
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Oscillatory cellular patterns in three-dimensional directional
solidification

D. Tourret, J.-M. Debierre, Y. Song, F. L. Mota, N. Bergeon, R. Guérin, R. Trivedi, B. Billia,
and A. Karma

Phys. Rev. E 92, 042401 — Published  7 October 2015
DOI: 10.1103/PhysRevE.92.042401

http://dx.doi.org/10.1103/PhysRevE.92.042401


Oscillatory cellular patterns in three-dimensional directional solidification

D. Tourret,1, ∗ J.-M. Debierre,2 Y. Song,1 F. L. Mota,2 N. Bergeon,2 R. Guérin,2 R. Trivedi,3 B. Billia,2 and A. Karma1
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We present a phase-field study of oscillatory breathing modes observed during the solidification of
three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted
onboard the International Space Station have allowed for the first time to observe spatially ex-
tended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced
convection in the liquid. In situ observations of transparent alloys have revealed the existence, over
a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from
about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual
cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range
spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative
phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a sta-
bility limit of the spacing in hexagonal cellular array structures. For relatively high cellular front
undercooling (i.e. low growth velocity or high thermal gradient), a gap appears in the otherwise
continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears
with a period that compares quantitatively well with experiment. For control parameters where this
gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change
of growth conditions, oscillations can also occur for nearby values of control parameters where this
gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to
the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with
a slower period of several hours. While long-range coherence of breathing modes can be achieved
in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is ob-
served in both three-dimensional experiments and simulations from realistic noisy initial conditions.
In the latter case, erratic tip splitting events promoted by large amplitude oscillations contribute
to maintaining the long-range array disorder, unlike in thin sample experiments where long-range
coherence of oscillations is experimentally observable.

PACS numbers: 68.08.-p, 64.70.D-, 81.30.Fb, 05.70.Ln

I. INTRODUCTION

Directional solidification is a generic technique for a
broad range of situations ranging from metal casting [1–
4] to model experiments on interface pattern selection
and dynamics [5, 6].

Laboratory experiments are usually conducted in a fur-
nace with a hot thermal contact at one end of the con-
tainer (for instance the top end) and a cold contact at
the other end (the bottom one). Most furnaces are de-
signed to produce a constant temperature gradient G in
the material solidifying inside the container. The sam-
ple is pulled at constant velocity V toward the cold re-
gion, hence imposing solidification at a given rate. For
a binary alloy of nominal solute concentration c∞, the
exploration of control parameters V , G, and c∞ leads
to a wide range of structures that adopt a number of
forms and dynamics. For V lower than a critical veloc-
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ity Vc, the solid-liquid interface remains planar, the limit
value Vc being known as the Mullins-Sekerka morphologi-
cal instability threshold [7]. As V is increased beyond Vc,
the planar front becomes unstable, so that the solidify-
ing material forms finger-like structures called cells, with
a spacing Λ ranging typically from tens to hundreds of
micrometers between two cell tips. Dendritic structures
with secondary and ternary side-arms appear at higher
velocities. To date, those interface patterns have been
primarily visualized in thin-sample directional solidifica-
tion experiments using transparent organic alloys, which
only allow typically one row of cells or dendrites to form
inside the sample (see e.g. [8–17]).

During solidification of three-dimensional bulk sam-
ples on Earth, thermal and/or solutal gradients com-
bined with gravity usually lead to fluid flow in the liq-
uid [18, 19]. The direct consequence of these convective
currents is the heterogeneity of microstructures from the
core to the side of three-dimensional samples [18]. This
is why most observations of solidification microstructure
selection and dynamics have historically been restricted
to thin sample experiments, where the size of the sample
limits the amount of convection. In the close neighbor-
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hood of the critical velocity, typically for Vc < V < Vc/k
where k < 1 is the interface solute partition coefficient,
the cellular regime usually yields a wide variety of struc-
tures and dynamics, such as symmetric cells, asymmetric
cells, multiplets, as well as a very active elimination and
creation of cells.

Among those multiple regimes, breathing modes,
which constitute a generic secondary oscillatory instabil-
ities of spatially modulated interface patterns [20], have
been reported, such as the 2λ−O mode in which an or-
dered rank of cells oscillate with a regular π phase-shift
between two successive cells [13]. breathing modes have
been experimentally and theoretically studied in 2D for
both cellular [13, 21–23] and two-phase eutectic [24, 25]
interfaces. In three dimensions, other oscillatory breath-
ing modes have been predicted with three sub-lattices
of a hexagonal array beating with a ±2π/3 phase-shift
with each other, in the high velocity limit [26] as well
as with a two-sided phase-field model [27]. All these
oscillatory modes, both theoretically predicted and ex-
perimentally observed exhibit a long-range coherence of
oscillation throughout the entire array. However, due to
gravity-induced convection, three-dimensional breathing
modes were never directly observed in experiments until
recently [28].

Three-dimensional directional solidification experi-
ments within a reduced gravity environment were re-
cently made possible by the development of the Direc-
tional Solidification Insert (DSI) of the DECLIC facility
(Device for the study of Critical Liquids and Crystalliza-
tion) installed onboard in the International Space Sta-
tion [29, 30]. Unprecedented observations of a transpar-
ent alloy directional solidification experiments in Space
revealed the occurrence of breathing mode oscillations in
spatially extended cellular arrays [28]. Most cells oscil-
late with a time period a few tens of minutes but, due
to the strong disorder of the cell array, these oscillations
remain mostly uncorrelated, i.e. no long-range phase co-
herence appears. Locally in time and in space, a few
neighboring cells synchronize their dynamics to yield a
phase opposition or a 2π/3 phase-shift depending on the
spatial organization of cells. However, these time and
space cooperative events remain rare because of the ar-
ray topological disorder.

In combination with these experiments, we performed
large-scale quantitative phase-field simulations, mas-
sively parallelized on Graphic Processing Units. Our
simulations were able to produce comparable breathing
modes with a time period τ very close to the one mea-
sured in experiments, for instance at V = 1 µm/s [28]. In
the current article, we propose a more extended analysis
of these oscillatory breathing modes in cellular arrays,
based on additional phase-field simulations. We specifi-
cally explore the conditions of appearance and the origin
of such oscillatory modes in three-dimensions, the lack
(presence) of long (short) range spatiotemporal coherence
of oscillations, and the dependence of breathing modes
and oscillations upon experimental control parameters.

After summarizing our experimental (Section II) and
numerical (Section III) methods, we directly compare the
dynamics of spatially extended cellular arrays in experi-
ments and simulations (Section IV A). Next, we explain
their complex dynamics through calculations of stability
conditions for individual cells (Section IV B) and simu-
lations of oscillatory regimes under a forced hexagonal
symmetry of the cellular array (Section IV C). We show
the link between oscillatory modes and spacing stability
ranges (Sections IV B and IV D) and the relationship be-
tween oscillation coherence and long range spatial order
of the array (Section IV C). We then discuss the depen-
dence of oscillations features, i.e. amplitude and period,
with experimental control parameters (Sections IV D and
IV E). Finally, conclusions are summarized in Section V.

II. DIRECTIONAL SOLIDIFICATION
EXPERIMENTS

A. The DEvice for the study of Critical LIquids
and Crystallization - Directional Solidification Insert

(DECLIC-DSI)

The experiments in this article were realized within
the Directional Solidification Insert (DSI) of the De-
vice for the study of Critical Liquids and Crystalliza-
tion (DECLIC) developed by the French Space Agency
(CNES), and installed onboard the International Space
Station (ISS), in the framework of the CNES project
MISOL3D (Microstructures de Solidification 3D) and the
NASA project DSIP (Dynamical Selection of 3D Inter-
face Patterns). The DECLIC-DSI is dedicated to in
situ and real-time characterization of solid-liquid inter-
face patterns during directional solidification of trans-
parent alloys. This unique apparatus enables the pro-
cessing of bulk three-dimensional samples within a neg-
ligible gravity environment — approximately 10−4 times
the Earth gravity — hence suppressing microstructure in-
homogeneities due to to convection, unavoidable in bulk
experiments on Earth [18].

Since the DECLIC and DSI have already been pre-
sented elsewhere [29–31], we focus here on the details
pertaining to cellular oscillations. The DECLIC-DSI al-
lows two observation modes of the Bridgman directional
solidification experiment, namely along the direction of
solidification, z, and from the side of the crucible. The
only observation mode discussed here is in the direction
of solidification. It is made possible by a flat glass win-
dow at the bottom of the crucible and a lens immersed in
the liquid at the top. Hence, the light from LEDs at the
bottom passes through the solid-liquid interface, reaches
the lens in the liquid, and goes through a second relay
lens that produces the image of the interface on a CCD
camera. Therefore, all microstructure images in this ar-
ticle are shown from the liquid side of the interface, with
the solid growing toward the observer. Furthermore, on
the same observation axis, the setup is equipped with an
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interferometer, which allows reconstruction of the three-
dimensional shape of cells and dendrite tips [30].

