfectly incompressible membranes, it can be absorbed into the Lagrange multiplier that

enforces the constant-area constraint (just as in the rotation form of the incompressible
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Navier-Stokes equations the kinetic energy density can be absorbed into the pressure63). In

the present formulation, where this constraint is not strictly enforced, we find that nev-

ertheless the tangential force arising from the in-plane strain energy (described below) is

completely dominant over this term – whether we include it or not makes no discernible

difference to the dynamics.

In contrast, the normal force associated with the bending energy has a non-negligible

effect on the dynamics – recall that the force resulting from the in-plane strain energy has

no normal component so even a small bending energy might be expected to have noticeable

effects. Specifically, as noted above, if bending energy is neglected entirely, then membranes

will sometimes wrinkle at the scale of the mesh. Further, we briefly illustrate in Sec. IV A

that changes in KB can qualitatively affect the dynamics.

−1 −0.5 0 0.5 1

−0.5

0

0.5

 

 

Biconcave

Oblate spheroid

Sphere

Figure 2: The final rest shape of RBC when spontaneous shape is chosen to be either oblate spheroid

or sphere compared to Evans et al.60 The rest shape in case of biconcave discoid as spontaneous shape is

unchanged from its starting Evans et al. shape.

Next, we describe the calculation of the in-plane shear elastic force density, f s. We

note that the strain-energy density W of the membrane is a function of the principal stretch

ratios, λ1 and λ2. Three commonly-used membrane models will be studied: (i) Skalak model,

originally proposed for the RBC membrane by Skalak et al.64, which is strain hardening and

can be parametrized to yield a strong resistance to area change relative to its resistance

for shear deformation, consistent with the area-incompressibility of a lipid bilayer; (ii) neo-

Hookean model, which mimics the behavior of the cross-linked rubber-like materials and
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is strain-softening, and (iii) Yeoh model, which was originally proposed for the vulcanized

rubber and recently used for comparison with RBC optical tweezer experimental data of

Mills et al.48,65

The Skalak model64 has the strain energy density given by

WSK =
G

4

[(
I2

1 + 2I1 − 2I2

)
+ CI2

2

]
. (5)

The two invariants, I1 and I2 are given by

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1. (6)

The parameter C characterizes the energy penalty for area change. It has been shown that

under a simple uniaxial deformation, the results for the Skalak model reach an asymptotic

value66 for C ≥ 10. Following Barthes-Biesel et al.66, for a neo-Hookean model the strain

energy density function is given by

WNH =
G

2

[
I1 − 1 +

1

I2 + 1

]
. (7)

For the Yeoh model, which can be viewed as a cubic extension of the neo-Hookean model,

the membrane strain energy density is given as48,67

WYE =
G

2

[
I1 − 1 +

1

I2 + 1

]
+
G

30

[
I1 − 1 +

1

I2 + 1

]3

. (8)

The Yeoh model behaves like the neo-Hookean model at small deformations but due to the

higher order term, its strain-hardening or strain-softening behavior varies with deformation

depending on the coefficients of the higher order term. We use the Mills et al.48 formulation,

which is strain-softening at moderate deformations and strain-hardening at large deforma-

tions. The resultant force f s is calculated using the principle of virtual work. We do this in

the context of the discretized surface as described in the following subsection.

B. Discretization

The surface is discretized into piecewise flat triangular elements. As seen in Eq. 4, in order

to calculate the bending force, we require the knowledge of the curvatures and normal of the

surface, which must be approximated here based on the piecewise flat discretization. To do

so, we use an approach given by Meyer et al.68 which defines these properties of a continuous
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surface as spatial averages. The averaging is done within the immediately neighboring

triangles, denoted the 1-ring neighborhood (see Fig. 3). We select a local surface patch,

AM in the 1-ring neighborhood whose contour passes through the circumcenter (meeting

point of perpendicular bisectors of the sides of a triangle) of acute triangles or through the

mid-point of the side opposite to an obtuse angle of obtuse triangles – see Fig. 3. Choosing

the surface patch AM in this way minimizes the error associated with the spatial averaging.

The area of this patch is denoted AMixed. An algorithm to calculate AMixed is given by Meyer

et al.68

The surface Laplacian of position along the surface is: ∆sx = 2κHn = K(x), where κH is

the local mean curvature, n is the normal to the surface and K is the discretized curvature

vector. It has been shown68 that K(xi) is given by:

K(xi) =
1

2AMixed

∑
j∈N1(i)

(cotαij + cotβij) (xi − xj) , (9)

where αij and βij are the two angles opposite to the edge in the two triangles sharing the

edge (xi,xj) and N1(i) is the set of 1-ring neighbor vertices of the vertex i. The normal

vector and mean curvature at a node on membrane surface are given, respectively, by:

n(xi) =
K(xi)

‖K(xi)‖
,

〈κHi(xi)〉 =
1

2
‖K(xi)‖.

(10)

Here 〈·〉 represents an area averaged quantity. To calculate ∆sκH , we interpolate the

nodal values of κHi over the triangular element E. If ξ and η are the natural coordinates of

the element E, then its mean curvature can be written as:

κH
E(ξ, η) =

∑
n∈E

φEi (ξ, η)κHi, (11)

where φEi are basis functions associated with the nodes of triangle and are given by φE1 =

ξ, φE2 = η and φE3 = 1− ξ − η. The surface gradient of mean curvature in E is:

∇sκH
E =

∂κH
E

∂ξ
gξ +

∂κH
E

∂η
gη, (12)

where gξ and gη are the contravariant vectors for change of basis. Following Boedec et al.69,

we also use surface divergence theorem to get the mean value of the surface Laplacian for
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Figure 3: Schematic of 1-ring neighborhood of node xi used to calculate f bi in Eq. 16. Here the solid

boundary represents the 1-ring neighborhood of node xi while the shaded region represents the mixed

Voronoi patch AMi with contour ∂Si represented by dashed curve. The area of shaded region is AMixed.

