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Strongly segregated copolymer mixtures with uneven composition ratio can form hexagonally
ordered thin films. A simplified model describing the size and position of micelle-like clusters is
derived, allowing for investigation of much larger domain sizes than in previous studies. Simulations
of this model are performed to study the generation of large scale order and evolution of pattern
defects. We find three temporal regimes exhibiting different scaling laws for orientational correlation
length and defect number. In the early stage, topological defects are rapidly eliminated by pairwise
annihilation. A slower intermediate stage is characterized by the migration of grain boundaries and
the elimination of small grains. In the final stage, grain boundaries become pinned and the evolution
halts. A scaling law for defect interaction is proposed which is consistent with the crossover between
the first and second stages.

Recent advances in nanoscale fabrication [1–4] have
lead to growing interest in the theoretical aspects of
molecular self-assembly [5, 6]. Some of the most natural
candidates for synthetic self-assembly are block copoly-
mers because of the wide variety of possible stable mor-
phologies [7–10]. Equilibrium patterns have been suc-
cessfully predicted in the context of both self-consistent
field theory [11] as well as density functional models [12].
In contrast, there are still many open questions about
dynamics leading to large-scale order.

Block copolymer thin films have attracted consider-
able attention because they have desirable self-assembly
properties [13]. Experiments on block copolymer thin
films have been able to capture time evolution of pattern
defects and orientation domain coarsening [14–16]. They
find in the case of a spherical or cylindrical phase that
gives rise to hexagonally ordered films, the correlation
length ξ characterizing the size of grains of similar ori-
entation grows roughly according to the power law t1/4,
at least after some initial transient behavior. Simula-
tions of this process by Yokojima & Shiwa [17] and Vega
et al. [18] rely on cell dynamics models based on an
Ohta-Kawasaki-type free energy functional. Both stud-
ies observe the formation of domains separated by grain
boundaries composed of dislocations, which coarsen over
time by virtue of annihilation of small domains. Over
a limited time frame (about two decades), these studies
tracked various measures of correlation lengths, and they
find slightly different scaling exponents ranging from 1/5
to 1/4.

Since the largest correlation lengths in these previous
studies was comparable to the domain width, system size
might have played a role in the later stages of order-
ing. In addition, most theoretical studies of hexagonal
ordering are limited to weakly-segregated (in the case of
polymers) or weakly-nonlinear (for other pattern form-
ing systems) regimes. This is not surprising since contin-
uum models often become numerically intractable when
nonlinear contributions are large and diffuse interfaces
become narrow. These limitations suggest that a much
different modeling paradigm is needed to properly inves-
tigate large systems which involve strongly segregated

polymers. The route taken here is to employ a com-
bination of sharp-interface models and Lifshitz-Slyozov-
Wagner (LSW) reduction, as done in [19, 20]. We derive
a model suitable for two dimensional films which allows
for much larger system sizes than those in past investi-
gations.

The dynamics of hexagonal ordering has also been
investigated in other physical systems. Recent studies
[21, 22] of the phase field crystal equation [23] have shown
the development and coarsening of orientation domains
analogous to copolymer films. In this case, a wide vari-
ety of scaling exponents may be observed [21] which is
dependent on a parameter describing the depth of the
quench which leads to crystallization. Dynamic scaling
of pattern domains has also been studied in the context of
convection patterns [24–27]. Scaling exponents in these
studies range from 1/5 to 1/3, depending on how far the
system was from onset of instability and whether noise
was included. Mechanisms which might contribute to
slow coarsening such as pinning of dislocations [28] have
been proposed. There is, however, no definitive explana-
tion of slow coarsening in these systems.

This paper systematically derives a dynamical model
for the size and position of roughly circular domains in
a strongly segregated asymmetric block copolymer mix-
ture. We observe that this highly coupled system has
a screening property which allows the spatial domain
to be decomposed into subdomains, yielding a tractable
method for large scale simulation. The system incor-
porates both Ostwald ripening behavior of domains and
domain repulsion which leads to ordering dynamics. Sim-
ulations are conducted over large space- and time-scales
to observe several stages of ordering processes each char-
acterized by a different dynamic scaling exponent. A
scaling model of dislocation dynamics is presented which
unifies these separate regimes. Finally, relationships to
experimental work are discussed.
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I. DENSITY FUNCTIONAL MODELS AND