B. Directional solidification experiments

A succinonitrile (SCN)-0.24wt% camphor alloy was
prepared from SCN purified by NASA by distillation and
zone melting. The sample preparation and cartridge fill-
ing were realized under vacuum to avoid humidity con-
tamination. Once sealed, the cartridge was inserted in
the Bridgman furnace. The experimental cartridge in-
cludes a quartz crucible and a system of volume compen-
sation. The cylindrical crucible has an inner diameter of
10 mm and a length that enables about 10 cm of solidi-
fication, thus allowing the study of the interface pattern
dynamics from the onset of morphological instability to
the microstructural steady-state.

The thermal gradient G is imposed by regulating the
hot and cold zones temperatures, located above and be-
low the adiabatic zone containing the interface. After
thermal regulation, the sample is partially melted, keep-
ing a solid seed to preserve the crystal orientation, and
homogenized for 24 hours. Solidification proceeds by
pulling the crucible into the cold zone at a constant ve-
locity V .

While the DECLIC-DSI enables the study of various
complex patterns, from planar, to cellular, to dendritic,
we only focus here on a range of parameters that yields
oscillations of a cellular array. These oscillations can be
observed both on the vertical position of the cell tip in
z, and on the cell area seen from the growth direction.
Here, we base our analysis on the time evolution of the
apparent cell area in the direction of solidification, as
described in the following subsection.

C. Post processing

Details of the image processing of the microgravity ex-
periment were already published [30]. Measurements of
apparent surface A(t) of cell caps seen from the top are
done with the software Visilog R© using macro procedures
specifically developed for the systematic processing of mi-
crogravity experiments images.

Starting with the raw image of the interface (Fig. 1a),
each initial gray-level image is transformed into a bi-
nary image after defining a threshold value that ensures
that a large majority of cells are disconnected from their
neighbors. Then, in order to get rid of defects orig-
inating from tip-splitting events and from brighter re-
gions at groove bottoms, we used the Opening function
of Visilog R©, which removes small objects and defects,
and hence disconnects particles. The resulting threshold
image permits to identify the apparent contour of cells,
as shown in Fig. 1b by superimposing the original image
with the surfaces contour. One can then tag each cell
(Fig. 1c) and follow the evolution in time of its position
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FIG. 1: Image processing steps for the experimental videos:
(a) Initial raw image (3.2×3.2 mm2); (b) Contours of apparent
surface of cell caps on corrected binary image superimposed
to the initial image; (c) Tagged binary image. Cells A and B
correspond to the cells analyzed in Fig. 2. The raw video (a)
is attached in the Supplemental Material.

and area. In order to track individual cells in time, we
consider that each cell conserves its index if its center
in the new image n+ 1 is located within its area on the
previous image n. For the present example of images in
Fig. 1 at a pulling rate V = 1 µm/s, raw images were
acquired at a frequency of 0.5 image/sec. Yet it was suf-
ficient to analyze a series of images sampling at one image
per minute to obtain unbiased measurements and respect
the tagging procedure.

Then, using gnuplot we fitted the time evolution of
the cell areas A(t) to a periodic function a + b t +
c sin [2π(t− t0)/τ ], where a, b, c, t0, and τ are free fitting
parameters, as illustrated in Fig. 2. The linear baseline of
oscillation a+ bt was found to provide a better fit to the
experimental data (the fit with b = 0 is not illustrated
in Fig. 2). Hence, the sinusoidal fits readily provide the
value of the oscillation period τ and the oscillation phase
θ(t) = 2π(t− t0)/τ for each cell. Note that cells A and B
in Figs 1 and 2, also corresponding to results in Fig. 8a,
exhibit an example of short-range oscillation correlation
with two neighbor cells oscillating in phase opposition.
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FIG. 2: Time evolution of the areas of cells A and B in Fig. 1
(symbols), fitted to sinusoidal functions (lines).
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III. PHASE-FIELD SIMULATIONS

A. Phase-field model

The phase-field model used here is based on the thin-
interface one-sided model with corrective anti-trapping
current developed in Refs [32, 33], for the solidification
of a dilute binary alloy at an imposed pulling velocity V
within a temperature gradient of amplitude G, both in
the z direction, such that the temperature profile follows

T = T0 +G(z − V t) , (1)

where T0 is the reference (i.e. solidus) temperature for
an alloy of nominal solute concentration c∞. In order to
enhance numerical stability for larger grid spacings [34],
the equations of evolution of the phase-field ϕ and the
dimensionless solute field U — i.e. Eqs (68) and (69) in
Ref. [32] — are written as a function of the precondi-
tioned phase-field ψ with

ϕ(x, y, z, t) = tanh

{
ψ(x, y, z, t)√

2

}
. (2)

Since the 1D phase-field solidification problem admits
an explicit traveling wave solution which has the form

ϕ(z, t) ∼ − tanh[(z− Ṽ t)/
√

2], Eq. (2) makes ψ(x, y, z, t)
similar to a signed distance function from a planar in-
terface. In terms of this preconditioned phase-field, the
equations of the model become

[
1− (1− k)

z − Ṽ t
l̃T

]
as(n)2

∂ψ

∂t
= ~∇

[
as(n)2

]
~∇ψ

+ as(n)2
[
∇2ψ − ϕ

√
2|~∇ψ|2

]

+
∑

m=x,y,z

[
∂m

(
|~∇ψ|2as(n)

∂as(n)

∂(∂mψ)

)]

+ ϕ
√

2− λ(1− ϕ2)
√

2

[
U +

z − Ṽ t
l̃T

]
, (3)

(
1 + k − (1− k)ϕ

)∂U
∂t

= D̃ ~∇ ·
[
(1− ϕ)~∇U

]

+ ~∇ ·
[(

1 + (1− k)U
) (1− ϕ2)

2

∂ψ

∂t

~∇ψ
|~∇ψ|

]

+
[
1 + (1− k)U

] (1− ϕ2)√
2

∂ψ

∂t
, (4)

where

U =
1

1− k

[
c/c0l

(1− ϕ)/2 + k(1 + ϕ)/2
− 1

]
(5)

is the dimensionless supersaturation with c the solute
concentration, c0l = c∞/k the solute concentration of a
flat interface at the solidus temperature T0, k is the in-
terface solute partition coefficient. Space is in units of

the phase-field diffuse interface width W and time is in
units of the relaxation time τ0 at the temperature T0 [32].
Thus, the non-dimensional values of the diffusion coeffi-

cient D̃, pulling velocity Ṽ , and thermal length l̃T are

D̃ =
Dτ0
W 2

= a1a2
W

d0
, (6)

Ṽ =
V τ0
W

= a1a2
V d0
D

(
W

d0

)2

, (7)

l̃T =
lT
W

=
lT
d0

1

W/d0
, (8)

and the coupling factor

λ = a1
W

d0
, (9)

where D is the solute diffusion coefficient in the liq-
uid, lT = mc∞(1 − 1/k)/G is the thermal length with
m the liquidus slope, and d0 = Γ/ [mc∞(1− 1/k)] is
the capillarity length with Γ the Gibbs-Thomson coef-
ficient of the solid-liquid interface, a1 = 5

√
2/8, and

a2 = 47/75 [35, 36]. We consider the standard form of
the surface tension anisotropy γ(n) = γ̄as(n) for a cubic
material

as(n) = (1− 3ε4)

[
1 +

4ε4
1− 3ε4

(
n4x + n4y + n4z

)]
, (10)

where γ̄ is the average surface tension in a 〈100〉 plane,
n is the unit normal vector to the interface pointing to-
ward the liquid phase and ε4 is the anisotropy strength.
In our simulations, the crystallographic axes are aligned
with the coordinate system. Since the interface nor-

mal n = −~∇ψ/|~∇ψ| can identically be substituted by

n = −~∇ϕ/|~∇ϕ|, we use the latter because the steeper
variation of ϕ through the interface yields a more accu-
rate direction of the normal n. Also, note that the nota-
tion ϕ in Eqs (3) and (4) only stands for tanh(ψ/

√
2).

B. Implementation

The phase-field Eqs (3) and (4) are solved on a grid of
cubic elements of dimension ∆x using finite differences
and a Euler explicit time stepping scheme with a time
step ∆t. The expressions of the second and third terms
in the right-hand side of Eq. (3) are fully developed, while
the first and second terms in the right-hand side of Eq. (4)
are discretized in a similar fashion as described in the
Appendix B of Ref. [32]. Further details on the imple-
mentation of the corresponding 2D model can be found
in Ref. [37].