Note that for creating AMi, circumcenter is chosen if it is an acute-angled triangle and mid-point of side

opposite to obtuse angle in an obtuse-angled triangle. αij , βij are angles opposite to the common shared

edge (xi,xj) and θj is the angle subtended at node i by face j. The normal to the contour ∂Si is ν.

the mean curvature as:

∆sκH =
1

AMixed

∫
AMi

∆sκH dS

=
1

AMixed

∫
AMi

∇s · (∇sκH) dS

=
1

AMixed

∫
∂Si

∇sκH · νdl.

(13)

Here, the last expression is the contour integral over AMi and ν is the tangent vector to the

surface, normal to the contour ∂Si of AMi (see Fig. 3). The discrete version of Eq. 13 is

given as:

〈∆sκH〉 =
1

AMixed

fv∑
j=1

∇sκH
Ej · νEjlj, (14)

where, lj is the length of the j-th face of AMi and fv is the total number of faces in Voronoi

region AMi. We now need the Gaussian curvature, κG to be able to calculate the bending

force. A discrete version of Gauss-Bonnet theorem gives the Gaussian curvature68:

〈κGi(xi)〉 =
1

AMixed

(
2π −

fv∑
j=1

θj

)
, (15)
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where θj is the angle of the j-th face at vertex xi in the 1-ring neighborhood. It is noteworthy

that Eq. 15 will return zero for any flat surface or a roof-shaped 1-ring neighborhood. The

discrete form of the bending force density at any node xi on the surface is then given as:

f bi = KB

(
〈∆s(2κH + c0)〉+ (2〈κH〉+ 〈c0〉)(2〈κH〉2

− 2〈κG〉 − 〈c0〉〈κH〉)
)
n.

(16)

Next, we discuss our approach to compute in-plane shear force density. To describe the

membrane surface of the RBCs, we adopt the finite element method developed by Charrier

et al.70 In the Charrier et al.70 approach, the membrane forces are determined using the

positions of the nodes in the deformed state relative to their positions in the natural state for

shear elasticity by the application of the principal of virtual work, such that the computed

forces and the known displacements are consistent with the strain energy stored in the

element. The deformation at any point inside the element is calculated by interpolating

linearly from the nodes. An arbitrarily oriented deformed element and the corresponding

undeformed element are transformed to the same plane by rigid body rotations, using a

transformation matrix RE, for each element E. Note that the rigid body rotations and

translations have no effect on the strain energy and consequently the forces. The principal

stretch ratios can then be calculated from the nodal displacements in transformed plane.

The local elastic forces at node i are given70 as:

fLi =

[
∂W

∂λ1

∂λ1

∂ε
+
∂W

∂λ2

∂λ2

∂ε

]
, (17)

Here, fLi is the nodal force on RBC surface and ε is the displacement from the undeformed

state. The global components of the nodal forces, fEi for an element are calculated by

transforming them back. The total shear elastic force on a cell node is calculated as the sum

of forces resulting from the deformations of triangular elements surrounding that node, and

is given by: f si =
∑
fEi , where the summation is over all triangular elements to which the

node belongs.

The resultant membrane force density is the combination of out-of-plane bending and in-

plane tension as given in Eq. 2. Here, we assume that the entire shear elastic and bending

energy stored in cell membrane has been reassigned to the vertices of the discretized trian-

gular elements. In our boundary integral formulation for solving fluid velocity, we need the

hydrodynamic traction jump ∆f across the interface. As we neglect inertia and Brownian
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fluctuations of membrane, the membrane equilibrium condition states that total membrane

force has to be balanced by the hydrodynamic traction jump across the interface, which

gives ∆f i = −fmi .

C. Fluid velocity calculation

The radius a of the RBC is ∼ 3.9 µm, its velocity in the microcirculation U ∼ 100 -

1000 µm/s, the viscosity of plasma µ ∼ 1.38 mPa.s and its density ρ ∼ 103kg/m3. These

parameters yield a Reynolds number of the order 10−3−10−2, which we assume is sufficiently

small that the fluid motion is governed by the Stokes equation. Under these assumptions,

we can write the fluid velocity u at any point x0 in the problem domain in boundary integral

form71,72 as,

uj(x0) = u∞j (x0) +

Np∑
n=1

∫
Sn

qi(x)Gji(x0,x)dS(x) (18)

where q(x0) is a single layer density that satisfies (for x0 ∈ Sn )

qj(x0) +
λ− 1

4π(λ+ 1)
nk(x0)

Np∑
n=1

∫
Sn

qi(x)Tjik(x0,x)dS(x)

= − 1

4πµ

(
∆fj(x0)

λ+ 1
+
λ− 1

λ+ 1
fj
∞(x0)

)
.

(19)

Here u∞(x0) is the undisturbed fluid velocity at given point x0 while f∞(x0) is the traction

at a given point (computed with the suspending fluid viscosity µ) due to the stress generated

in the fluid corresponding to the undisturbed flow u∞(x0), Sn denotes the surface of the

particle n and ∆f(x) is the hydrodynamic traction jump across the interface. The Green’s

function and its associated stress tensor for the Stokes equation in the geometry of interest

are G and T respectively. The Green’s function G and associated stress tensor T are

taken to satisfy the boundary conditions imposed at the system boundaries so the integrals

involved in this formulation are over the internal (interfacial) boundaries only. The element

nodes are taken to move with the local fluid velocity as required by the no-slip boundary

condition. In the slit geometry, we have periodic boundary conditions in flow and vorticity

direction i.e. x and z directions and the walls are in y direction. We employ no-slip boundary

condition at two walls at y = 0 and y = H.