THEIR SHARP INTERFACE LIMIT

Density functional models [29–31] have been imple-
mented extensively to study large scale pattern formation
in block copolymers. They have generally been preferred
over self consistent field theory approaches (see, e.g., [9])
for large simulations because they offer much greater nu-
merical efficiency. On the other hand, in the strong seg-
regation limit either model becomes intractable because
of the need to resolve small interfacial scales. As a point
of departure, we will instead use the free boundary evo-
lution that arises as the sharp interface limit.
For A − B diblock mixtures occupying a domain Ω, a

typical free energy functional for the relative A monomer
fraction φ : Ω → [0, 1] has the form [29]

F (φ) =

∫

Ω

ǫ2

2
|∇φ|2 +W (φ) dx

+
σ

2

∫

Ω

∫

Ω

G(x − x
′)[φ(x) − f ][φ(x′)− f ] dx dx′.

(1)

The first integral describes local interactions among
monomers which promote phase separation. The term
W (φ) is a typical double-well potential preferring φ = 0
and φ = 1. The last term describes nonlocal interactions,
where f is the global volume fraction and the interaction
kernel G is typically a Laplacian Green’s function. Dy-
namics associated with (1) arise from gradients of the
chemical potential δF/δφ. This leads to a modification
of the well-known Cahn-Hilliard equation of the form

M−1φt = ∆(−ǫ2 ∆φ+W ′(φ)) − σ(φ − f), (2)

where M is a kinetics dependent mobility.
As mentioned in the introduction, the continuum

model (2) becomes intractable for small ǫ or equivalently
large segregation associated with a high potential barrier
in the bulk free energy W (). As it typical of phase field
approaches, the sharp interface limit of (2) may be sought
as a distinguished limit of parameters, in this case by scal-
ing M−1 ∝ ǫ and σ = γǫ. The singular limit ǫ→ 0, first
computed by Nishiura and Ohnishi [32], results in a free
boundary problem for phase domains Ω+,Ω−, where Ω+

denotes the minority phase. The free boundary, denoted
∂Ω+, evolves according to the nonlocal problem

∆v = γ

{

1− f in Ω+

−f in Ω−
(3)

v = κ on ∂Ω+ (4)

Vn = [∂v/∂n]−+ (5)

where the convention is used that the normal velocity
Vn and mean curvature κ are outward with respect to
Ω+. Similar free boundary evolutions have been consid-
ered elsewhere in the context of other nonlocal interac-
tion terms [19, 33]. We use (3-5) as a point of departure
for a further reduction of the dynamics.

II. A FINITE DIMENSIONAL REDUCTION OF

THE FREE BOUNDARY EVOLUTION

For small to moderate volume fractions, two di-
mensional hexagonal domain patterns are formed from
roughly circular patches, and a LSW-type approximation
[34, 35] of the free boundary problem can be carried out.
This has been done previously for other long range inter-
actions [19] and for the spherical phase of three dimen-
sional block copolymers [20]. We pursue here the same
strategy for the two dimensional free boundary problem.
For the remainder of this paper, the spatial domain

is taken to be a square Ω = [−L/2, L/2]2 with periodic
boundary conditions, mimicking a large system absent
of confinement effects. Note that a square domain is
incommensurate with exact hexagonal packing, although
this mismatch is very small provided the domain is large
enough. In addition, we find that hexagonal ordering is
only established on subdomains (grains) which are always
much smaller than the system size.
The minority phase domain will be taken to be a collec-

tion of non-overlapping disks (hereafter called particles)

Ω+ = ∪N
i=1B(xi;Ri), (6)

where xi are the particle centers and Ri are their radii.
The approximation which follows relies on the typical ra-
dius R being small compared to the typical interparticle
distance d.

A. Particle dynamics for small volume fraction

Let G(x) be the modified Green’s function satisfying

−∆G = δ(x)−
1

|Ω|
, (7)

subject to periodic boundary conditions G(x) = G(x +
Lm) where m ∈ Z

2 (|Ω| denotes area of the domain Ω).
Note that one can decompose the Green’s function into
free-space and smooth regular parts

G(x) = −
1

2π
ln(|x|)+GR(x), GR(x) = O(1) as |x| → 0.