The model is implemented for massively parallel com-
putation on a Graphic Processing Unit (GPU) with the
CUDA programming language [38]. The implementation
does not make advanced use of the GPU shared mem-
ory, which means that the cache memory is handled by
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the GPU itself. The time loop is thus composed of two
main kernel calls, one for the calculation of ψ at the next
time step and one for the calculation of U at the next
time step; the time stepping is then achieved by swap-
ping pointer addresses between arrays containing values
of ψ and U at the current time step and arrays contain-
ing values at the next time step. We apply a periodical
shift of the domain in the z direction in order to follow
the solid-liquid interface.

Additionally, we may choose to add a small random
noise, to represent microscopic fluctuations at the ori-
gin of the initial planar interface destabilization. This
is achieved by adding a term δi,j,kFψ

√
∆t to the value

of ψ at the next time step, where δi,j,k is a random
number generated with a flat distribution in the range
[−0.5, 0.5] for each grid point (i, j, k). While a more
quantitative incorporation of noise in the diffusion field is
possible [33, 39], the present formulation introduces small
fluctuations in the system minimizing the computational
cost of noise addition. The amplitude of the noise Fψ
was taken here equal to 0.01 or 0.02 (see Section III D),
which corresponds to the order of magnitude obtained
from a quantitative analysis [39, 40].

C. Parameters

Nominal parameters for the SCN-Camphor alloy,
which can be found in the literature [41, 42], are summa-
rized in Table I. For different pulling velocities, namely
V = 0.75, 1.0, 1.5, and 2.0 µm/s, simulations are respec-
tively achieved with a diffuse interface width W/d0 = 95,
79, 63, and 67, and a finite difference grid spacing
∆x/W = 1.2, 1.2, 1.2, and 1.0, such that ∆x ∼ V −1/2

with respectively ∆x ≈ 6.0, 5.0, 4.0 and 3.5 µm. The
time step is always taken as ∆t ≈ ∆x2/(6D).

While most simulations in this article are achieved with
a value of interface anisotropy ε4 = 0.007, some simu-
lations also use a slightly higher crystalline anisotropy
ε4 = 0.011. This value of ε4 was suggested by recent ex-
perimental measurements of cell and dendrite tip shapes
in SCN alloy, which yielded a higher value than initially
estimated [43]. When using ε4 = 0.011, simulations at
various pulling velocities V = 0.5, 0.75, 1.0, 1.1, 1.2, and

Parameter Symbol Value Unit

Camphor concentration c∞ 0.24 wt%

Liquid diffusion coefficient D 270 µm2/s

Solute partition coefficient k 0.21

Liquidus slope m −1.365 K/wt%

Gibbs-Thomson coefficient Γ 0.0648 Kµm

Anisotropy strength ε4 0.007

TABLE I: Physical parameters of the dilute succinonitrile-
camphor alloy.

1.5 µm/s, respectively use W/d0 = 95, 95, 79, 63, 63,
and 63, together with ∆x/W = 1.2 for all velocities.

The value of the thermal gradient at the interface is
not directly measured in the DECLIC-DSI. A value of
G = 28 K/cm was originally estimated from the change
of interface position at rest under a change of temper-
ature of the hot and cold temperature-controlled zones.
However, a lower value of G = 19 K/cm was recently es-
timated from additional heat transfer calculations as well
as theoretical modeling of planar interface recoil measure-
ments prior to interface destabilization [31]. The latter
study, together with additional simulations to be pre-
sented elsewhere, indicate that interface recoil measure-
ments can be quantitatively fitted with different thermal
drift parameters for values of G ranging approximately
between G = 12 K/cm and G = 19 K/cm. Hence, we
have chosen to investigate oscillatory modes for a range
of values of G guided by those estimates. The present
simulations show that a value of G in the lower range
of those estimates yields a better agreement with experi-
mentally observed spacings. Simulations for larger values
of G up to the initial upper bound of 28 K/cm also pro-
vide broader insights into the effect of the temperature
gradient and are thus presented in this article.

A recent study on the initial transient recoil of the
planar interface [31] has also highlighted uncertainties
on the partition coefficient k that could have a value as
low as 0.138 in the considered composition range. As
previously discussed in Ref. [28] (discussion pertaining
to Fig. 3) as well as later in Section IV E of the present
article, the initially considered parameters G = 28 K/cm
and k = 0.21 tend to overestimate the critical velocity
Vc = DGk/[(k − 1)mc∞] ≈ 0.61 µm/s, while a cellular
pattern is already apparent for V = 0.5 µm/s in the
experiments. Both a lower temperature gradient and a
lower partition coefficient could be at the origin of this
discrepancy. In this article, we chose to keep the value
k = 0.21 found in the literature [41, 42], and explore only
the influence of control parameters G and V .

While the thermal configuration in the experimental
setup, and the subsequent thermal history during the ex-
periment, is more complex than initially anticipated [31],
the objective of the present article is not to investigate
the thermal evolution of the experimental setup. Hence,
we only use the comparison between frozen temperature
profiles for a temperature gradient from G = 28 K/cm
to G = 12 K/cm to discuss thermal effects on the oscil-
latory dynamics of cellular patterns. Other effects that
have not so far been accounted for in simulations but
have been evidenced in experiments include the effect of
the interface curvature on microstructure selection, and
the influence of the homogenization time (24 hours in the
present experiments), which is associated with the estab-
lishment of a solute boundary layer in the liquid that may
affect the dynamical selection of microstructures [44].
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D. Simulations

1. Spatially-extended simulation

The spatially extended simulation presented in Sec-
tion IV A starts with a planar interface at rest at the
liquidus temperature, with homogeneous concentration
in the bulk liquid and solid (at ϕ ≈ ±1.0). Thus,

we set ψ(x, y, z, t = 0) = z − l̃T , since ψ is a signed
distance function with z = 0 at the solidus tempera-
ture, and U(x, y, z, t = 0) = −1.0 throughout the en-
tire domain. The total size of the simulation domain
is 1005 × 1005 × 4061 µm3, i.e. 152 × 152 × 608 grid
points in x, y and z respectively, simulated over 10 hours
of experiment, with no-flux boundary conditions on the
boundaries normal to the growth direction z and peri-
odic boundary conditions on the boundaries normal to
x and y. We destabilize the planar interface by enabling
noise with Fψ = 0.01 in the equation of motion of ψ. The
simulation was achieved in less than 67 hours on a single
GPU.

2. Identification of spacings stability ranges

The second series of simulations consists in identifying
the spacing stability range of a single cell in a hexago-
nal array. To do so, we simulate one quarter of a cell
in a hexagonal array. We enforce hexagonal symmetry
by using boundary conditions illustrated in Fig. 3 (red
domain) and a dimension ratio LY /LX as close as possi-

ble to
√

3/2 using an integer number of grid points. The
boundary conditions on the x boundaries as well as on
the lower y boundary are no-flux, while the conditions at
the higher y boundary are “anti-symmetric”. This latter
condition is similar to a no-flux condition with an ad-
ditional reflexion with respect to x, i.e. the boundary
condition on a field f(x, y, z) is fi,Ny,k = fNx+1−i,Ny−1,k
where (i, j, k) are grid indices corresponding the (x, y, z)
coordinates, (Nx, Ny, Nz) are the number of grid points
in (x, y, z), i.e. 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and 1 ≤ k ≤ Nz,
and the boundary condition is applied on the plane de-
fined by j = Ny − 1/2.

First, starting with the initial condition of a planar in-
terface at rest at the liquidus temperature, we simulate a
small spacing Λ ≈ 50 µm for different temperature gra-
dient G and velocities V . We activate the destabilization
of the system by enabling noise with Fψ = 0.01 in the
equation of evolution of ψ. Then, we use the final states
obtained in these simulations as the initial condition for
ψ and U in simulations at progressively larger spacings
Λ, i.e. with a greater number of grid points in x and
y, by stretching and bilinearly interpolating values of ψ
and U . We repeat that procedure until we reach the end
of the stable branch in Λ, usually occurring with a tip
splitting of the cell.

Typically, we represent a stable state by plotting the
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FIG. 3: Schematics of the domains for the simulation of
hexagonal arrays of cells. A quarter of cell in such an ar-
ray of spacing Λ can be obtained by simulating a domain of
size Λ/2 × Λ

√
3/4 in x × y (red box) with no-flux boundary

conditions in x and at the low y boundary and an “anti-
symmetric” boundary condition on the top y boundary (see
text). A hexagonal array of cells containing three groups of
cells A, B and C can be simulated with 1.5 cells within a do-
main of size 3Λ/2 × Λ

√
3/2 in x × y (blue box) with no-flux

boundary conditions in y and “helical” boundary conditions
on x (see text).

cell tip undercooling as a function of the cell spacing (as
in Fig. 10), where the cell tip undercooling is calculated

from the position of the tip ztip as ∆ = 1 − ztip/l̃T . It
is worth mentioning that since we did not investigate
here the lower limit of spacing, some states reported in
Fig. 10 at low Λ may be metastable with respect to cell
elimination [33].