This boundary integral formulation is slightly different than the most commonly used

approaches71 but provides an advantage in that the multiplicand q(x) of both G(x0, x)
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and T (x0, x) is a function of the location of the source point x and thus allows us to use

an accelerated method72 tailored for non periodic geeometries72. This approach is based on

the general geometry Ewald-like method (GGEM) developed by Hernandez-Ortiz et al.73, in

which the key idea is to split a Dirac-delta force density δ(r) into a smooth quasi-Gaussian

global density ρg(r) and a second local density ρl(r) given by following expressions:

δ(r) = ρl(r) + ρg(r), (20a)

ρg(r) =
α3

π3/2
e−α

2r2
(

5

2
− α2r2

)
, (20b)

ρl(r) = δ(r)− ρg(r), (20c)

where α−1 is the length scale over which the global density varies and r is the position

vector relative to the pole of the singularity. The solution associated with the local density

is short ranged and can be neglected beyond a length scale of O(α−1) from its pole. It is

obtained assuming free-space boundary conditions while the solution associated with global

density is computed numerically ensuring that the boundary condition associated with the

overall problem is satisfied72,73. In our implementation the periodic x and z directions are

represented using Fourier series while a Chebyshev spectral scheme is used for the y direction.

Based on extensive tests in72, we set αhm = 0.5 to minimize numerical error. Here, hm is

mean mesh spacing associated with the global solution and α is taken as 4/a. Kumar et

al.72 have shown that the computational cost associated with this method is O(N logN) for

the slit geometry, where N is proportional to the product of total number of particles in

system, Np and number of triangular elements N∆ on particle surface.

Our simulation domain is a cubic box of size 12.5a. We verified that the RBC dynamics

remain unchanged in larger domains. Flow and vorticity directions are periodic and walls

are present in the flow gradient direction at y = 0 and y = H = 12.5a. The RBC is

placed at the center of box in all simulations. The surface of the RBC is discretized into

N∆ = 1280 triangular elements. The surface element nodes are advanced in time using

a second order Adams-Bashforth method with time step ∆t = 0.01Cah, where h is the

minimum node-to-node distance. Time is non-dimensionalized by the wall shear rate, γ̇ and

length is non-dimensionalized by nominal radius of the RBC, a. All simulations reported

here were performed on a single processor.
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Figure 4: Steady-state Taylor deformation parameter for a spherical capsule with κ̂B = 0, 0.03, 0.12 as

function of Ca, with λ = 1. Symbols are from Le et al.74 and solid lines are our numerical results.

III. VALIDATION OF METHODS AND MODELS

A. Bending resistance validation

The accelerated boundary integral method with GGEM as well as the in-plane shear

elasticity formulation have been extensively tested in prior work72. We validate our numerical

algorithm for the effect of bending stiffness on the deformation of spherical capsules in the

shear flow by comparison of results for spherical capsules for various κ̂B with those of Le et

al.74 In Fig. 4, we show steady-state values of Taylor deformation parameter D as a function

of dimensionless shear rate Ca for λ = 1 and κ̂B = 0, 0.03, and 0.12; the closed symbols are

the numerical results from Le et al. with an immersed boundary method and a Catmull-

Clark subdivision scheme for surface discretization and the lines are from our simulations.

Good agreement is found.

B. Red blood cell model validation

In recent work, Dimitrakopoulos75 showed that large differences of shear modulus reported

in various studies can be explained based on the different membrane laws and deformation

regimes used to fit the experimental data. He analyzed four commonly used membrane laws:

Skalak (SK), neo-Hookean (NH), Evans (EV) and Yeoh (YE). If one imposes the local area-

incompressibility constraint λ1λ2 = 1 and matches the local tension for each law at same

stretch ratio, the shear modulus G of the RBC membrane calculated using these different
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membrane laws at moderate deformations (∼ 40% extension) are related to the modulus for

the Skalak model, GSK , as follows:

GNH ≈ 2GSK , GY E ≈ 1.90GSK , and GEV ≈ 2.67GSK .

For large deformations (∼ 100% extension), the shear modulus calculated from different

membrane laws are related as:

GNH ≈ 4GSK , GY E ≈ 1.99GSK , and GEV ≈ 6.4GSK .

We can see that to fit the observed deformation in certain range, a strain-softening law (like

NH or EV) or strain softening/strain-hardening law (like YE) will predict a higher value

of shear modulus than a strain-hardening law (like SK).In the linear regime, all laws will

collapse to the same value of G; the value G ≈ 2.5µN/m has been reported by Henon et

al.47, Waugh and Evans76 and Wang et al.77 using optical tweezers, micro-pipette aspiration

and LORCA ektacytometer, respectively. Dimitrakopoulos argued that the discrepancy

in the value of shear modulus reported using different experimental methods or numerical

models is due to the choice of membrane law used to fit data. Additionally, he showed that

the Skalak law was the only model to satisfy experimental results from ektacytometry and

optical tweezers at moderate and large strains using the value of shear modulus found in the

linear regime, i.e., G = 2.5µN/m.

In order to validate our RBC model and to test the Dimitrakopoulos analysis, we chose

to reproduce the optical tweezer experiment48 numerically. For this study, the RBC is

discretized into 2562 nodes giving 5120 triangular elements. The stretching force is applied

to two patches of nodes (2% of the total number of nodes) representing the contact areas of

the 2 µm diameter silica beads used in the experiments. The viscous properties do not affect

the final stretching as measurements are done on the final stretched state. Fig. 5(a) shows

the final axial and transverse cross-sectional lengths of the RBC as a function of applied force

for three different membrane laws we studied: Skalak, neo-Hookean and Yeoh law against

the experimental values from Mills et al.48 The shear modulus for all three membrane laws is

taken to be constant value of 2.5 µN/m47. We observe that Skalak law fits the experimental

data within experimental error for the entire range of applied force while the Yeoh and

neo-Hookean laws over-predict the RBC stretching owing to their strain-softening behavior.