(8)
The leading order approximation for R ≪ d of the

solution of (3) in the majority phase subdomain Ω− is

v(x) = A0 +

N
∑

i=1

AiG(x − xi), x ∈ Ω−. (9)

where

N
∑

i=1

Ai = −γf |Ω| = −γ|Ω+|. (10)

Implementing the boundary condition (4) gives

1

Ri
= A0 −

Ai

2π
lnRi +

N
∑

j=1,j 6=i

AjG(xi − xj), (11)
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where (8) and the approximation G(xi−xj) ≈ G(x−xj)
for x ∈ ∂Bi were used. Equations (10-11) form a (N +
1)× (N + 1) linear system for the coefficients Ai.
Inside each particle B(xi;Ri), the solution to (3-4) is

v = γ|x − xi|
2/4 − γR2

i /4 + R−1
i . The normal deriva-

tives to the free boundary can therefore be approximated
(again using R ≪ d) as

∂v/∂n
∣

∣

∣

+
=
γRi

2
,

∂v

∂n

∣

∣

∣

−
= −

Ai

2πRi
, (12)

where |± refers to one-sided limits from the subdomains
Ω±.
To determine the motion of particles, the boundary

layer of the field v near each particle must be found by
further expanding

v ∼ AiG(x− xi) + v1, ∆v1 = 0,

v1 = 0 when |x− xi| = Ri.
(13)

Formally matching the expansion to the field far away
from the boundary layer given by (9) requires that

∇v1 · (x− xi) ∼ ψ · (x− xi), |x| → ∞, (14)

where

ψ =

N
∑

j=1,j 6=i

Aj∇G(xi − xj). (15)

The solution for the correction term v1 in (13) satisfying
(14) is

v1 = ψ · (x− xi)
(

1−R−2
i |x− xi|

2
)

, (16)

whereas the correction term inside each particle is v1 = 0.
Using (12), the expression for the interface velocity (5)
is therefore

Vn =

[

∂v

∂n

]−

+

= −

[

Ai

2πRi
+
γRi

2

]

+
2

Ri
ψ·(x−xi), x ∈ ∂Bi

(17)
The first term in this expression is isotropic and provides
radial dynamics

Ṙi = −
Ai

2πRi
−
γRi

2
(18)

(where the overdot is the derivative with respect to time),
which coincides with the conventional LSW description
of Ostwald ripening if γ = 0. The non-isotropic term in
(17) leads to translation motion of each particle, so that

ẋi = 2

N
∑

j=1,j 6=i

Aj∇G(xi − xj). (19)

The dynamics specified by (10,11,18,19) has a natural
interpretation as a gradient flow of a reduced free energy

E =

N
∑

i=1

2πRi +
πγ

2

N
∑

i=1

R4
i

(

1

8
−

1

2
lnRi

)

+
γ

2

N
∑

i=1

N
∑

j=1,j 6=i

MiMjG(xj − xi),

(20)

where Mi = πR2
i . The first term in (20) is the sur-

face energy of each particle, whereas the second term ac-
counts for the self-energy of the nonlocal interaction and
the third term is the particle-particle interaction energy.
Note that the latter term is the same as the electrostatic
energy for a system of particles with charges Mi. It can
be shown (see Appendix) that the dissipation of energy
is

dE

dt
= −

N
∑

i=1

N
∑

j=1

[

lij mij

mij nij

] [

Ṙi

ẋi

]

·

[

Ṙj

ẋj

]

, (21)

where the Onsager-type coefficients are

lii = −2πR2
i lnRi, mii = 0, nii =Mi/2,

lij = (2π)2RiRjG(xi − xj), mij = πRjMi∇G(xi − xj),

nij = 0, i 6= j.

B. Stabilization of Ostwald ripening

The reduced system (10,11,18,19) describes both the
exchange of material between particles as well as their
migration. Without nonlocal effects, the system would
only exhibit Ostwald ripening, whereby particles larger
than average grow at the expense of smaller ones, leading
to the well-known power law behavior R ∼ t1/3. On the
other hand, nonlocal interactions are known to suppress
this behavior [19, 20, 36], and particles do not continue
to grow past a certain size.
The theoretical justification that Ostwald ripening will

ultimately halt stems from the energy penalty of polymer
stretching. To quantify this, it is instructive to ignore the
interaction energy term in (20), so that the local energy
contribution is, in terms of mass variables Mi = πR2

i ,

El =
N
∑

i=1

2π1/2M
1/2
i +

( γ

16π

)

M2
i [1− 2 ln(Mi/π)]. (22)

A configuration of particles which makes this energy sta-
tionary under the conservation constraint

N
∑

i=1

Mi = f |Ω|

satisfies ∂El/∂Mi = λ where λ is a Lagrange multiplier.
This implies that such a collection has uniform size dis-
tribution Mi = M ≡ f |Ω|/N . This state is an energy
minimizer if the Hessian of (22), which is diagonal with
entries

