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A shortcut to adiabaticity is a finite-time process that produces the same final state as would result
from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from
linear response theory. With the help of phenomenological response functions a simple expression
for the excess work is found – quantifying the nonequilibrium excitations. For two specific examples,
the quantum parametric oscillator and the spin-1/2 in a time-dependent magnetic field, we show
that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a
degenerate family of protocols, which facilitate shortcuts to adiabaticity for specific and very short
driving times.

PACS numbers: 05.70.Ln, 05.70.-a, 03.65.-w

I. INTRODUCTION

Thermodynamics is a phenomenological theory to de-
scribe the transformation of heat into work. However,
only quasistatic, i.e., infinitely slow processes are fully de-
scribable by means of conventional thermodynamics [1].
For all realistic, finite-time – nonequilibrium – processes
the second law of thermodynamics constitutes merely an
inequality, expressing that some portion of the energy
or entropy is irreversibly lost into nonequilibrium excita-
tions. For isothermal processes, this “loss” is quantified
by the excess work 〈Wex〉, which is the difference be-
tween the total nonequilibrium work 〈W 〉 and the work
performed during a quasistatic – equilibrium – process
〈Wqs〉, 〈Wex〉 = 〈W 〉 − 〈Wqs〉. For macroscopic, open
systems 〈Wqs〉 is simply given by the free energy differ-
ence ∆F . However, the identification of the equilibrium
work, 〈Wqs〉, with the free energy difference, ∆F , is only
true for open systems. For isolated systems the minimal
work is not given by the free energy difference and 〈Wqs〉
has to be analyzed carefully [2]. In addition, for quantum
systems the situation is particularly involved as quantum
work is not an observable in the usual sense, as there is
no hermitian operator, whose eigenvalues are given by
the classical work values [3–7].

Nevertheless, finding “optimal” quantum processes, for
which only the minimal amount of 〈Wex〉 is lost into
nonequilibrium excitations is of fundamental importance.
Consequently, a lot of theoretical and experimental re-
search has been dedicated to the design of so-called short-
cuts to adiabaticity, i.e., finite-time processes with sup-
pressed nonequilibrium excitations [8]. To this end a va-
riety of techniques has been proposed: the use of dynam-
ical invariants [9], the inversion of scaling laws [10], the
fast-forward technique [11, 12], and transitionless quan-
tum driving [13–16]. All methods have in common that
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practical implementations are rather involved as the full
dynamics has to be solved to determine the shortcut.
Therefore, more recent research efforts have been focus-
ing on identifying optimal protocols from optimal con-
trol theory [17, 18], from properties of the quantum work
statistics [19], or “environment” assisted methods [20].

The present analysis is dedicated to finding shortcuts
to adiabaticity from a phenomenological approach – lin-
ear response theory. For classical systems it has been re-
cently shown that there exist finite-time processes with
zero excess work [21]. In this paradigm 〈Wex〉 is fully
determined by the phenomenological response of the sys-
tem to an external perturbation [22, 23]. Thus, we nei-
ther have to solve the dynamics [13–16] nor do we have
to determine the quantum work statistics [19] to mini-
mize 〈Wex〉. In the following, we will extend our previous
findings [21, 23] to the quantum domain. To this end, we
will consider a thermally isolated quantum system under
weak perturbation and derive a linear response expres-
sion for 〈Wex〉. After establishing the general theory we
will turn to analytically solvable and pedagogically elu-
cidating examples, namely the parametric harmonic os-
cillator and the spin-1/2 in a time-dependent magnetic
field. This will allow us to study the range of validity
of the linear response approach by comparing our novel
findings with the exact results from the full quantum
work statistics [24, 25]. We will show that the protocols
with zero excess work from linear response theory, indeed,
facilitate transitionless quantum driving for weak pertur-
bations. Finally, we will propose a family of degenerate
protocols, which facilitates shortcuts to adiabaticity for
arbitrarily fast driving.