If we apply the Dimitrakopoulos results, the Yeoh law would fit the deformation data

for the GY E ≈ 1.9GSK . Keeping in mind that GSK = 2.5µN/m fits the optical tweezer
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Figure 5: Comparison of numerical predictions for axial and transverse lengths of the RBC against stretch-

ing force with experimental optical tweezer results (♦) of Mills et al.48. (a) Comparison of three different

membrane laws at the same shear modulus G = 2.5µN/m; the images show the RBC extension for three

different laws at stretching force of 70 pN. (b) Comparison of Yeoh law results at two different shear values

of G. (c) Comparison of neo-Hookean law results at two different shear modulus G.

deformation data, we report the result for GY E = 4.8µN/m ≈ 1.9GSK in Fig. 5(b). For
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this GY E value the numerical results lie within the error bars of the physical experiment as

expected based on the Dimitrakopoulos analysis.

Finally, Fig. 5(c) shows the comparison of the predicted behavior for the neo-Hookean

model values of GNH in comparison to the Skalak results with GSK = 2.5µN/m and the

experimental data48. In the moderate deformation regime, GNH = 4.8µN/m ≈ 2GSK

fits the experimental data while at large deformation, GNH = 10µN/m ≈ 4GSK fits the

experimental data. These observations agree well with the analysis of Dimitrakopoulos75.

From our comparative analysis of different membrane laws with optical tweezer stretching

experiment of Mills et al.48, we confirm not only our RBC model but also the analysis given

by Dimitrakopoulos75 to explain variations in reported values of shear modulus. Based on

these results, we employ the Skalak law in our further numerical study.

To assess the dependence of the Skalak law optical tweezer response on the dilatational

modulus C, Fig. 6(a) shows results for GSK = 2.5µN/m and C = 10 and C = 20 compared

against the experimental data48. We conclude that the results are insensitive to area incom-

pressibility modulus C for C ≥ 10, in agreement with the conclusions of Barthes-Biesel et

al.66

We also explored the effect of κ̂B as shown in Fig. 6(b). The membrane law used was

Skalak with GSK = 2.5µN/m. Value of κ̂B is kept in the range of physiological value

predicted in experiments50. We notice that varying the bending modulus κ̂B has negligible

effect on these stretching results for the RBC membrane.

Deformations in optical tweezer numerical experiments are dominated by shear modulus

and membrane laws. Finally, we explored the effect of the spatially-varying spontaneous

curvature on the optical tweezer results as shown in Fig. 6(c). The Skalak law with GSK =

2.5µN/m was used for three different spontaneous curvatures: biconcave discoid, oblate

spheroid (V0 = 0.95) and sphere. The spontaneous curvature has negligible effect on these

stretching results.
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Figure 6: Comparision of numerical variation of axial and transverse lengths of a red blood cell against

stretching force with experimental results (♦) of Mills et al.48. (a) Effect of area dilatational modulus C for

the Skalak law at G = 2.5µN/m. (b) Effect of bending modulus κ̂B at G = 2.5µN/m for Skalak (C = 10)

law. (c) Effect of spontaneous curvature at G = 2.5µN/m for the Skalak law.
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IV. RESULTS

A. Effect of spontaneous shape

In this section, we explore the effect of the spontaneous shape of the red blood cell

keeping the natural shape for shear elasticity as a biconcave discoid. The simulations were

done for viscosity ratio λ in the range of 0.1 − 5 and Ca was varied in between 0.05 -

6. We considered the three cases of spontaneous curvature whose equilibrium shapes are

shown in Fig. 2: biconcave discoid, sphere and oblate spheroid. The constitutive relation

for membrane is taken to be the Skalak law with area dilatational modulus C = 10 and

dimensionless bending modulus κ̂B = 0.03. Fig. 7 is a summary of the results of the

remainder of the paper and we elaborate on these results below: it shows a “phase diagram”

of the long-time dynamics of RBCs in shear as a function of Ca and λ for the three different

choices of spontaneous curvature. The dashed curve in Fig. 7 represents the experimental

data taken from Fischer et al.78 for the critical Ca for TU-TT transition. There are regimes in

which the final dynamics depend on the initial off-shear plane orientation. This supports the

observation of hysteretic transition regimes seen in experiments of Dupire et al.9 We report

the most dominant dynamics (occuring at most ξ0) in Fig. 7 and a detailed discussion of

orientation-dependent dynamics is presented later. We started our simulations at multiple

initial orientations ξ0 ∈ [0, π/2] to study the dynamics of initially out-of-shear plane placed

cells. When ξ0 = 0 the axis of revolution is in the vorticity direction, corresponding to the

C = 0 Jeffery orbit while ξ0 = π/2 corresponds to the C = ∞ Jeffery orbit where the axis

of revolution lies in the shear plane.

Fig. 7(a) shows the dynamics of the RBC in λ-Ca parameter space for biconcave sponta-

neous curvature. We primarily see two dynamical modes here: rolling (see [79]) at small λ and

high Ca and TU at high λ and high Ca. Dynamical modes like swinging and breathing29 (not

shown here) are observed depending on the initial off-shear plane angle ξ0 and in Fig. 7(a) we

have reported the most prevalent dynamical mode at a particular Ca and λ. The attainment

of the final stable dynamics is slow and depending on ξ0 can end up taking several shear

time units33.