∂2El

∂M2
i

= −
π1/2

2
M

−3/2
i −

( γ

4π

)

[1 + ln(Mi/π)], (23)

is positive definite. This occurs over an interval M∗ <
M < π/e, where the minimum sizeM∗ satisfies the tran-
scendental equation

M∗ = π
(αγ

2

)−2/3

, α = 1 + ln(M∗/π). (24)
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Since α can be roughly treated as a constant, particles
with radii R > R∗ ≡ (αγ/2)−1/3, are stable to Ostwald
ripening. Note that γ−1/3 sets the typical lengthscale for
particle radii over long times, so that the typical inter-
particle distance is d ∼ γ−1/3(π/f)1/2.
The inclusion of interaction terms in the full energy

(20) leads to local fluctuations in sizes which result from
the heterogeneity of the nonlocal repulsive forces. It has
been documented [19, 20] that even after the initial coars-
ening phase which leads to the elimination of small par-
ticles, the approach to equilibrium leads to configura-
tions which have a distribution of particle sizes. To illus-
trate this, a simulation of (10-11,18-19) was conducted
(L = 30, γ = 200000, f = .1). Consistent with early
stages of microphase segregation (see also section III A),
we choose an initial configuration where particles have no
orientational order but are uniformly distributed. This
was done by subdividing the domain into small squares
and randomly placing a fixed number of particles inside
each square. Random placements were rejected if the in-
terparticle spacing was either too small or too large; in
particular the minimum interparticle distances fell into a
range between 75 and 125 percent of the average mini-
mum distance. Radii were chosen from a uniform random
distribution on a prescribed interval.
The number of particles was initially N = 3200 but

declined to N = 3125 as very small particles were elim-
inated. The evolution of the radii distribution is shown
in figure 1. After the elimination phase, the distribu-
tion becomes more compact, but never becomes uniform,
even after the orientational ordering process is well un-
derway. We ascribe this to the presence of grain bound-
aries (see next section) composed of pattern defects that
are a source of nonuniformity in the particle-particle in-
teraction.

C. Screening effects and an efficient numerical

algorithm

If our system was strictly governed by Coulomb-type
repulsion, particle interactions would be long-ranged. In
contrast, the exact Laplacian Green’s function for a con-
figuration of particles like (6) is known to decay expo-
nentially in space [37]. This fact results in a screening
phenomenon which may be exploited in numerical simu-
lations.
To see how screening arises from in (10,11), let

vi = 1/Ri +Ai lnRi/(2π). (25)

which should be regarded as particular values v(xi) = vi
of a smooth mean field v(x). It is useful to define the
statistical distribution functions

ν(x) = −

N
∑

i=1

2π

lnRi
δ(x−xi), φ(x) = −

N
∑

i=1

2π

Ri lnRi
δ(x−xi).

(26)

Using definition (25), the linear system (10, 11) can be
written formally as the integral equations

∫

φ(y) − ν(y)v(y) dy = −γf (27)

v(x) =

∫

G(x− y)[−ν(y)v(x) − φ(y)]dy, (28)

where the second is valid for each x = xi. If the particle
number density is (artificially) sent to infinity at the same
time making the radii small so that ν and φ limit to
smooth functions, the expressions (27-28) constitute the
solution to a generalized Helmholtz equation

−∆v + νv = φ+ γf. (29)

The corresponding Green’s function of this equation de-
cays as exp(−|x|/l) where l ≈ ν−1/2 is the screening
length.
We have found that, even when the particle density is

not particularly high, the system (10-11,18-19) still has
a strong screening effect. To illustrate this effect, the
system was initialized with the random particle array as
described above. A single particle was then displaced by
roughly one quarter of the interparticle distance, and the
effect on coefficients Ai and velocities dxi/dt of neighbor-
ing particles was measured (figure 2). There is a strong
drop-off in the interaction strength, meaning that parti-
cles at a distance of more than about five interparticle
spacings are largely unaffected by the perturbation. We
have also seen a similar effect when the perturbation is
applied to the particle’s radius instead of its position.
As written, the linear system (10,11) is unsuitable for

numerical solution as N grows large. By virtue of screen-
ing effects, however, particle dynamics should only de-
pend on the configuration of particles within a region
whose size is commensurate to the screening length. In
practice, this is accomplished by dividing the entire do-
main into subdomains, each augmented with a buffer
zone of neighboring particles chosen to be somewhat
larger in width than the screening length. Then smaller
linear systems of the form (10,11) are solved on each sub-
domain. One complication is that the constraint (10) is
global, and cannot be satisfied for each subdomain. In-
stead, we solve modified versions of (11)