II. QUANTUM WORK FROM LINEAR
RESPONSE THEORY

We begin by generalizing the previous classical treat-
ment of the excess work, 〈Wex〉, [21] to the quantum do-
main. Imagine a quantum system with time-dependent
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FIG. 1. (color online) Sketch of the thermodynamic processes
under study. At t = t0 the system is prepared in equilibrium
with inverse temperature β, before the system is decoupled
from the environment and controlled externally from t = t0 +
0+ until a final time tf .

Hamiltonian Ht, which is prepared initially in a thermal
equilibrium state, ρ0 = exp(−βH0)/Z0, where Z0 is the
partition function, Z0 = tr {exp (−βH0)}. At t = t0 +0+

the system is decoupled from the environment, and the
Hamiltonian is varied according to some protocol λt with
Ht ≡ H(λt). Such a processes is sketched in Fig. 1.

The external control parameter λt is written as

λt ≡ λ0 + δλ g(t), (1)

where λt starts in an initial value λ0, δλ is the amplitude
and g(t) obeys: g(t0) = 0 and g(tf ) = 1. Thus, λt varies
from λ0 to λf = λ0 + δλ.

For small systems work is a fluctuating quantity [26]
and for a specific protocol g(t) the average work reads

〈W 〉 =

∫ tf

t0

dt λ̇t 〈∂λH〉 , (2)

where the angular brackets denote an average over many
realizations of the same process and the dot denotes a
derivative with respect to time.

We will now evaluate the general expression for the
average work (2) by means of linear response theory. To
this end, we expand the Hamiltonian up to linear order
in the amplitude δλ,

H(λt) = H(λ0) + δλ g(t) ∂λH +O(δλ2) . (3)

Substituting Eq. (3) into Eq. (2) and identifying ∂λH as
the generalized force [21, 23, 27, 28] it can be shown [21]
that the average work (2) becomes,

〈W 〉 = δλ 〈∂λH〉ρ0 −
(δλ)2

2
Ψ(0)

− (δλ)2
∫ tf

t0

dt ∂tg

∫ t−t0

0

dsΨ(s) ∂sg(t− s)
(4)

where Ψ(t) is the relaxation function [27, 28].
Until Eq. (4) the present treatment is identical to the

classical case [21]. However, in the quantum case the

relaxation function Ψ(t) is determined by the quantum

response function φ(t), φ(t) = −Ψ̇(t), with [27, 28]

φ(t) =
1

i~
tr {ρ0 [A0, At]} , (5)

where A = ∂λH is the generalized force. To avoid clutter
in the formulas we introduced in Eq. (5) the notation
A(t) ≡ At.

In complete analogy to the classical case [21], the first
two terms of Eq (4) are independent of the specific proto-
col g(t) and we identify the quasistatic, equilibrium work
as

〈Wqs〉 = δλ 〈∂λH〉ρ0 −
(δλ)2

2
Ψ(0) . (6)

In the remainder of this analysis we will analyze the ex-
cess work,

〈Wex〉 = −(δλ)2
∫ tf

t0

dt ∂tg

∫ t−t0

0

dsΨ(s) ∂sg(t− s) (7)

for two analytically solvable examples. We will show that
whenever this thermodynamic quantity vanishes in finite
time, the quantum adiabatic invariant is conserved and
therefore the system can be driven through a shortcut to
adiabaticity.

Generally, it is easy to see that if the adiabatic theorem
is fulfilled, no transitions between eigenstates occur, and
therefore the excess work. 〈Wex〉, has to vanish. How-
ever, the reverse is not necessarily true. Even if the excess
work vanishes, one could imagine a process during which
some transitions between eigenstates do occur, however
in such a way that their energetic contribution “cancels
out”. In the following, we will analyze this issue with
the help of two fully analytically solvable examples – the
parametric harmonic oscillator and a spin-1/2 particle in
a magnetic field. We will find that at least within the
range of validity of linear response theory such “cancel-
ing” transition do not occur as for a “shortcut” not only
the excess work vanishes, but also the adiabatic invari-
ant is (approximately) conserved. For classical systems
a similar analysis was developed in Ref. [21].