We now examine the physiological relevant scenario where λ ≈ 5 while we vary Ca. Here,

even at high Ca (≥ 5), TU is observed. To illustrate the dynamics of an RBC in flow,
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Figure 7: Phase diagram of red blood cell dynamics in shear flow for three different spontaneous shapes

(a) biconcave (b) oblate spheroid and (c) sphere. The dashed line represents the critical Ca for the TU-

TT transition curve from the experimental data of Fischer et al.78, while the solid line separating the two

regimes is an approximation based on this work. The values of Ca for experimental data are estimated using

G = 2.5× 10−6 N/m as suggested in ref.75 and the viscosity ratio is calculated using an internal viscosity of

5.87 mPa.s.44,45

we calculate the principal axes of the inertia ψ1,ψ2 and ψ3 of the RBC and report the
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(a)

(b)

Figure 8: Trajectory on the unit sphere of ψ3 of the RBC. (a) shows a cell approaching TU motion with

following simulation conditions: λ = 5, Ca = 3.0 , ξ0 = π/3, κ̂B = 0.03 and biconcave spontaneous curvature.

(b) shows a cell approaching rolling motion for the time-lapse image shown in Fig. 9.

trajectory of the shortest one, ψ3, on the unit sphere in Fig. 8(a), which shows the approach

of an initially off-plane RBC towards TU motion at high Ca. The transition between rolling

and TU occurs at progressively lower values of Ca with decreasing viscosity ratio λ. Below

a critical viscosity ratio, we find that rolling is the most stable mode even at high Ca.

With a biconcave spontaneous shape, we never observe TT and we hypothesize that with

this spontaneous curvature, the bending energy required to break away from the biconcave

shape is too high even in strong shear flow for TT regime to arise. The trajectory of ψ3 on

the unit sphere for a RBC approaching rolling motion is shown in Fig. 8(b). Snapshots of

rolling RBC are shown in Fig. 9: these are in good agreement with the experimental results

of Dupire et al.9 in which the rolling orbit is stable and the biconcave shape is preserved.

In the transitional regime, we observe that both rolling and TU are stable. Both of them
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(a)

(b)

Figure 9: Time sequence images of the RBC in rolling motion in (a) top view (XZ plane) and (b) side view

(XZ plane). Conditions for the simulation were: λ = 0.15, Ca = 1.5, ξ0 = π/6, κ̂B = 0.03 and biconcave

spontaneous curvature. Here and in future images, the blue marker dot started at the dimple while the

green one started at the rim of the RBC. A brighter marker indicates that it is in front of the cell while a

fainter one indicates that it is behind the cell.

preserve the biconcave shape. One might argue that as shape deviation is minimum in these

cases, they minimize the bending energy and hence are stable. However, minimization of

energy does not predict the dynamical mode; it is dependent on fluid-structure interactions

in a complex way31,80. To elaborate on this point, we present the case for λ = 3.5,Ca = 1.0

in Fig. 10, where both rolling (at ξ0 = 0) and TU (at ξ0 = π/2) are stable. Both, rolling

and TU are attractors as a RBC starting at ξ0 = π/3 ends up in the TU motion while a

RBC starting at ξ0 = π/6 ends up in the rolling motion as shown in Fig. 10(a). However,

if we look at the mean elastic and bending membrane energy of the RBC in Fig. 10(b),(c),

rolling mode has lower membrane bending energy while the TU mode has lower membrane

elastic energy.

Lastly, in Fig. 7(a), the solid curve shows the approximate numerical critical Ca for the

transition between rolling and TU while the dashed curve is the experimental Ca for TU-TT

transition of the RBC from Fischer et al.78 experiments.

We now turn to Fig. 7(b), which shows the phase diagram for the RBC with oblate

spheroidal spontaneous curvature. We would first like to draw attention to a motion that we

describe as flip-flopping (see [79]). Fig. 18(e),(f) shows the front and side view, respectively

of a cell going in flip-flopping dynamics. Dupire et al.9 observed the flip-flopping dynamics

experimentally, which they called flipping. Flip-flopping is different from TU as in TU
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Figure 10: (a) Trajectory of ψ3 on the unit sphere showing the effect of ξ0 (0, π/6, π/3, π/2) for λ = 3.5,

Ca = 1.0, κ̂B = 0.03 and biconcave spheroidal spontaneous curvature. The mean membrane (b) elastic and

(c) bending energy of the RBC for both rolling (at ξ0 = 0) and TU (at ξ0 = π/2) for the case shown in (a).

motion, ψ3 of the RBC lies in shear plane all the time while in flip-flopping it does a back-

and-forth motion across the shear plane. Note that a normal Jeffery orbit does not cross

the shear plane. However, in side-view (XY plane), TU and flip-flopping will be difficult to

distinguish as seen in Fig. 18(f). Fig. 11 shows the trajectory of ψ3 on a unit sphere for a

cell undergoing a combination of TU and flip-flopping. One such flip-flopping trajectory is

shown in gray to highlight it.

As Ca is increased, flip-flopping is usually (i.e. at sufficiently high λ) followed by tilted

TT (see [79]), a dynamical motion in which the membrane of the RBC is undergoing TT but

ψ3 is not in the shear plane but rather is tilted at an angle to it. Snapshots of tilted TT

are shown in Fig. 18(c),(d) in front and side view respectively. Dupire et al.9 also observed
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Figure 11: Trajectory of ψ3 on the unit sphere of the RBC exhibiting flip-flopping motion. The grey curve

shows ψ3 trajectory for one flip-flopping event and notice that it crosses shear plane unlike Jeffery orbits.