In some cases, a gap appears in the spacing stability
range (see Section IV B), with a second branch of stable
states at larger spacings. In order to find this second
branch, we start from a lower temperature gradient that
does not exhibit a gap in the stable spacing range, and
impose a temperature gradient ramp with time to reach
the investigated gradient. We repeat that procedure for
progressively higher gradients until we find no more sta-
ble state. (For instance, in Fig. 10a discussed later, the
rightmost stable branch of solutions is obtained by start-
ing from a stable structure on the continuous branch at
G = 12 K/cm, and then progressively increasing G until
the high-Λ branch disappears.)

Each simulation, corresponding to each individual
point in Fig. 10, typically lasted between 45 seconds and
45 minutes one a single GPU. For instance, simulations in
Fig. 10a at V = 1 µm/s and G = 10 K/cm over 2 h were
achieved in 45 seconds (for Λ ≈ 54 µm) to 41 minutes
(for Λ ≈ 483 µm).
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(a)	
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(c)	



(b)	



(d)	



FIG. 4: Post processing steps of the phase-field simulations:
(a) Solid-liquid interface, i.e. contour ψ(x, y, z) = 0 seen from
the liquid; (b) Isothermal intersect (blue lines) of the inter-
face; (c) Binary image of the areas of cells; (d) Final processed
result with numbered cells and Delaunay triangulation from
the centers of cells. The three cells labeled A, B and C in (c)
correspond to the cells illustrated in Fig. 5 and 8b. Movies
of the entire simulation represented as in (a) and (d) are at-
tached as Supplemental Material.

3. Hexagonal array simulations

In the final series of simulations, we study the coher-
ent oscillations of three groups of cells in a hexagonal
array. To do so, we use the quarter of cell obtained from
the simulations described above, and repeat it symmet-
rically six times as shown in Fig. 3 (blue domain) with
no-flux boundary conditions in y and “helical” boundary
conditions in x. This latter condition is equivalent to a
periodic boundary condition with an additional reflex-
ion with respect to y, i.e. f1,j,k = fNx−1,Ny+1−j,k and
fNx,j,k = f2,Ny+1−j,k if the boundary condition is applied
to f(x, y, z) on the planes i = 3/2 and i = Nx − 1/2.
Noise in these simulations is with Fψ = 0.02.

The typical simulation time for such simulation on a
single GPU is between 5 and 25 hours. For instance, the
simulation of Fig. 12b at G = 28 K/cm and V = 1 µm/s
over 20 h lasted 7 h, and the simulation of Fig. 13 at
G = 13 K/cm and V = 1 µm/s over 50 h lasted 25 h.

E. Post processing

We process the images of the solid-liquid interface, i.e.
the contour ψ(x, y, z) = 0, using the software tools Par-
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FIG. 5: Time evolution of the areas of cells A, B and C of
Fig. 4c. The areas of cells (symbols) are fitted to a sinusoidal
function (lines) in order to extract their oscillation period τ .

aview and ImageJ. In Figure 4, the outer square shows
the simulation domain of cross-section 1005× 1005 µm2

in x × y, with periodic boundary conditions, seen from
the liquid side, like in the experimental pictures. The
raw image of the solid-liquid interface appears in Fig. 4a.
We calculate the intersect of the interface ψ(x, y, z) = 0
with an isothermal plane z = z0 located between the z
locations of the tips and that of the grooves between cells.
From this intersection, plot in blue in Fig. 4b, we build
a binary image of the areas, as shown in Fig. 4c (col-
ors and annotations were only added to the black and
white image for the sake of the discussion in the follow-
ing paragraphs). Next, we process the sequence of binary
images of cells in order to number the cells, get the lo-
cation of their centers and calculate their areas. This
processing step is performed using a specifically designed
script within ImageJ. Each cell is followed in time us-
ing a criterion of proximity of cell centers from frame to
frame. New cells originating from tip splitting events are
attributed a free index, while eliminated cells leave an in-
dex vacant. Additionally, that script builds a Delaunay
triangulation with the location of the center of the cells,
and produces the final result illustrated in Fig. 4d. The
videos of the interface before (a) and after (d) such post
processing are attached to the article as Supplemental
Material.

We process each frame of the movie with this procedure
in order to obtain the time evolution of the projected area
of each cell. Symbols in Fig. 5 show the areas A(t) of cells
A, B, and C from Fig. 4c, each of them normalized by its
average value in time. Then, the values of A(t) are fitted
to a periodic function a+ b exp (c t) sin [2π(t− t0)/τ ] us-
ing the software gnuplot, where a, b, c, t0, and τ are free
fitting parameters. The fitted functions for cells A, B and
C appear as lines in Fig. 5. The exponential part of the
fitting function was introduced to facilitate fitting when
the oscillation amplitude is increasing or decreasing, e.g.
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FIG. 6: Trajectories of the normalized areas of cells A, B and
C of Fig. 4 in the [A(t), A(t + τ/4)] plane (a) and phases of
all cells at a given time t on the unit circle (b), where cells A,
B and C appear as larger full symbols.

for Cell A in Fig. 5.
Finally we extract the oscillation phase of each cell by

plotting A(t+ τ/4) vs A(t), such as in Figure 6a, where
the trajectories of cells A, B, and C appear oscillating
around their time average (1, 1). Hence, at a given time
t, for which cells A, B, and C are marked as symbols
in Fig. 6a, the oscillation phase of each cell is directly
obtained as θ(t) = arctan [(A(t + τ/4) − 1)/(A(t) − 1)].
The phases of all cells in the simulation of Fig. 4 at a
given time t are reported on the unit circle in Fig. 6b
where cells A, B and C are marked with larger symbols.

IV. RESULTS AND DISCUSSION

A. Spatially extended cellular arrays

Experimental in situ observations reveal that, for a
range of velocities yielding cellular interface patterns,
the whole 3D array may exhibit an oscillatory behav-
ior. For an estimated experimental temperature gradi-
ent G ≈ 19 K/cm, oscillations appear from V = 0.5 to
1.5 µm/s. Oscillations affect small regions of the cell
array when V = 0.5 µm/s, the whole pattern oscillates
for V = 1.0 µm/s, and oscillations are only transient for
V = 1.5 µm/s. We illustrate this oscillatory behavior for
V = 1 µm/s in Figure 7, with an experimental picture in
(a) and a phase-field simulation at G = 28 K/cm in (b).

This oscillatory behavior is characterized by an oscil-
lation in time of the apparent area A(t) of each cell, to-
gether with the oscillation of the cell tip height in z ob-
tained from interferometry [45]. The amplitude of A(t)
oscillations may either stay constant or increase, in which
case cells eventually split into two cells, then one of these
two cells usually oversteps and eliminates the other as
oscillation resumes. This behavior represents a major
difference with that reported so far in thin sample exper-
iments. Indeed, in confined thin sample experiments, cell
tip splitting usually inhibits oscillations by stabilizing the
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(a) Microgravity experiment 

200 µm 

Hexagon 

Tip splitting 

(b) Phase-field simulation 

FIG. 7: Oscillating cellular pattern observed from the liquid
side at V = 1 µm/s in the experiment at G ≈ 19 K/cm (a)
and in the phase-field simulation at G = 28 K/cm (b). The
high spatial disorder of the array is highlighted by both the
ring-shaped Fast Fourier Transform of the image [“FFT” inset
in (a)] and the large number of array defects (the number of
nearest neighbors of each cell is indicated on the right-hand
side). Tip splitting events are at the origin of the creation
and subsequent elimination of new cells in the array, hence
preventing the array from stabilizing as a perfect hexagonal
arrangement. All cells oscillate with nearly the same period
but different phases. However, as illustrated in Fig. 8, in
locally ordered regions, regular hexagonal or square patterns
exhibit coherent breathing mode oscillations.
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local interface as a multiplet structure [13].

Typically, as illustrated in Fig. 7a, experiments show
a complex interface dynamics, with a constantly evolv-
ing spatial organization of cells, nourished by regular
tip splitting events. At the onset of planar destabiliza-
tion, the cellular array is very disordered, and it then
evolves towards a relatively more spatially ordered pat-
tern. However, the resulting pattern is still rather irregu-
lar, as can be seen from the cells tagged with their num-
ber of immediate neighbors on the right side of Fig. 7 (a
perfect hexagonal pattern should lead to a uniform distri-
bution of cells tagged with the number 6), as well as from
the ring-shaped appearance of the Fast Fourier Trans-
form of the experimental pattern (FFT inset in Fig. 7a).
While tip splitting events are not at the origin of the
initial array disorder, their frequent occurrences have a
critical influence in maintaining a significant amount of
spatial disorder in the array. Tip splitting events are
often observed to occur at the late stage of a growing os-
cillation, when the cell area exceeds a threshold favoring
the division of one cell into two cells. Even though the
pattern does not display any long-range order, it often
exhibits local short-range order, in the form of regions
with square or hexagonal spatial arrangement of cells,
labelled Hexagon and Square in Fig 7.