III. PARAMETRIC HARMONIC OSCILLATOR

We consider the time-dependent Hamiltonian

H(λt) =
p2

2
+

1

2
λt x

2 (8)

where x and p are the coordinate and momentum opera-
tors, respectively. This system can be solved analytically
[24, 25] for specific protocols λt that drive the system
from an initial to final value of λ, as illustrated in Fig. 2.
To simplify notation we further set t0 = 0 and tf = τ .
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FIG. 2. (color online) Parametric harmonic oscillator (8) with
λ0 (dashed line) at time t = t0 and λf (solid line) at t = τ .

A. Linear response approach

The response function (5) is obtained by solving
Heisenberg’s equations of motion for fixed, initial value
of λ. Hence, we obtain after a few simple lines

φ(t) =
~
λ0

coth

(
β~
√
λ0

2

)
sin(2

√
λ0 t) . (9)

It is interesting to note that the system’s response is oscil-
latory. Consequently, we have the “relaxation” function

Ψ(t) =
~

2λ0
√
λ0

coth

(
β~
√
λ0

2

)
cos(2

√
λ0 t) . (10)

Generally, relaxation functions describe how a system re-
laxes towards an equilibrium state. However, since the
present system has only a single degree of freedom and it
is thermally isolated, the “relaxation” function exhibits
non-decreasing oscillations.

For the sake of simplicity we further assume that the
stiffness varies linearly with time,

λt = λ0 + δλ t/τ , (11)

for which we obtain

〈Wex〉 =

(
δλ√
λ0

)2 ~
√
λ0

4
coth

(
β~
√
λ0

2

)
sin2(

√
λ0 τ)

λ0 τ2
.

(12)
Equation (12) constitutes our first main result. In com-
plete analogy to the classical case [21] the excess work
vanishes for all zeros of the sine function, i.e., for all
τ = nπ/

√
λ0 with n being an integer. In the classical

case these “special” driving times have been attributed
to a conservation of the adiabatic invariant during the
finite-time process [21].

In the next subsection we will further analyze this ob-
servation, and show that the minima of 〈Wex〉 (12), in-
deed, identify shortcuts to adiabaticity.

B. Exact solution

The parametric harmonic oscillator (8) has been ex-
tensively studied, since it can be solved analytically
[24, 25, 29, 30] for specific driving protocols and it de-
scribes quantum thermodynamic experiments in cold ion
traps [31–33]. The time-dependent mean energy can be
written as [25, 34],

〈Hτ 〉 =
~
√
λf

2
Q∗ coth

(
β~
√
λ0

2

)
, (13)

where Q∗ is a measure of adiabaticity [24, 25, 29]. This
measure is fully determined by two special solutions, Xt

and Yt, of the force-free equation of motion [29],

ẍt + λt xt = 0 . (14)

We have,

Q∗ =
1

2
√
λ0λf

[
λ0

(
λf X

2
τ + Ẋ2

τ

)
+
(
λf Y

2
τ + Ẏ 2

τ

)]
.

(15)

with X0 = 0, Ẋ0 = 1 and Y0 = 1, Ẏ0 = 0. [29]. Note that
these initial conditions for Xt and Yt are chosen for the
sole sake of simplifying the mathematical treatment [29].
For the quantum harmonic oscillator the time-dependent
action S = E(t)/ω(t) is conserved if [25]

Ẋ2
t + λtX

2
t√

λt
=

1√
λ0

and
Ẏ 2
t + λt Y

2
t√

λt
=
√
λ0 . (16)

Thus, it is easy to see that Q∗ ≥ 1, where the equality
holds for quasistatic processes. Accordingly, the exact
expression for the excess work reads,

〈
W exact

ex

〉
=

~
√
λ0 + δλ

2
coth

(
β~
√
λ0

2

)
(Q∗ − 1) .

(17)
Note that Q∗ depends only implicitly on the protocol λt
through the solutions of Eq. (14). Therefore, it is ad hoc
not clear whether the exact excess work (17) exhibits the
same zeros as the expression from linear response theory
(12) for the linear protocol (11).