RBC does a combination of off-plane TU and flip-flopping. Conditions for simulation were: λ = 1, Ca =

0.5, ξ0 = π/2, κ̂B = 0.03 and oblate spheroidal spontaneous curvature.

this motion, which they characterized as a spinning Frisbee motion. They reported it as a

transient motion but we find that it is very stable and occurs at small Ca. The detailed

dynamics of tilted TT are rather intricate: depending upon the Ca at a particular λ, we see

three distinct sub-motions. Right after the transition from flip-flopping/TU, the cell is tilted

at an angle and ψ3 rotates in a small ellipsoidal orbit (which would appear as swinging in

the side view) while flipping occasionally as shown in Fig. 12(a). As Ca is increased, flipping

of the cell is no longer seen and cell maintains small ellipsoidal orbit, tilted at an angle with

shear plane as seen in Fig. 12(b). At even higher Ca, neither flipping nor ellipsoidal orbiting

are seen and the RBC stays at a constant angle with the shear plane as shown in Fig. 12(c).

As Ca is further increased, we observe an oscillating-swinging motion in which ψ3 oscil-

lates both in the shear plane and off of it as shown in Fig. 13 and in the images in Fig. 14

executing a “figure 8” trajectory that crosses back and forth across the shear plane. A

very similar wobbling motion was first observed numerically by Dupont et al.31 for prolate

spheroids and later by Cordasco et al.33 in their red blood cell simulations. Oscillating-

swinging is followed by swinging, as Ca is increased at a particular λ. In swinging, ψ3

oscillates only in the shear plane as characterized by Abkarian et al.7. We point readers to
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(a) (b)

(c)

Figure 12: Trajectory of ψ3 projected on a unit sphere for a tilted TT motion. Spontaneous shape is

oblate spheroid, λ = 2.0, κ̂B = 0.03 and (a) Ca = 0.5, (b) Ca = 0.6 and (c) Ca = 0.75.

this work for a detailed analysis of swinging.

As Ca is further increased we generally observe the TT motion (see [79]), where ψ3 points

toward wall-normal direction. In Fig. 15, we show images of a cell undergoing TT in both

front and side view and one can observe the dimple while the membrane is moving. Gold-

smith and Marlow1 observed that the RBC retains its dimple even during TT, an observation

confirmed in recent experiments by Dupire et al.9 as well. In our simulations, neither bi-

concave nor spherical spontaneous curvature leads to TT dynamics with a dimple. A very

similar conclusion was reached by Peng et al.35 in their study of the effect of non-biconcave

spontaneous curvature on RBC shape. However, Cordasco et al.36, in computations with a

spatially uniform spontaneous curvature, noted that they observe TT motion with a dimple

for both oblate spheroid and biconcave spontaneous shapes. Nevertheless, given the Peng et

al.35 results and our own, we are inclined towards the conclusion that the biconcave spon-
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(a)

(b)

Figure 13: Trajectory of ψ3 on a unit sphere of a RBC exhibiting (a) oscillating-swinging and (b) swinging.

Trajectory (a) is for the case in Fig. 14, while (b) is shown for λ = 0.75, Ca = 2.0, ξ0 = 0, κ̂B = 0.03 and

oblate spheroidal spontaneous curvature. Inset shows a blown-up image of the trajectory near the shear

plane.

taneous shape is not the spontaneous shape of the RBC. Additionally, the presence of rich

dynamics including flip-flopping, tilted TT, oscillating-swinging and rolling, all observed in

experiments, make oblate spheroid a good candidate for the spontaneous shape of the RBC.

Now having described in detail the dynamics observed with the oblate spheroidal curva-

ture, we revisit Fig. 7(b) to note where we have made some simplifications. We represent

TU and flip-flopping with same symbol as experimentally it will be hard to distinguish

between them, especially if looking from the side (see Fig. 18(f)). Furthermore, we have

placed oscillating-swinging, swinging and TT above our numerical TU-TT transition curve

in Fig. 7(b) as all three motions are closely related and will resemble TT in experiments.

We observe a good agreement with the TU-TT experimental transition curve of Fischer et

al.78 for λ ≤ 0.9, while at higher λ, the transition in our case happened at a smaller Ca
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(a)

(b)

Figure 14: Time sequence images of a RBC performing oscillating-swinging motion in (a) top view (XZ

plane) and (b) front view (YZ plane). Conditions for simulation were: λ = 0.75, Ca = 1.0, ξ0 = π/3, κ̂B

= 0.03 and oblate spheroidal spontaneous curvature. We observe membrane reorientation in oscillating-

swinging.

(a)

(b)

Figure 15: Time sequence images of a RBC performing TT motion in (a) front view (YZ plane) and (b)

side view (YZ plane). Conditions for simulation were: λ = 0.75, Ca = 2.0, ξ0 = 0, κ̂B = 0.03 and oblate

spheroidal spontaneous curvature. The front view is kept translucent to allow the green material point to

be seen, while in the side view, the YZ plane is tilted by 4◦ to allow visualization of the dimple.

than the one observed in Fischer experiments. Fischer et al.78 suggested that a value of

KB ∼ 20 × 10−19 Nm collapses his experimental transition curve and Yazdani et al.29 nu-

merical transition curve onto one curve. We used KB ∼ 11× 10−19 Nm, which is half of the

value suggested by Fischer et al.78 and might be the reason for disagreement at higher λ.

At low λ (0.12 ≤ λ ≤ 0.3), a condition often employed in experiments1,5–7,9, we see that

transition between TU and TT occurs at Ca ≈ 0.15. The associated critical shear stress,

η0γ̇ ∼ CaGs/a0 for the TU-TT transition turns out to be ∼ 0.1 Pa, which matches well with
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(a)

(b)

Figure 16: Time sequence images of a RBC in kayaking motion from (a) top view (XZ plane) and (b)

front view (YZ plane) respectively. Conditions for simulation were: λ = 5, Ca = 1.0, ξ0 = π/3, κ̂B = 0.03

and spherical spontaneous curvature. Notice that the membrane reorientation doesn’t happen in kayaking

motion.

the experimental transition shear stress value reported by Bitbol5 and Dupire et al.9.

Figure 17: Trajectory of ψ3 on a unit sphere of a RBC performing kayaking motion. Conditions for

simulation were identical to Fig. 16.