This oscillatory behavior, and its features — namely
the lack of long-range spatial order, maintained by the
occurrence of tip splitting events, and the existence of lo-
cally ordered regions — are reproduced by the phase-field
simulation in Fig. 7b. Like in the experiments, oscilla-
tions commonly lead to tip splitting when their amplitude
exceeds a threshold. Similarly as in experiments, every
cell in the array oscillates with an oscillation period that
is insensitive to the spatial order and is remarkably homo-
geneous throughout the array, with a range of frequencies
from the fit of a periodic function (see Section. III E) from
τ = 42.7 to 52.7 min, in good agreement with the average
experimental period τ = 45.6 min at V = 1 µm/s.

While the oscillation period is uniform throughout ar-
ray, cells do not display a long-range coherence of oscil-
lations. This is illustrated in Figure 8, where we plot
the oscillation phase of all cells on the unit circle at two
times half a period apart, in the experiment (a) and the
phase-field simulation (b). The distribution of phases on
the unit circle shown in Fig. 8 reveals a large scatter of
phases, therefore highlighting the absence of global coher-
ence, unlike in thin-sample experiments [13]. However,
in regions where some spatial order is maintained long
enough, a synchronization of oscillations among neighbor
cells appears. This is shown in Fig. 8 for two neighbor
cells A an B in the experiment, which are beating in op-
position of phase, i.e. with a π phase difference, as well
as for three cells A, B, and C within a hexagonal arrange-
ment in the phase-field simulation, beating with a phase
difference of approximately 2π/3. The phase differences
in Fig. 8b are not exactly 2π/3, as the phase difference
between A and C seems closer to π/2 with the two com-
plementary phase differences around 3π/4. That devi-
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FIG. 8: Oscillation phases θ plotted on the unit circle at
two times half a period (τ/2) apart with different colors and
symbols, for the experiment (a) and the simulation (b) from
Fig. 7. The large scatter of phases indicates the absence of
global coherence of oscillations. However, in locally ordered
regions, temporary synchronization between first-neighbor
cells appears in both experiment and simulation, either with
phase opposition (a), or with a ±2π/3 phase shift (b), which
correspond to the basic breathing modes.

ation from a perfect 2π/3 breathing mode oscillation is
discussed in Section IV C, and explained by the presence
of a second oscillatory behavior, with phase differences
oscillating around 2π/3 with a longer oscillation period.

While the breathing modes illustrated in Fig. 8 lead
to a short-range phase coherence, this synchronization
does not extend beyond immediately neighboring cells,
in contrast to previous thin-sample experiments [13]. As
discussed throughout this section, the oscillatory behav-
ior of individual cells are independent of the array topol-
ogy. However, their synchronization into a 2π/3 breath-
ing mode strongly depends on the (local) hexagonal sym-
metry of the cellular array. Hence, in our experiments,
defects such as the common penta-hepta defect tend to
prevent the synchronization of cells into a 2π/3 breath-
ing mode. The lack of long-range oscillations coherence
thus appears to be linked to the high disorder within the
array, as discussed in Sec. IV C.

Both our experiment and simulation exhibit mostly
penta-hepta defects, appearing as 5-7 pairs on the right
hand side of Fig. 7. These penta-hepta defects are the
most generic type of defects in hexagonal patterns and
they have been thoroughly studied theoretically (see e.g.
[46, 47]). Defects in general are known to play a key role
in the process of pattern selection, and hexagonal pat-
terns are among the most common in spatially extended
nonequilibrium systems [48], observed in a broad range of
experiments such as in non-Boussinesq Rayleigh-Bénard
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convection [49], Bénard-Marangoni convection [50], Tur-
ing structures in chemical reactions [51], soap bub-
bles [52], nonlinear optics [53], to only name a few.

The amount of defects in Fig. 7 is too high to make
conclusive observations on the dynamics and trajectory
of isolated penta-hepta defects within a perfect hexago-
nal pattern during directional solidification. However, we
illustrate in Fig. 9 two of these penta-hepta defects that
are sustained for the longest periods of time in our phase-
field simulation. For the two defects (a) and (b), we show
the time evolution of the number of neighbors of cells A
and B forming the penta-hepta defect (top graph), the
evolution of the normalized areas of cells A, B, and their
neighboring cells C though J (bottom graph), as well as
snapshots of the interface pattern on the right hand side
of Fig. 9. Within the penta-hepta defect in Fig. 9a, which
is maintained for two hours, cells A (five neighbors) and
B (seven neighbors) oscillate almost in phase opposition
with each other. However, while some of the surrounding
cells (gray symbols) seem to be in phase with cell A or
B, they do not exhibit any clear breathing mode oscil-
lations. The continual topological evolution of the array
induces for instance the phase shift between A and B in
(a2), in contrast to an almost perfect phase opposition
in (a1) and (a3). Fig. 9b also illustrates the behavior of
a penta-hepta defect periodically switching to an hexag-
onal array as cells areas oscillate over a 1.5 hour period
of time. The two cells A and B also appear to be in
phase opposition. When the areas of cells A and B are
close to each other, the number of neighbors for the two
cells may reach six as the pattern locally approaches a
perfect hexagon, but when one of the two cells becomes
much larger than the other, it becomes the cell with seven
neighbors while the other only has five neighbors. Thus,
in Fig. 9b, cells A and B may switch from respectively
7 and 5 neighbors in (b2) to 5 and 7 neighbors in (b3).
Later on, as the amplitude of oscillations increases, cell
A exhibits a tip-splitting event during the next oscilla-
tion period (not represented in Fig. 9b), hence further
disturbing the local topological order.

An additional effect to consider is the curvature of the
interface along the cylindrical cross-section observed in
our experiments [31], which may induce an overall move-
ment of cells toward the center or the outside of the cru-
cible, hence acting as a source of defects even in the ab-
sence of oscillations [54]. While the present article focuses
on the origin and dynamics of breathing mode oscilla-
tions, it would be interesting to investigate the dynamics
of isolated penta-hepta defects within a perfect hexago-
nal pattern, which would not be limited to the narrow
band of control parameters exhibiting oscillations.

In the remaining subsections, we use phase-field simu-
lations to investigate the underlying mechanisms of the
breathing mode dynamics in 3D, more specifically focus-
ing on hexagonal patterns, and we explore their depen-
dence upon growth conditions. To do so, we break down
the problem into simpler sub-systems of one (or more ac-
curately a quarter of one) cell in Section IV B, and of 1.5
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FIG. 9: Oscillation dynamics of penta-hepta defects in the
phase-field simulation of Fig. 7b. For two different penta-
hepta pairs of cells (A,B) in (a) and (b): the top panel shows
the time evolution of the number of neighboring cells to cell
A and cell B and the bottom graph shows the time evolution
of the area of cells A (◦), B (�), as well as each surrounding
cell C though J (gray symbols). Each cell area is normal-
ized with respect to its time-averaged value

∫ τ
0
A(t′) dt′/τ ,

its minimum, and its maximum value within the represented
time range. Panels on the right hand side illustrate the solid-
liquid interface with labeled cells A through J at three differ-
ent times respectively marked (ak) and (bk) on the left hand
side graphs. The time origin in (a) and (b) is respectively
ta ≈ 342 min and tb ≈ 162 min.

cells with a forced hexagonal symmetry in Section IV C.
These simulations help us explain the conditions for the
occurrence of breathing modes, their link to the cell spac-
ing stability range (Sections IV B and IV D), to the spa-
tial order of the array (Section IV C), the long time range
dynamics of sustained breathing mode oscillations (Sec-
tion IV C), and finally the dependence of the oscillation
period upon growth conditions (Section IV E).
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B. Spatially in-phase oscillations of hexagonal
patterns

As detailed in Section III D 2, we explore the range
of individual cell stability imposing hexagonal boundary
conditions on a quarter of cell in a domain of size Λ/2×
Λ
√

3/2 in x× y, for various Λ, G and V .
First, for ε4 = 0.007 and V = 1 µm/s, we investi-

gate the influence of the thermal gradient G. Figure 10a
shows the resulting tip undercooling as a function of the
cell spacing Λ (see Fig. 3) for all stable states identi-
fied between G = 10 and 28 K/cm. This graph shows
a continuous branch of solutions at low G ≤ 12 K/cm
spanning until Λ > 400 µm. Increasing G, this continu-
ous branch splits into two separate branches of solutions
for 12 < G ≤ 16 K/cm. For G = 18 K/cm and above,
only the leftmost (i.e. low spacing) branch remains. As
expected, a lower temperature gradient broadens the sta-
bility range towards larger spacings.