To gain insight and to build intuition we plot the mea-
sure of adiabaticity Q∗ (15) for the linear protocol in
Fig. 3 for various strengths of the perturbation δλ. We
observe that generally Q∗ − 1 exhibits oscillations, but
no zeros as a function of τ . For weak driving, however,
δλ/λ0 � 1, where we expect linear response theory to
hold, the minima of Q∗−1 get infinitely close to zero. In
Fig. 4 we compare the excess work from linear response
theory (12) with the behavior of Q∗−1 for weak driving.
We observe very good agreement between the result from
linear response theory (12) and Q∗ − 1.

It has also been shown that for Q∗ = 1 the quan-
tum adiabatic theorem is fulfilled, i.e., for such processes
there are no transitions between different energy eigen-
states [29]. Thus, we conclude that the zeros of the excess
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FIG. 3. (color online) Measure of adiabaticity Q∗ (17) as a
function of the switching time for the linear protocol, g(t) =
t/τ , and λf = 2.0 (blue, solid line), λf = 1.7 (green dashed
line), λf = 1.5 (yellow, dot-dashed line), λf = 1.3 (orange,
dash-dot line) and λf = 1.1 (red, dotted line), and λ0 = 1.0.
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FIG. 4. (color online) Excess work from linear response the-
ory (12) (blue solid line) together with Q∗-1 (black dashed
line) as a function of τ for the linear protocol (11) and
δλ = 0.1. The symbol Wex denotes 〈Wex〉 measured in units

of
(
δλ/
√
λ0

)2
(~
√
λ0) coth

(
β~
√
λ0/2

)
/4.

work, indeed, identify finite driving times for which tran-
sitionless quantum driving is facilitated – shortcuts to
adiabaticity from linear response theory.

C. Range of validity of linear response theory

Linear response theory can be understood as a phe-
nomenological theory of weak perturbations [27]. Thus,
the numerical and qualitative agreement between exact
(17) and approximate (12) results cannot be considered

satisfactory. To deepen the insight into the approxima-
tions we will now derive Eq. (12) from the exact expres-
sion (17) without having to rely on phenomenology.

To this end, we expand the exact expression (17) in
powers of δλ up to second order. Note that Q∗ depends
implicitly on the protocol λt and we write Q∗(δλ). We
have,

〈
W exact

exc

〉
' ~

2
coth

(
β~
√
λ0

2

) [
δλ
√
λ0 ∂λQ

∗(0)

+
δλ2

2
√
λ0

(
∂λQ

∗(0) + λ0 ∂
2
λQ
∗(0)

)
+O(δλ3)

]
,

(18)

where we used Q∗(0) = 1. We now have to show that
there exist approximate solutions Xt and Yt of the equa-
tion of motion (14) such that Eq. (18) reduces to the
linear response expression (12) with Xt and Yt replacing
Xt and Yt in Eq. (15)

Comparing Eqs. (12) and (18) we conclude that Xt and
Yt have to fulfill,

∂λQ
∗(0) = 0 and ∂2λQ

∗(0) =
sin2 (λ0τ)

λ30τ
2

. (19)

Additionally we know that Xt and Yt have to obey ẊtYt−
XtẎt = 1 [29]. The latter condition is nothing else but an
expression of the commutation relation between position
and momentum [29]. For δλ = 0 the solution of Eq. (14)
is given by sine and cosine function [29]. Hence, we make
the ansatz,

Xt =
1√
λ0

sin
(√

λ0t
)

+ δλFt +O(δλ2)

Yt = cos
(√

λ0t
)

+ δλGt +O(δλ2) ,

(20)

where Ft and Gt are two time-dependent function deter-
mined by the conditions (19).