1

Ri
=
Bi

2π
lnRi +

N
∑

j=1,j 6=i

BjG(xi − xj),

1

Ri
= 1−

Ci

2π
lnRi +

N
∑

j=1,j 6=i

CjG(xi − xj),

on each subdomain, and then determine the coefficients
as

Ai = (1−A0)Bi +A0Ci, (30)

where A0 is chosen so that (10) is satisfied. Note that
this enforces global mass conservation via (18).
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FIG. 1. Distribution of radii (a-d) at simulation times t = 0, 2× 10−4, 8× 10−4, 8× 10−3, respectively. Initially some particles
are eliminated, but the remaining ones tend toward the average radius. This equilibration eventually halts and a small amount
of size polydispersity remains.
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FIG. 2. Effect on the system coefficients Ai (squares) and
velocities dxi/dt (dots) of particles at various distances from
a perturbed particle. The effect of the perturbation drops off
sharply when the distance is greater than about five interpar-
ticle spacings, and then continues to decay as a slower but
exponential rate.

Rather than using Ewald summation for the periodic
Green’s function, we have found it easier to use an ana-
lytical approximation of the form

G(x, y) ≈ −
1

4π
ln

[

sin

(

2πx

L

)

+ sin

(

2πy

L

)]

+ a

[

cos

(

2πx

L

)

+ cos

(

2πy

L

)]

+ b cos

(

2πx

L

)

cos

(

2πy

L

)

,

where a = −0.007 and b = .007 are obtained from a least
squares fit with the numerically exact Green’s function.
The time evolution (18-19) is discretized by standard fi-
nite differencing, adapting the timestep so that the aver-
age particle displacement per step is roughly constant
throughout the simulation. For very large timesteps,

there is numerical instability associated with the posi-
tional dynamics (19), and semi-implicit timestepping is
used, fixing the coefficients Ai at the current timestep.
In the Ostwald ripening phase, we also monitor the radii
and eliminate very small particles.

III. ORDERING DYNAMICS

After the initial transient stage characterized by Ost-
wald ripening and radii equilibration, migration of parti-
cles is the dominant effect. From this point on, the radii
dynamics are “quasistatic” – they adjust quickly depend-
ing on the configuration of particles. Past this point, lo-
calized regions of hexagonal order emerge, separated by
grain boundaries composed of topological defects. This
section investigates and quantifies this regime.

A. Initial particle distribution

Since our interest here is in a stage of evolution where
particle dynamics are dominated by migration effects, it
is necessary to specify an initial configuration typical of
a deeply quenched system which has already undergone
Ostwald ripening. For this purpose, we use the more
detailed density functional model (2), and ascertain par-
ticle statistics which are then reproduced by the choice
of initial particle configurations in the reduced model.
The local density φ in (2) was initially chosen to repre-

sent a homogeneous mixture φ = f , plus a small amount
of noise. Nucleation of particles by spinodal decomposi-
tion occurs immediately, followed by a short, rapid Ost-
wald ripening phase. Figure 3 shows the particle configu-
ration at the end of this process, along with distributions
of radii and nearest-neighbor distances. There is no in-
dication at this point that any orientational order has
been established. On the other hand, particles are dis-
persed uniformly throughout the domain, with the mini-
mum distance between particles varying only by a small
amount. In addition, particle radii are also very similar.
Note that it would be impractical to use the density

functional simulation to directly initialize the particle
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model: in figure 3 there are only ≈ 700 particles for
a 10242 numerical grid. Instead, the particle simulation
was initialized with a state which had identical radii, and
particles chosen so that the nearest neighbor distances
were between 75 and 125 percent of the average distance
as in the density functional simulation. We find that the
particle placement scheme outlined in section II B works
well for this purpose.