Finally, Fig. 7(c) shows the phase diagram of the RBC dynamics for the spherical spon-

taneous shape. The sphere has been widely studied since the pioneering work of Canham16

and Helfrich et al.17–19 The phase diagram for spherical spontaneous shape looks very similar

to the phase diagram for oblate spontaneous shape, so we will just point out the primary

differences. For the case of spherical spontaneous curvature, in the TU regime, flip-flopping

is never observed. However, we do observe kayaking motion, a classical Jeffery orbit with

0 < C <∞, which has been recently reported in numerical work for RBCs36 and vesicles81,82
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dynamics but has not yet been observed experimentally. The kayaking orbits we observed in

our numerical simulation were either close to TU or rolling orbits. In Fig. 16, we show the

snapshots of kayaking motion in both front and top view and Fig. 17 shows the trajectory

of ψ3 of the RBC performing kayaking motion. The motion here is similar to TU. In the

other extreme, kayaking looks very similar to rolling/precessing and can be characterized as

rolling, unless one looks closely into the trajectory of ψ3. This may be why kayaking has

not yet been reported in the experiments.

The other major departure from the oblate spheroidal case is the absence of dimple on the

RBC membrane in motions like oscillating-swinging, swinging and TT. As experiments1,9

have shown that the cell maintains its biconcave shape, even during TT, the absence of a

dimple during TT indicates that a sphere is not likely the spontaneous shape.

In summary, to point out the differences in the final dynamical motion with the choice of

spontaneous curvature, we report comparative time-lapse images in Fig. 18 at the same λ and

Ca with differing spontaneous curvatures. It is interesting to note that while the biconcave

spontaneous shape leads to rolling, the spherical spontaneous shape leads to tilted TT and

the oblate spheroidal spontaneous curvature leads to flip-flopping. Fig. 18 clearly shows

that the choice of the spontaneous shape can strongly affect the final stable dynamics of

the RBC. In the light of experimental results of Dupire et al.9, we suggest that the oblate

spheroidal shape is the best candidate.

To conclude the section we briefly illustrate the effect of the bending modulus on RBC

dynamics. Fig. 19 shows the trajectory of ψ3 on the unit sphere of the RBC at three different

values of κ̂B at Ca = 0.5, λ = 1, ξ0 = π/2 with a Skalak law membrane (C = 10) and oblate

spontaneous shape. At κ̂B = 0.002, the RBC performs a swinging motion. With an increase

in κ̂B to 0.02, the RBC tumbles, and at κ̂B = 0.1 it flip-flops. With increasing κ̂B, the

penalty for shape change increases, so motions such as swinging that have large bending

deformations become increasingly restricted.

B. Membrane reorientation

Finally, we briefly describe an interesting and counterintuitive phenomenon, membrane

reorientation, that is observed in experiments and simulations. Consider a tracer particle

attached to the equator of an RBC at rest and another attached to one of the poles. By

32



(a)

(b)

(c)

(d)

(e)

(f)

Figure 18: Comparison of cell dynamics at λ = 1, Ca = 0.5, κ̂B = 0.03 and ξ0 = π/3 for three different

spontaneous shapes. (a) and (b) shows rolling dynamics from front and side view respectively for biconcave

spontaneous shape. (c) and (d) shows tilted tank treading dynamics from front and side view respectively for

spherical spontaneous shape. (e) and (f) shows flip-flopping dynamics from front and side view respectively

for oblate spheroidal spontaneous shape.

membrane reorientation, we mean that during flow, the one initially at the pole will go to

the equator and vice versa. Omori et al.83 showed with simulations that this reorientation

occurred for both oblate spheroids and RBCs irrespective of the choice of membrane law

and Ca. Other studies have also reported the reorientation phenomena31,33,36. In the present

work, we also observe reorientation in many situations. For the sake of simplicity, we
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Figure 19: Trajectory of ψ3 on the unit sphere of the RBC showing the effect of κ̂B . Conditions for

simulation were: λ = 1, Ca = 0.5, ξ0 = π/2 with SK law (C = 10) and oblate spheroidal spontaneous

curvature.

will classify the observed dynamics into two categories: a non-reorientation regime, which

includes TU, rolling, kayaking and flip-flopping, and a reorientation regime which includes

tilted TT, oscillating-swinging, swinging and TT. Dupire et al.9 characterized what we call

the reorientation regime as the “fluidized” regime. In all RBC images shown here the blue

and green dots represent a material point on the RBC membrane initially placed at the

dimple and the rim, respectively. If we look at the tilted TT dynamics on Fig. 18(c),(d)

or at oscillating-swinging on Fig. 14 or TT on Fig. 15, we can clearly see that the blue dot

starting from at dimple moves to the rim while the green dot starting at the rim moves

to dimple. In contrast, looking at flip-flopping on Fig. 18(e),(f) or at rolling on Fig. 9 or

kayaking in Fig. 16, one can observe that the blue dot stays in the dimple region and the

green dot stays at the rim.

V. CONCLUSION

We have investigated the dynamics of an RBC subjected to simple shear flow using a

membrane bending rigidity model that allows for spatially varying spontaneous curvature,

in accordance with experimental observations15. The primary aim of this study has been to

examine the effect of the varying spontaneous curvature on the dynamical response of the
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cell in simple shear flow.

To benchmark our RBC model, we computationally reproduced the optical tweezer ex-

periment of Mills et al.48. Two key findings emerged from this exercise: the first is that

the relationship predicted by Dimitrakopoulos75 between the elastic shear modulus given by

different membrane law holds well; the second is that the Skalak strain energy yields good

agreement with optical tweezer experimental data using the value of shear modulus that is

found in linear regime of stress-strain relation. Additionally, this model is strain hardening

and has strong resistance to changes in area as does an RBC membrane. Accordingly, we

conclude that is is a good model for use in detailed studies.