It is then a tedious but straightforward exercise to show
that

Ft =
t2 + 4aλ0τ

4λ0τ
cos
(√

λ0t
)
− t− 4bλ0τ

4λ0
√
λ0τ

sin
(√

λ0t
)

(21)
and

Gt =− t2 + 4aλ0τ

4λ0τ
cos
(√

λ0t
)

+
t2λ0 − 4cλ0τ − 1

4λ0
√
λ0τ

sin
(√

λ0t
)
.

(22)

The three constants a, b, and c are determined by the
boundary conditions, F0 = a, Ḟ0 = b and G0 = −b and
Ġ0 = c [35]. The expressions of F and G are rather
lengthy and can be found in Appendix A.

The solutions (20) together with Eqs. (21) and (22)
are the approximate solutions of the Eq. (14), for which
the exact expression for the excess work (17) reduces to
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FIG. 5. (color online) (a) Exact solution Xt (solid line) and
approximate solution Xt (20) for δλ = 0.1 (dashed line). (b)
Exact solution Yt (solid line) and approximate solution Yt

(20) for δλ = 0.1 (dashed line). Shaded area signifies a δλ-
environment around the exact results.

the result from linear response theory (12). In Fig. 5 we
plot the approximate solutions (20) together with exact
solutions of (14). We observe that Xt and Yt are within
a δλ-environment around the exact results as one would
intuitively expect by construction.

In conclusion, we have shown that results from lin-
ear response theory can also be obtained from expand-
ing the exact solutions for weak driving. Thus, the lin-
ear response expressions can not only be considered to
be qualitatively and phenomenologically true, but also
quantitatively exact.

D. Optimal protocols – shortcuts to adiabaticity

In an analogous classical treatment it has been shown
that not only the linear parameterization (11) can lead
to zero excess work. Rather, there is a degenerate family
of optimal protocols [21, 36], for which nonequilibrium
excitations are suppressed. This family is given by,

g(t) = t/τ + α sin (κπ t/τ) , (23)

where κ is an integer and α any arbitrary real number.
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FIG. 6. (color online) Excess work (12) (black, dashed line)
and normalized adiabatic parameter Q∗ − 1 (red, solid line)
as a function of the switching time for the optimal proto-
cols (23) with α = 1, κ = 2 (a), and α = 1, κ = 4
(b). The symbol Wex denotes 〈Wex〉 measured in units of(
δλ/
√
λ0

)2
(~
√
λ0) coth

(
β~
√
λ0/2

)
/4

The quantum excess work (12) merely differs in the
prefactor from the classical expression

〈Wex〉
∣∣∣∣
~β
√
λ0�1

=

(
δλ√
λ0

)2
1

2β

sin2(
√
λ0 τ)

λ0 τ2
, (24)

which is obtained in the limit ~β
√
λ0 � 1. Thus, the

degenerate class (23) constitutes a family of shortcuts to
adiabaticity for the quantum harmonic oscillator under
weak driving. Figure 6 illustrates 〈Wex〉 (12) together
with Q∗ − 1 for two members of the family (23). It has
been shown [21] that the shortcut to adiabaticity is ob-
tained for

√
λ0τ = nπ, n integer, and√

λ0τ =
(κπ/2)

(1 + κπα)1/2
. (25)

Finally, it is worth emphasizing that such shortcuts to
adiabaticity can be obtained for arbitrarily short switch-
ing times by choosing α appropriately [21].
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IV. SPIN-1/2 IN A TIME-DEPENDENT
MAGNETIC FIELD

Our second example is a spin-1/2 in a time-dependent
magnetic field subjected to the constraint |B(t)| = B0 =
constant. Its Hamiltonian reads

H(t) = −~γ
2

σ ·B(t) , (26)

where σ denotes the Pauli matrices. Due to the above
mentioned constraint on B(t), it is more convenient to
choose the following parameterization

B(t) = B0

sin [ϕ(t)] cos [θ(t)]
sin [ϕ(t)] sin [θ(t)]

cos [ϕ(t)]

 . (27)

Hence, the time-dependence of the set of allowed pro-
cesses parameterized by the angles ϕ(t) and θ(t) is, in
analogy to Eq. (1), expressed as

ϕ(t) = ϕ0 + δϕ gϕ(t) , (28a)

θ(t) = θ0 + δθ gθ(t) (28b)

where the boundary conditions gϕ,θ(0) = 0 and gϕ,θ(τ) =
1 must hold.