B. Numerical simulation

Large scale simulations (N = 57344) on a domain of
size L = 160 were conducted (other parameters were
γ = 200000, f = 0.1). With the choice of initial condi-
tions given above, we find that local hexagonal ordering
occurs spontaneously. As in other studies of hexagonal
ordering, pattern orientation is measured using Delau-
nay triangulation (Fig. 4). Each edge of the triangula-
tion has a local orientation angle θ which corresponds to
a complex-valued order parameter Ψ = exp(6iθ), which
can be represented as a continuous field by interpolation.
Figure 5 shows the evolution of the order parameter at
four different times. There is clear evidence of the for-
mation of domains and grain boundaries, as well as the
presence of isolated defects which show up as localized
inhomogeneities in the orientation field.
Triangulation also reveals the presence of topological

defects. As in past studies [15, 17, 18], we find a preva-
lence of dislocations identified as pairs of 5−fold and
7−fold defects (see fig. 4). The evolution of such de-
fects is shown in figure 6. Initially they are distributed
evenly, but most annihilate rapidly with neighboring de-
fects. While disclinations can theoretically be formed
from isolated 5 or 7-fold lattice defects, essentially none
were observed here.
We have repeated the simulations under different con-

ditions. Several runs with different random initial data
yield essentially the same overall statistics. Changing the
volume fraction parameter f also gave no appreciable dif-
ference in scaling. Modifying the parameter γ is equiv-
alent to changing the domain and particle sizes, which
should not have any effect on scaling of domains or de-
fects. Finally, we note that system size should play no
role here since it is much larger than any dynamic length
scale.

C. Scaling of domain size and defect numbers

A typical measure of domain size can be derived from
the orientation correlation function

g(r) =
∣

∣

∣

〈

exp [6iθ(x− x
′)]

〉
∣

∣

∣
, (31)

where the averages are taken over all x′ and |x−x
′| = r.

We have computed this at different times in our simula-

tion (figure 7). The behavior of g(r) is roughly exponen-
tial,

g(r) ≈ exp[−r/ξ(t)]. (32)

The orientation correlation length ξ(t) was determined
by least squares regression, although the fit is slightly
worse for large ξ.
The time evolution of both the correlation length ξ(t)

and the number of 5 − 7 defect pairs Nd(t) is given in
figure 8, along with a fit for power law dependence. At
early times, the scaling exponents were roughly 1/2 for
correlation length and −2/5 for defect number. This cor-
responds to a situation where there are many free dislo-
cations, and grain boundaries are poorly defined. The
intermediate scaling regime has exponents that were be-
tween 1/5 and 1/4 for both correlation length and defect
number. In this case, most defects exist at grain bound-
aries and the dynamics involves overall motion of bound-
aries. Finally, at large times, boundaries are pinned and
the configuration becomes frozen.

D. Dislocation dynamics

The motion of dislocation defects in hexagonal systems
has been studied in a variety of models [18, 28, 38, 39].
Both dislocation glide (motion parallel to the Burger’s
vector) and climb have been noted in continuum mod-
els at shallow quenches [39]. In our case, only glide is
observed since lattice vacancies are not energetically fa-
vored.
At the early stages of the simulation, dislocations are

distributed nearly uniformly. Dislocations are removed
from the system largely by pairwise annihilation. Since
this can only happen if the corresponding Burger’s vec-
tors are roughly opposite in orientation, over time the
system is left with subdomains which are largely free of
dislocations. The boundaries of these domains have spa-
tially correlated Burger’s vectors, which appear macro-
scopically as grain boundaries where pattern orientation
changes abruptly. At this late stage, mostly small grains
are eliminated by a collective motion of defect structures.
Other theoretical studies [18, 28] have noted that the

motion of individual dislocations can be inhibited by spa-
tial oscillations of driving forces. These arise from the
underlying lattice structure, and are analogous to the
Peierls-Nabarro forces of atomic crystals. We find that
in general, dislocation pinning becomes relevant at later
times, when the typical lengthscale for interaction be-
tween grain boundaries is large. Eventually this causes
the entire lattice to become frozen.
Dislocations interact through strains which they gen-

erate. This interaction is in general a collective effect
of many defects, and is presumably mediated by some
kind of cancellation or screening effect. We postulate
the existence of an interaction length scale ξd(t), differ-
ent than the correlation length ξ(t), which characterizes
the typical distance over which dislocations interact. At
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FIG. 3. Density functional model (2) simulation up to a point where Ostwald ripening halts. (a) Density field φ, (b) distribution
of particle radii, scaled by the average radius, (c) distribution of minimum interparticle distances, scaled by their average.
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FIG. 4. Triangulation of a small simulation (N = 1024, L =
20 ,γ = 200000, f = .1). Defects are identified as squares
(7-fold) and circles (5-fold).

early stages, there is little correlation between nearby
dislocation orientations (as measured by their Burger’s
vectors). This should imply that ξd is proportional to
the distance between defects. Note that at early stages
local orientational ordering can take place despite the
proximity of defects, and so a more rapid scaling of ξ is
expected. On the other hand, when grain boundaries are
well developed, neighboring dislocations which comprise
the same grain boundary do not generally contribute to
each other’s dynamics. In this case, both length scales ξ
and ξd should be on the order of the grain size instead.