Using the Skalak model, we explored the effect of spatially varying non-biconcave spon-

taneous curvature on the dynamics of the RBC at capillary scale. Our analysis suggests

that oblate spheroid spontaneous shape with the same surface area as the RBC and reduced

volume in the range of 0.95 − 0.989 results in the dynamical motions seen in experiments

in the same parameter regime and leads to small deformation from the initial biconcave

rest shape. This spontaneous shape leads to better agreement than either a spherical or a

biconcave rest shape.

Apart from reporting the effect of spontaneous curvature, we note four other key facts

about the RBC dynamics in shear: (i) the net effect of the non-biconcave spontaneous

shape for bending was to make the dimple of the RBC slightly shallower in its rest state

than the shape proposed by Evans and Fung60, as shown in Fig. 2; (ii) there are regions in

parameter space where multiple dynamical motions are stable as shown in Fig. 10(a); (iii)

during the flip-flopping regime, ψ3 of the RBC crosses the shear plane as shown in Fig. 11,

a behavior that is quite different from a Jeffery orbit; and (iv) the different dynamics can

be categorized broadly into two regimes, (a) a non-reorientation regime where membrane

elements originally at the rim of the cell remain there, and (b) a reorientation regime, where

the part of membrane forming the dimple goes to the rim and vice versa.
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APPENDIX

We will apply the tools of differential geometry in order to derive Eq. 4 from Eq. 1.

The membrane Γ of the RBC can be represented as a closed surface in Euclidean three-

dimensional space; position on the membrane is given by the vector R(u,v), where (u,v)

are curvilinear coordinates on the surface. We recall the principal definitions of differential

geometry to introduce the following quantities, and refer to61,62,84 for details:

Ri = ∂iR, Rij = ∂i∂jR, gij = Ri ·Rj,

gij = (gij)
−1, g = det(gij), Lij = Rij · n,

Lij = (Lij)
−1, L = det(Lij) (i, j = 1, 2),

(21)

where ∂1 = ∂u, ∂2 = ∂v, Ri is the tangent vector to the surface and gij and Lij are the

induced metric and extrinsic curvature associated with the first and second fundamental

forms of the surface, respectively. Repeated indices imply summation. The normal vector

n and the Christoffel symbols Γkij are defined as

n = (R1 ×R2)/
√
g, Rij = ΓkijRk + Lijn. (22)

The mean and Gaussian curvature are written respectively as

κH = −1

2
(c1 + c2) =

1

2
gijLij, κG = c1c2 = L/g. (23)

Here c1 and c2 are the two principal curvatures. The Canham-Helfrich Hamiltonian H (first

term in Eq. 1) is given as

H =
KB

2

∫
Γ

(2κH + c0)2dS =

∫
Γ

h dS (24)

where the scalar h = KB

2
(2κH + c0)2 is constructed locally from the geometry of surface

and dS =
√
g du dv. The stress (force density) f associated with H is determined from the

knowledge of the response of the Hamiltonian δH to an arbitrary infinitesimal deformation

δR using the principle of virtual work:

δH =

∫
Γ

f · δR dS. (25)

We can decompose δR into its tangential and normal parts62,

δR = ζ iRi + Φn. (26)
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Likewise, infinitesimal change in the Hamiltonian can be decomposed into its tangential and

normal parts62,

δH = δ‖H + δ⊥H. (27)

We will first look into the tangential part. For any scalar function f(u,v) defined on Γ,

δ‖f = ζ i∂if , and under tangential deformation, the induced metric on Γ transforms as a

Lie derivative, δ‖
√
g = ∂i(

√
gζ i). Using the above definitions, the tangential component of

Hamiltonian is

δ‖H =

∫
Γ

{√g(δ‖h) + (δ‖
√
g)h} du dv

=

∫
Γ

{√g(ζ i∂ih) + h∂i(
√
gζ i)} du dv

=

∫
Γ

ζ i∂ih
√
g du dv =

∫
Γ

ζ i∂ih dS.

(28)

The integrand in last equation is simply the surface gradient of scalar h. Thus, the tangential

component of the stress can be given as

f ‖ = ∇sh =
KB

2
∇s{(2κH + c0)2}. (29)

For the normal term, we note from Ref. [61]

δ⊥

∫
Γ

dS = −
∫

Γ

2ΦκHdS

δ⊥κH = Φ(2κH
2 − κG) +

1

2
gij(Φij − ΓkijΦk),

(30)

where Φi = ∂iΦ. The normal variation in Hamiltonian is given as

δ⊥H =
KB

2
δ⊥

∫
Γ

(2κH + c0)2dS

=
KB

2

∫
Γ

[
(2κH + c0)2δ⊥dS + 4(2κH + c0)δ⊥κH

]
dS

= KB

∫
Γ

Φ
[
(2κH + c0)(2κ2

H − 2κG − c0κH) + {(1/√g)(∂i∂j + ∂kΓ
k
ij)g

ij√g}(2κH + c0)
]
dS

= KB

∫
Γ

Φ
[
(2κH + c0)(2κ2

H − 2κG − c0κH) + (1/
√
g)∂i(g

ij√g∂j)(2κH + c0)
]
dS

= KB

∫
Γ

Φ
[
(2κH + c0)(2κ2

H − 2κG − c0κH) + ∆s(2κH + c0)
]
dS,

(31)

where we have used Eq. 30 and the following identities61

∂i[(∂jg
ij√g)f ] = −∂k(Γkijgij

√
gf)

∆s = (1/
√
g)∂i(g

ij√g∂j).
(32)
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Thus the normal component of the force is

f⊥ = KB[(2κH + c0)(2κ2
H − 2κG − c0κH) + ∆s(2κH + c0)]n (33)
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