Next, we investigated the influence of the solidification
velocity on the stable spacing range, using ε4 = 0.011 and
G = 12 K/cm, for velocities from V = 0.5 to 1.5 µm/s.
The results, plot in Fig. 10b, display a similar pattern as
in Fig. 10a, with a continuous long branch of solutions
for low undercooling, i.e. here for high velocities, then
a stable spacing gap at V ≤ 1.0 µm/s, and finally the
disappearance of the stable branch at high Λ for V <
0.75 µm/s. The presence of a spacing stability gap for low
velocities is consistent with previous results from phase-
field simulations on a model SCN-salol alloy [55].

An interesting result is the fact that toward the end of
the leftmost stable branch, as well as at the limits of the
rightmost branch for values of (G,V ) exhibiting a stable
spacing gap, cells at the limit of stability exhibit an oscil-
lations of the tip position in time. This behavior usually
occurs in a very narrow band of spacings, schematically
illustrated with a thick gray line in Fig. 10. This spacing
range typically lies between the last point represented in
Fig. 10 and the next point (not drawn because unstable).
The oscillation of cells at the end of a spacing stability
branch was also already reported in phase-field simula-
tions for a different alloy system [55], and could hence be
a generic phenomenon in directional solidification.

Oscillations of the cell tip undercooling are illustrated
in Fig. 11a for the three cells marked with black sym-
bols at G = 16 K/cm in Fig. 10a, i.e. for Λ ≈ 188, 268,
and 282 µm. At the end of the leftmost stable branch at
Λ ≈ 188 µm (◦) as well as at the left end of the rightmost
stable branch at Λ ≈ 282 µm (�) the cell tip undercool-
ing oscillates around its average value. In a very narrow
range of spacings, these oscillations may be sustained for
a few hours, e.g. for Λ ≈ 282 µm (�). Most usually,
they decay rapidly, but low amplitude oscillations can
be stimulated by adding noise, e.g. using Fψ = 0.03 for
Λ ≈ 188 µm/s in Fig. 11a (◦). Unstable spacings close to
the limit of stability, such as Λ ≈ 268 µm (�), typically
lead to oscillations increasing in amplitude and hence to
a tip splitting instability.
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FIG. 10: Phase-field predictions of stable states for hexagonal
arrays of cells for different temperature gradients at a velocity
V = 1 µm/s (a), and for different velocities at a temperature
gradient G = 12 K/cm (b). The vertical axis ∆ is the cell
tip undercooling below the liquidus temperature normalized
by the freezing range mc∞(1− 1/k). Calculations in (a) were
performed with ε4 = 0.007, while calculations in (b) are with
ε4 = 0.011. Both sets of parameters exhibit the opening of
a stable spacing gap in the vicinity of G = 12 K/cm and
V = 1 µm/s, yielding two stable branches when increasing
G or decreasing V . The gray line in (a) and (b) illustrates
schematically the limit of stability where cells exhibit oscil-
lations of their position (i.e. undercooling) in time within a
narrow range of spacings. This is exemplified for V = 1 µm/s
and G = 16 K/cm at Λ ≈ 188, 268, at 282 µm in Fig. 11.
The green background zone for V = 1.1 to 1.5 µm/s in (b)
illustrates the area investigated in Fig. 14, where breathing
mode oscillations can be induced by a change of growth con-
ditions (see Section IV D), as exemplified at V = 1.1 µm/s in
Fig. 14c and d, respectively for Λ ≈ 193 and 206 µm.

Our interpretation of the origin of these oscillations
points at a complex interaction between the cell shape,
the resulting amount of rejected solute in the liquid, the
interface concentration, and the cell growth velocity. As
illustrated in Fig. 11, oscillations of the cells vertical tip
position, i.e. undercooling (Fig. 11a), are correlated to
their area (Fig. 11b), as a more advanced tip, i.e. a tip
at lower undercooling, exhibits a larger area. Hence, at
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FIG. 11: Phase-field prediction of the evolution of cell tip un-
dercooling (a) and cell tip area (b) with time at G = 16 K/cm
and V = 1 µm/s for stable cells at Λ ≈ 188 (◦), and 282 µm
(�) and an unstable cell at Λ ≈ 268 µm (�), corresponding
to the points marked with similar black symbols in Fig. 10a.

times when the cell tip is more advanced (i.e. the under-
cooling ∆ is lower), the cell is larger, thereby rejecting
more solute in the liquid and slowing down its growth.
On the other hand, when the cell recoils in the temper-
ature gradient frame (i.e. as ∆ increases), the interface
solute concentration increases, hence leading to an in-
crease in solute gradient ahead of the interface, and a
subsequent increase in growth velocity. The subtle in-
teraction between interfacial equilibrium, solute-driven
growth, and pattern evolution may thus give rise to oscil-
lations in a narrow range of spacings for given control pa-
rameters. These oscillations involve similar interactions
between the cell width and the diffusion boundary layer
as the oscillations described by Karma and Pelcé [56].
However, the latter are specific to small spacings that are
unstable to cell elimination. Oscillations over this small
Λ range originate from the fact that the cell tip under-
cooling is a steeply decreasing function of spacing. In
contrast, the oscillations discussed here occur at a much
larger spacing, namely close to the high-Λ stability limit
of the stable spacing range in presence of a spacing sta-
bility gap.

Such observations of individual cell oscillations tell us
that a spatially in-phase oscillation of cells in 3D arrays is
theoretically possible, that stems from cells finding them-
selves at a spacing close to the limit between stability and
instability. Hence, under given (G, V , Λ) conditions,
each individual cell constitutes an oscillator. When com-
bining several of these cells/oscillators together, micro-
scopic fluctuations prevent all of them to beat in phase
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FIG. 12: Short-range correlation of hexagonal patterns os-
cillations at V = 1 µm/s. Inside the “Hexagon” region of
Fig. 7a, three groups of cells oscillate coherently with a mu-
tual phase difference of ±2π/3 (a). The phase-field simulation
at G = 28 K/cm and Λ = 165 µm in (b) reproduces this co-
herent oscillation with a similar period.

with each other, and they ultimately synchronize into a
more stable configuration, namely a coupled 2π/3 breath-
ing mode oscillation in the case of a hexagonal local order.
Thus, in the following subsection, we show how combin-
ing three of these oscillating cells at the end of the left
branch of solutions of Fig. 10 can result in a coherent
breathing mode.

C. Spatially out-of-phase breathing oscillations of
hexagonal patterns

For V = 1 µm/s, we investigate the synchronization
of oscillating cells at the end of the left stable branch of
Fig. 10a. Figure 12 compares the breathing mode evolu-
tion of cell areas in a local hexagonal array in experiments
(a) to similar dynamics in a simulation at G = 28 K/cm
and Λ = 165 µm (b), in a forced hexagonal array as
described in Section III D.
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Like in experiments, the simulation in Fig. 12b exhibits
a breathing mode of three sub-groups of cells — namely
labeled (A), (B, D, F), and (C, E, G) — oscillating
nearly 2π/3 out-of-phase with each other, with a period
τ ≈ 44.6 min, which is close to the spatial average over
the extended array both in simulations (τ ≈ 48.1 min
in Fig. 7b) and experiments (τ ≈ 45.6 min in Fig. 7a).
For clarity we only plot the time evolution of the area of
one cell of each group, i.e. cells A, B, and C in Fig. 12.
However, the areas of other cells within the hexagon ex-
hibit a time evolution similar to either cell A, B, or C.
While the oscillations in Fig. 12b are sustained at the
scale of several hours, they exhibit an increase of the os-
cillation amplitude. This is consistent with experimental
observations of several occurrences of breathing oscilla-
tions resulting in the tip splitting of one of the cells, sub-
sequently at the origin of spatial rearrangement of the
array. Similarly as in Fig. 11, the oscillations of the ar-
eas of cells are correlated with oscillations of their tip
vertical position, i.e. undercooling (see e.g. Fig. A3d
in the Supplemental Material of Ref. [28] for an illustra-
tion of the oscillating hexagon of Fig. 12b seen from the
side). It is worth mentioning that we could not find any
2π/3 breathing mode oscillatory regime starting from the
oscillating cells at the end of the high-Λ stable spacing
branches, as in these cases one cell usually gets quickly
eliminated.