E. Crossover of dynamic scaling

We now propose a model for the scaling of defect evo-
lution which is consistent with both the early and inter-
mediate ordering stages. It is reasonable to suppose that
the dynamics scale (in a statistically averaged fashion)
as a function of defect correlation length

dx

dt
∝ ξ−β

d

where the exponent β is to be determined empirically.
This relationship cannot be simply derived from the
forces created by dislocations, since dynamics are both
a function of energetic driving forces as well as dissipa-
tion from large-scale lattice motion (e.g. [22]).
In the early stage of ordering, defects are distributed

nearly homogeneously, which means that ξd ∝ N
−1/2
d .

If defects move at a rate proportional to ξ−β
d , then the

characteristic time it takes for defects to collide and an-
nihilate will be proportional to ξ1+β

d . The resulting rate

of defect annihilation scales as ξ−β−1
d ∝ N

(β+1)/2
d . Under

the assumption that annihilation events are uncorrelated,
it follows that

1

Nd

dNd

dt
∝ N

(β+1)/2
d (33)

which means (upon integration) that the defect number
scales as Nd ∝ t−2/(1+β). To be empirically consistent
with the observed scaling exponent Nd ∝ t−2/5, one
would need β = 4.
In the intermediate stage of phase ordering, defects are

primarily distributed along grain boundaries. If the line
density of dislocations is taken constant along the grain
boundary, this means that ξd ∝ N−1

d , in contrast to the
early stage. This arises from the fact that the number of
domains Ng scales as ξ−2

d and Ngξd ∝ Nd. In this case,
the rate of defect annihilation satisfies

1

Nd

dNd

dt
∝ Nβ+1

d , (34)
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FIG. 5. (Color online) Evolution of the pattern orientation order parameter Ψ = exp(6iθ) at times t = 4.0 × 10−4, 6.2 ×

10−2, 0.95, 10.1. The coloration represents a HSV map of angles 0 ≤ θ < π/3. (N = 57344, L = 160, γ = 200000, f = 0.1).
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FIG. 6. (a-c) Evolution of dislocation defects at times t = 6.2 × 10−2, 0.95, 10.1, respectively. Simulation parameters are the
same as in previous figure.
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FIG. 7. The orientation correlation function g(r) at times
t = 0.05, 0.5, 5, 50 (squares, circles, diamonds, +). The
dashed line shows the least squares fit to an exponential
g(r) ≈ exp[(r/ξ(t)].

which leads to Nd ∝ t−1/(β+1). If dynamics are consis-
tent the early-stage exponent β = 4, then the scaling
exponent for Nd would be −1/5. this is close to, but
smaller than, the empirically observed scaling exponent
of ≈ −0.22. On the other hand, some of the assumptions
made prior are not exactly correct. One factor which
may enhance the rate of phase ordering is that a small
fraction of dislocations are in fact not on grain bound-
aries. This mean that the true picture should interpolate
between scaling exponents described by (33) and (34).

F. Comparison to experiment and other models

Harrison et al. [15] observed ordering in spherical block
copolymer microdomains in a thin film by atomic force
microscopy. They find over the bulk of the observed time
frame, the orientational correlation length ξ exhibits a

roughly t1/4 growth law, whereas dislocation density de-
creases as roughly t−1/5. Ji et al. [16] performed similar
observations on cylinder forming copolymer thin films.
They find growth exponents slightly larger than t1/4 un-
der a variety of conditions.

Simulations of a reduced system similar to ours, but
corresponding to a different interaction term, was done
by Sagui & Desai [40]. There the measured growth expo-
nent for orientational correlation length was much closer
to 1/2. We believe this represents a difference in the un-
derlying model as well as simulation sizes much smaller
than ours.

The cell dynamics model of Yokojima & Shiwa [17]
yields a scaling exponent for orientational correlation
length closer to 1/5. Notably, this model incorporates
hydrodynamic effects, rather than the purely diffusive
kinetics considered here and elsewhere. Hydrodynamics
are known to accelerate phase formation and ordering of
three dimensional block copolymer microstructures [41]
as well as films with lamellar morphology [17, 42]. On
the other hand, in [17] it is concluded that their role is
subdominant for hexagonal films and insufficient to alter
the growth law.