Linear response theory provides a good description of
〈Wex〉 as long as δϕ and δθ are sufficiently small. In
this regime, one can easily show that the angle θ(t) plays
no role and the thermodynamic work (7) depends on the
nonequilibrium of ∂ϕH only. Thus, the response function
is given by Eq. (5) with At = ∂ϕH(t) and it is straight-
forward to obtain

φ(t) =
~
2

(γB0)
2

tanh

(
β~γB0

2

)
sin (γB0t) , (29)

from which, using again φ(t) = −Ψ̇(t), we have the re-
laxation function

Ψ(t) =
~ω0

2
tanh

(
β~ω0

2

)
cos (ω0t) , (30)

where we defined ω0 ≡ γB0.
The time-dependence of the relaxation functions (10)

and (30) have the same functional form. Therefore, the
excess work performed by an external agent while driving
the spin-1/2 will behave exactly the same as in the para-
metric harmonic oscillator. For instance, the protocols
given by (23) also constitute a family of optimal proto-
cols for the present system. Nevertheless, the values of
ω0τ for which the excess work vanishes are a bit different
from those in Fig. (4) due to the absence of the factor
2 in cos (ω0t) of Eq. (30). The linear protocol generates
zeros for ω0τ = n 2π.

A. Quantum adiabatic invariant

Analogously to Sec. III, we will now verify that quan-
tum adiabatic invariant is conserved for spin-1/2 parti-
cles driven by Eq. (23). To this end, we analyze the time
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FIG. 7. Time evolution of the real and imaginary parts of the
coefficients c+(t) and c−(t) given by Eq. (32) for the initial
condition c+(0) = 1 and c−(t) considering the approximation
cos (δϕ t/2τ) ' 1.

evolution of the coefficients c+(t) and c−(t) appearing in
the expansion

|ψ(t)〉 =
∑

n=+,−
cn(t) exp

(
− i
~

∫ t

0

dt′En(t′)

)
|n; t〉 ,

(31)
of an arbitrary state |ψ(t)〉. We denote by En(t) and |n; t〉
the instantaneous eigenvalues and eigenstates of (26).
The quantum adiabatic invariant is then conserved in fi-
nite time if, after starting with c+(0) = 1 and c−(0) = 0
at the beginning of a certain protocol gϕ(t), we obtain
c+(τ) = c+(0) and c−(τ) = c−(0).

The equations of motion for c+,−(t) are easily derived
following standard procedures [37–39]. For the parame-
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terization (27) of B(t), we obtain

dc+(t)

dt
= −δϕ

4τ
cos

(
δϕ

2τ
t

)
exp (−iω0t) c−(t), (32a)

dc−(t)

dt
=
δϕ

4τ
cos

(
δϕ

2τ
t

)
exp (iω0t) c+(t) , (32b)

considering θ0 = 0, gθ(t) = 0 and gϕ(t) = t/τ .
Figure (7) shows the real and imaginary parts of the

solutions of (32) as functions of ω0τ considering the ap-
proximation cos (δϕ t/2τ) ' 1, since we are in the regime
δϕ� 1 (see appendix B for the analytical form of them).
Since the initial conditions are c+(0) = 1 and c−(0) = 0,
we should have a finite-time conservation of the adiabatic
invariant every time we get a recurrence of this values.
In Fig. (7), we see that this hold true for ω0τ = n 2π,
although due to our approximations the imaginary part
of c−(t) does not vanish at these values of τ .

V. COMPLEX SYSTEMS

The two case studies in Secs. III and IV are analyt-
ically solvable and pedagogically elucidating. In par-
ticular, we obtained exact expressions for the response
functions (9) and (29). However, this is not feasible for
general and more realistic systems with more degrees of
freedom. However, it has been shown [22, 23, 27, 28]
that linear response theory performs well when only phe-
nomenological information is known about the system of
interest. In other words, even when the response func-
tion is not exact the predictions of linear response theory
provide good approximations. Finding shortcuts from
linear response theory and by the optimizing 〈Wex〉 cir-
cumvents the difficult problem of having to solve for the
full quantum dynamics.