We found the longest sustained oscillations for a tem-
perature gradient G = 13 K/cm at Λ ≈ 215 µm, i.e.
just at the opening of the stable spacing gap in Fig. 10a.
In order to reach this sustained state, we started from a
hexagonal array at G = 12 K/cm with stable quarters of
cell at Λ ≈ 215 µm and increased G from 12 to 13 K/cm.
Figure 13 shows that the resulting 2π/3 breathing mode
oscillations observed at the scale of a few hours in (a)
are sustained at the scale of more than 40 hours in (b).
Hence, while no stable state exists for a single cell at this
spacing for these control parameters, the combination of
three cells in a hexagonal breathing oscillation is stable
at long time scale.

Furthermore, at this time scale, the amplitude of the
A(t) oscillations in Fig. 13b displays an additional 2π/3
breathing mode oscillation, with a period of about seven
hours. This oscillation period also appears clearly by
plotting the difference of oscillation phase between each
pair of cells (extracted following Section III E). Hence,
in Fig. 13c, we can see that the phase differences oscil-
late around the value 2π/3, i.e. 120◦. The time average
of phases difference over 40 hours in that specific case
are between 118.8◦ and 121.0◦. The presence of this sec-
ond oscillation period explains why phase differences in
large arrays are seldom exactly 2π/3 (see e.g. Fig. 8b),
since even in a perfect hexagonal array all three phase
differences at 2π/3 never exactly occurs.

Additionally, with similar parameters (i.e. G =
13 K/cm and Λ ≈ 215 µm), we performed a spatially
extended simulation containing 24 cells by repeating 96
times the stable quarter of cell on the stable branch at
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FIG. 13: Sustained oscillations of cell areas for a hexagonal
array at G = 13 K/cm, V = 1 µm/s and Λ ≈ 215 µm (see
Fig. 10a). The 2π/3 breathing mode oscillations appearing at
the time scale of a few of hours in (a) are sustained in time,
as shown over a 40 hours time period in (b). This long time
scale dynamics exhibits an evolution of the oscillation ampli-
tude of cell areas in (b), which also follows a 2π/3 breathing
mode with a period of approximately 7 hours. This additional
oscillation also appears in the evolution of phase difference be-
tween the three group of cells in (c), each oscillating around
2π/3, i.e. 120◦.
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V = 1 µm/s and G = 12 K/cm. That simulation resulted
in an oscillation phase coherence over the entire array
at the scale of more than 20 hours. This result shows
that long-range coherence is possible when starting from
a perfect hexagonal arrangement, and hence that the lack
of long-range oscillation coherence is directly due to the
absence of long-range spatial order of the array. Thus,
long-range spatial coherence of oscillations observed so
far in thin sample experiments in both cellular or eutec-
tic arrays [13, 21–25] may have been induced by forcing a
quasi-2D spatial order in a confined array. In bulk three-
dimensional experiments, such a long-range oscillation
coherence seems very unlikely, due to both the intrin-
sic array dynamics [57] and the tip splitting events that
maintain the array disorder, unless externally forcing the
spatial arrangement of the array, e.g. using local heating
through laser or UV light [57–59].

D. Relationship of spacing gap and oscillations

We have shown that a change of processing conditions
can yield stable dynamical states that cannot be identi-
fied simulating a single cell (i.e. namely that a temper-
ature gradient changing from 12 to 13 K/cm can yield
a stable oscillatory state where a single cell is unstable
at Λ ≈ 215 µm). Following the same idea, it seems con-
ceivable that a change of growth velocity may yield an
oscillatory stable state for conditions in which a single
cell is either unstable or stable but without oscillations.

We explored the possibility of observing breathing os-
cillations for control parameters yielding a continuous
range of stable spacing, i.e. in a state where the in-
dividual cells do not exhibit oscillations. To do so, we
used as initial conditions the final state of a simulation
with 1.5 cells already in a 2π/3 breathing mode regime
at G = 12 K/cm and V = 1 µm/s, corresponding to the
last stable point of the leftmost branch in Fig. 10b, i.e.
for Λ ≈ 200 µm. We used the resulting state as the initial
state for simulations at V = 1.1, 1.2 µm/s, and beyond.
For these velocities, we also explored different spacings
by either stretching or shrinking the domain using bilin-
ear interpolation of the fields to create initial conditions
at larger or smaller spacing, respectively, similarly as for
investigating stable branches for individual cells.

The results of those simulations, in Fig. 14, show that,
depending on the history of the array, breathing modes
can exist along continuous spacing branches. At V = 1.1,
and 1.2 µm/s, open symbols in Fig. 14a stand for sim-
ulations resulting in the elimination of one of the cells,
thus ending with a π breathing mode oscillation of two
cells (to be investigated in further details and presented
elsewhere). Full symbols represent simulations for which
the 2π/3 breathing mode of three cells was sustained
for at least eight oscillation periods. At V = 1.1 µm/s,
these breathing oscillations of cell areas are exemplified
for Λ = 193 and 206 µm in Fig. 14c-d. The normalized
amplitude of the resulting 2π/3 oscillations (Fig. 14a)
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FIG. 14: Presence of oscillatory breathing modes in con-
tinuous stable branches of spacing for G = 12 K/cm and
ε4 = 0.011 (green background zone in Fig. 10b). In (a), full
symbols show the average normalized cell area oscillation am-
plitude for 2π/3 breathings modes; open symbols represent
simulations with elimination of one cell, resulting in π breath-
ing oscillations of the two remaining cells. For 2π/3 modes,
the oscillation periods are given in (b). The area evolution
with time for the three cells at V = 1.1 µm/s for Λ = 193 µm
and Λ = 206 µm — tagged in (a), (b), and in Fig. 10b —
appear in (c) and (d), respectively.



15

decreases linearly with the array spacing from up to 0.8
(for V = 1.1 µm/s) to nearly zero. For larger spacings
at V ≤ 1.2 µm/s and for higher velocities V > 1.2 µm/s,
the oscillation amplitude is very small, e.g. about 2%
for V = 1.3 µm/s, and 0.5% for V=1.5 µm/s. However,
we think that these small oscillations remain relevant, as
their oscillation period follows a similar trend as slower
velocities (see Fig. 15 and corresponding discussion in the
next subsection). Fig. 14b shows a nonlinear dependence
of the oscillation period with the spacing, with a limited
absolute variation with Λ at a given V , i.e. a change of
less than 20% over the entire spacing range. A similar
decrease of oscillation period with spacing was already
predicted by phase-field simulations of the 2λ−O mode
in thin sample experiments [60]. The dependence of the
oscillation period with the growth velocity, which appear
much more important than that with the spacing, is the
focus of the following subsection.

E. Effects of growth conditions on oscillations

As illustrated by the similarity of the calculated oscil-
lation periods at G = 28 K/cm in a spatially extended
array (τ ≈ 48.1 min in Fig. 7b) and in an imposed hexag-
onal array (τ ≈ 44.6 min in Fig.12b), the oscillation pe-
riod seems unaffected by the spatial order of the array,
or lack thereof. Hence, its value depends only on ex-
perimental control parameters, namely the temperature
gradient G and pulling velocity V .

We explore the dependence of τ with the growth veloc-
ity V for cellular arrays in a 2π/3 out-of-phase breathing
mode for the two limiting cases of G = 28 K/cm and
G = 12 K/cm. To do so, we use the last (i.e. highest
Λ) point on the left stable branch in Fig. 10, and re-
peat it in a hexagonal array of 1.5 cells, as explained in
Section III D 3. For control parameters yielding a con-
tinuous stable spacing branch we also use the highest Λ
where a 2π/3 breathing mode occurs (see e.g. Fig. 14b).
These values of τ thus correspond to different values of
Λ since the end of the stable branch occurs at different
Λ for different G. However, as discussed in the previous
subsection, for given (G,V ) conditions the variation of τ
with Λ remains limited (e.g. within 20% in Fig. 14b).

Figure 15 shows the cell oscillation period τ for ve-
locities from 0.5 to 2 µm/s, in the experiments at G ≈
19 K/cm and in phase-field simulations with ε4 = 0.007
at G = 28 K/cm, and with ε4 = 0.011 at G = 12 K/cm.
The values of τ(V ) (symbols) are fitted to power laws
τ ∼ V α (lines). For the experiments, both exponent and
prefactor are similar to those found for breathing modes
in confined thin sample experiments [13], despite differ-
ent alloys and geometries. While the similarity of the
prefactor is likely coincidental, the power law exponent
of −3/2 may be generic to three-dimensional oscillations
that stem from a spacing stability limit. (Note that in
thin sample experiments, while the spatial arrangement
of cells is geometrically constrained to a quasi-2D con-
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section III C). Average oscillations periods from simulations
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are similar to those for an imposed hexagonal pattern at the
high spacing end of the leftmost stable spacing branch (open
symbols). Data points are fitted to power laws τ ∼ V α

(lines). Simulations with G = 28 K/cm yield an exponent
α ≈ −2.67. In contrast, simulations with a lower critical ve-
locity Vc ≈ 0.26 µm/s at G = 12 K/cm yield α ≈ −1.91, in
better agreement with the experimental data with α ≈ −1.51.

figuration, the cells shape is three-dimensional since the
sample thickness is usually above 50 µm.)