In contrast, the diffusion-driven cell dynamics model in
Vega et al. [18] includes noise to mimic thermal fluctu-
ations and gives a scaling exponent closer to 1/4. Since
fluctuations are relatively less important in the strong
segregation limit and are not included here, it is not sur-
prising that our results have a smaller exponent.
Both the experiments in [15] and simulations in [17]

also show a distinct rapid stage of ordering at early times,
which the authors do not quantify. Li et al. [43] also
performed cell dynamics simulations with and without a
prescribed driving potential. Without the driving force,
they see a two stage process characterized by rapid t−1/3

defect coarsening initially followed by slower t−1/5 coars-
ening at late stages.

Although experiments show some indication of slowing
at the late stages of the observed time period, none ob-
serve a perfectly frozen configuration. Gomez et al. [44]
find a regime in a density functional model where cor-
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FIG. 8. (a) Evolution of the orientation correlation length. (b) Evolution of defect number. Power law regression are shown as
dashed lines. In both cases, three different scaling regimes can be seen.

relation lengths grow logarithmically. They ascribe this
behavior to a Lifshitz-Safran picture of triple-junction
dynamics rather than dislocation pinning, however.

IV. CONCLUSION

We have shown that phase ordering in the strongly
segregated spherical phase of block copolymers exhibits
three different stages of dynamic behavior. Initially
unaligned topological defects tend to annihilate. This
mostly leaves aligned dislocations which constitute grain
boundaries. We propose that this configurational change
results in a crossover in scaling because the dependence
of dislocation density on interaction distance changes.
Theoretical explanations for slow coarsening exponents

in grain boundary evolution are a well known puzzle in a
variety of systems, including atomistic and experimental
systems [45, 46]. While our interacting particle system is
much different than the continuum models used in most
prior theoretical studies of two dimensional hexagonal
ordering, it appears to exhibit slow coarsening behavior
with similar exponents. We speculate this is a combined
effect of energy dissipation associated with bulk lattice
rearrangement as well as pinning forces.
It is challenging but worthwhile to look for a more

rigorous link between the dynamic Ohta-Kawasaki model
(2) and the reduced dimensional particle model. Some
results in this direction exist for the pure LSW system

which exhibits only Ostwald ripening [47]. On the other
hand, the particle model could be viewed as a reasonable
description in its own right since it (1) correctly describes
mass transfer between particles and (2) dissipates energy
in the correct way for diffusive kinetics.

Finally it is worth mentioning physical mechanisms
which enhance the rate of ordering of block copolymer
films. One avenue of research is self-assembly which
seeks to direct microstructure evolution using topograph-
ically or chemically patterned templates [48]. Copolymer
nanostructures may also be controlled by external elec-
tric fields [49], which includes the ability to direct pattern
orientation. Ordering dynamics in these controlled situa-
tions could likely be studied in the context of the present
methodology.
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APPENDIX: COMPUTATION OF ENERGY

DISSIPATION

The time derivative of (20) is

dE

dt
=

N
∑

i=1

(2π − γπR3
i lnRi)(Ṙi)

+
γ

2

N
∑

i=1

N
∑

j=1,j 6=i

(2πRi)ṘiMjG(xj − xi)

+ γ
N
∑

i=1

N
∑

j=1,j 6=i

MiMj∇G(xi − xj) · ẋi.

(35)

It is convenient to introduce the quantities µi = Ai +
γπR2

i = Ai + γMi which represent the expansion coef-
ficients of the chemical potential µ =

∑

i µiG(x − xi).

Then using (18) we can write µi = −2πRiṘi, which
means that the linear system (11) is the same as

2π − γπR3
i lnRi = 2πA0Ri − µiRi lnRi

+ 2πRi

N
∑

j=1,j 6=i

(µj − γπR2
j )G(xi − xj).

(36)

With γMj = Aj − µj , the last term in (35) becomes
(using (19))

γ

N
∑

i=1

N
∑

j=1,j 6=i

MiMj∇G(xi − xj) · ẋi

=

N
∑

i=1

Miẋi ·





N
∑

j=1,j 6=i

µi∇G(xi − xj)





−
N
∑

i=1

Mi

2
|ẋi|

2.

(37)

Using (36), (37), the expression (35) can be written as
(21). Provided Ri are all small enough, the matrix in
(21) can be shown to be diagonally dominant and positive
definite, which ensures that dE/dt ≤ 0.
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