At V = 1 µm/s the period predicted by phase-field
simulations with G = 28 K/cm, which was the initial es-
timation of the experimental gradient, agrees very well
with experiments, both from a spatial average over the
spatially extended simulation in Fig. 7 (• in Fig. 15),
and for an imposed hexagonal array at the end of the
stable spacing branch from Fig. 10 (◦). However, the
power law fit τ ∼ V α for those simulations yields an
exponent α ≈ −2.67, which differs from the experimen-
tal observations with α ≈ −1.51. Our interpretation is
that the discrepancy is due to an overestimation of the
critical velocity for the onset of morphological instabil-
ity Vc = DGk/[(k − 1)mc∞] ≈ 0.61 µm/s when using
G = 28 K/cm and k = 0.21, when cellular patterns are
already present at V = 0.5 µm/s in the experiment.

As V → Vc we expect τ to deviate from the scaling
regime described by a −3/2 exponent, which can hence
only be found for velocities that are significantly larger
than Vc. For a lower Vc ≈ 0.26 µm/s with G = 12 K/cm,
the power law exponent α ≈ −1.91 in Fig. 15 is in much
better agreement with experiments. As pointed out in
Section III C, a recent study [31] of the transient recoil
of the planar interface has lead us to consider a tem-
perature gradient G = 19 K/cm, together with a likely
influence of the thermal history of the setup on the fi-
nal selected structures and dynamics. This study also
suggested that in this composition range, the solute par-
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tition coefficient could be lower than the value found in
the literature (namely k ≈ 0.138 instead of 0.21), which
could explain the lower value of Vc without considering a
gradient as low as G = 12 K/cm. These aspects warrants
further investigations, which are currently underway.

V. SUMMARY AND CONCLUSIONS

We have proposed an in-depth phase-field study
of breathing mode oscillations identified in three-
dimensional cellular arrays during solidification in re-
duced gravity. Our simulations reproduce the salient fea-
tures observed in experiments, namely:

• Within a narrow range of control parameters, every
cell in the solidification front exhibits oscillations of
its cross-section area and tip height;

• This range of control parameters includes primarily
cases where a spacing gap exists in the branch of
steady-state growth solutions;

• Simulations in this range of parameters yield os-
cillations of a single cell, equivalent to an in-phase
oscillation of an entire array with perfect hexagonal
symmetry;

• When combining such cells in a larger hexagonal
array simulation (i.e. with three halves of cells or
more), small fluctuations destroy the in-phase syn-
chronization of cells in the array, thereby leading
to a 2π/3 out-of-phase oscillatory breathing mode
of three groups of cells;

• In both experiments and simulations, spatially
extended cellular arrays exhibit spatial disorder,
which is maintained by frequent tip splitting events
promoted by oscillations that grow in amplitude;

• The oscillation period of cells is remarkably homo-
geneous throughout spatially extended arrays;

• While the oscillations in spatially extended ar-
rays do not exhibit long-range coherence, local
hexagonal order yields 2π/3 out-of-phase breath-
ing modes, and penta-hepta defects can lead to lo-
calized π out-of-phase breathing modes (i.e. phase
opposition).

These observations are in sharp contrast with previ-
ous reported simulations and experiments on breath-
ing modes during solidification of confined structures in
thin samples that exhibited long-range coherent oscilla-
tions [13, 21–25]. They also differ in that tip splitting
instabilities in thin sample experiments usually lead to
stable multiplet structures [13], while in our case they
only disturb the array spatial order.

Our simulations have shown that the oscillatory be-
havior of cells is linked to the stable spacing range of
a cellular array. At low dimensionless tip undercooling

∆ (i.e. high velocity and/or low temperature gradient),
the stable cell spacing Λ spans a broad continuous range
(Fig 10). At intermediate ∆, the stable spacing range
exhibits two separate branches with a gap between them
that increases with ∆, as suggested by earlier phase-field
calculations [55]. At high ∆ the stable branch for higher
Λ disappears and only one branch remains. In presence
of a Λ stability gap, or at higher ∆ (i.e. lower V or higher
G), individual cells exhibit oscillations at the ends of sta-
ble spacing branches.

The combination of several cells in this oscillatory state
at the end of the low-Λ branch leads to the short-range
synchronization of cells, and hence to breathing mode os-
cillations. Thus, depending upon the local spatial organi-
zation, cells will locally start beating in phase opposition
(in presence of a square pattern) or with a 2π/3 phase
shift with one another (in presence of a hexagonal pat-
tern). The most spatiotemporally stable breathing mode
oscillations occur just at the opening of the stable spac-
ing gap, i.e. here for V ≈ 1 µm/s and G ≈ 13 K/cm.
In hexagonal arrays, in addition to the 2π/3 breathing
mode of cells areas with a period of about 45 minutes
for V = 1 µm/s, sustained oscillations exhibit a second
2π/3 breathing oscillation of the cell area oscillations am-
plitude and of the phase-shift between cells. Thus, the
phase-shift between the three groups of cells oscillates
around 2π/3 with a period of several hours (e.g. here
approximately seven hours for V = 1 µm/s in Fig. 13).

For other parameters in the vicinity of the stable spac-
ing gap, oscillations are still possible that are sustained
at the time scale of several hours. However, most of them
display a progressive decrease or increase of the oscilla-
tion amplitude, the latter leading to the tip splitting of
one cell, as observed in experiments. Moreover, a change
in growth velocity V or thermal gradient G can lead to
oscillatory breathing modes for conditions at which an
individual cell would be either unstable (e.g. Fig. 13), or
stable without oscillations (e.g. Fig. 14). Further away
from these parameters (e.g. at lower G and/or higher V ),
we did not observe oscillatory modes. This may explain
why in experiments performed at lowerG, tip splitting in-
stabilities lead to stable multiplet structures rather than
oscillations, since the stable spacing range in these con-
ditions is likely very wide and includes a variety of stable
asymmetric cells.

We found that a perfectly hexagonal array of cells
yields a long-range spatiotemporal coherence of breath-
ing oscillations. This confirms that the lack of global
coherence in the experiments is due to the spatial disor-
der of the array. This disorder originates in both exper-
iments and simulations from the amplification of noise
by morphological instability during the transient recoil
of the interface. It is then maintained by the spatiotem-
poral dynamics of the array, as oscillations contribute to
maintaining this disorder. These results suggest that the
long-range coherent oscillations reported so far in thin
sample experiments and 2D simulations are induced by
the imposed spatial order resulting from confinement.
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Hence, while tip splitting instabilities tend to stabilize
thin sample oscillatory structures into multiplets, in 3D
tip splitting only contributes to the disorder of the oscil-
latory array, and subsequently to the lack of long-range
oscillations coherence. These observations then make it
very unlikely to observe long-range correlated oscillations
in spatially extended cellular arrays, unless possibly by
forcing their spatial organization [58, 59, 61].

Finally, while the dependence of the oscillation period
τ upon G is limited, its dependence upon V is quanti-
tatively significant (Fig 15). The experiments exhibit a
power law scaling τ ∼ V α with an exponent α = −3/2,
similar to that observed in thin sample experiments [13].
Phase-field simulations have shown that, while τ(V ) de-
viates from a power law as V gets close to the critical
velocity Vc, when V is large enough compared to Vc the
predicted power law exponent α becomes close to −3/2.
These results suggest that the τ ∼ V −3/2 scaling law may
be generic to oscillatory modes stemming from a spacing
stability limit.

Beyond the oscillatory states investigated in the
present work, the wealth of experimental data made
available by those unique three-dimensional micrograv-
ity directional solidification experiments opens several
new avenues of investigations. One important area of
investigation is the dynamical selection of the cellular or
dendritic array spacing. In particular, the origin of the
discrepancy between the selected spacings observed in ex-
periments and phase-field simulations, which may be due

to the influence of the thermal history [31] on spacing se-
lection, warrants further study. A related problem is the
dynamical selection of the array structure. While cells
tend to organize predominantly in hexagonal arrays, this
ordering is suppressed by the formation of well-developed
secondary branches. Which structure is favored as a func-
tion of growth conditions is still not well understood, in
particular in the vicinity of the cell-to-dendrite transi-
tion. Moreover, while it is well-recognized that the se-
lection of both the array spacing and structure can be
further influenced by crystal orientation, as well as grain
boundaries in the presence of several grains [37, 62], those
effects remain largely unexplored in spatially extended
three dimensional samples. Work to address several of
those issues by detailed quantitative analyses of micro-
gravity experimental data and phase-field simulations is
currently underway.
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