It has been shown that 〈Wex〉 will have finite-time min-
ima, or non-monotonic behavior as a function of τ , if the
relaxation function is sufficiently oscillatory. This can be
illustrated for instance using the following phenomeno-
logical ansatz [23, 28],

Ψ(t) = Ψ(0) exp (−α|t|)
(

cos (ωt) +
α

ω
sin (ωt)

)
, (33)

for the relaxation function. Plugging the expression
above in Eq. (7), we obtain the results shown in Fig. (8)
for different values of α/ω. As this ratio decreases, the
excess work starts to show minima whose value approach
zero. There are several systems for which Eq. (33) de-
scribes the relaxation dynamics very well. Among them,
we mention a system composed of weakly interacting
magnetic moments in the regime where Bloch equations
are valid [40].

0 2 4 6 8 10 12
ωτ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
C ex

α/ω = 0.3

α/ω = 0.1

α/ω = 0.01

FIG. 8. (color online) Excess work WC
ex in units of

(δϕ)2Ψ(0)/2 for the linear protocol gϕ(t) = t/τ and the re-
laxation function (33).

VI. CONCLUDING REMARKS

Identifying optimal quantum processes with sup-
pressed or even vanishing nonequilibrium excitations is
an important topic, which has recently been attracting
intense research efforts. However, all methods currently
available necessitate the solution of the full quantum dy-
namics. In the present work, we have proposed a phe-
nomenological alternative. By generalizing our previ-
ous result for the excess work from linear response the-
ory to quantum system we have shown that shortcuts
to adiabaticity can be identified from a mathematically
simple theory. This observation has been proven for
two paradigmatic examples of quantum thermodynam-
ics, namely the parametric harmonic oscillator and the
spin-1/2 in a time-dependent magnetic field.
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Appendix A: Approximate solution within linear response

The full expressions for the approximate solutions Xt and Yt in Eqs. (21) and (22) are given in terms of the three
constants a, b, c. These are determined by solving the force free equation of motion (14) with the boundary conditions,

F0 = a, Ḟ0 = b and G0 = −b and Ġ0 = c. We have,

a =
−1− 2λ0τ

2 + cos(2
√
λ0τ)− 2

√
λ0τ sin(2

√
λ0τ)

8λ20τ
and c =

−1 + 2λ0τ
2 + cos(2

√
λ0τ)− 2

√
λ0τ sin(2

√
λ0τ)

8λ0τ
(A1)

and

b =
1

8λ0
√
λ0τ

[
2 +

√
4 + 2λ0τ2 − 4 cos(2

√
λ0τ) + 2

√
λ0τ cos(2

√
λ0τ) + sin(2

√
λ0τ)

]
. (A2)

Appendix B: Derivation of time-dependent coefficients c+ and c−

According to the Ref. [39], the coefficients c+ and c− satisfy the differential equations for Eq. (27),

dc+(t)

dt
= −δϕ

4τ
cos

(
δϕ

2τ
t

)
exp (−iω0t)c−(t), (B1a)

dc−(t)

dt
=
δϕ

4τ
cos

(
δϕ

2τ
t

)
exp (iω0t)c+(t). (B1b)

In the regime δϕ � 1, we make the approximation cos[δϕ/2τ t] ' 1. Next, we solve exactly the equations with the
initial conditions c+(0) = 1 and c−(0) = 0. After making t = τ , we obtain the following equations

c+(ω0τ) =
e−

iω0τ
2

δϕ2 + 4(ω0τ)2

[
(δϕ2 + 4(ω0τ)2) cosh

(
1

4

√
−(δϕ2 + 4(ω0τ)2)

)
− 2iω0τ

√
−(δϕ2 + 4(ω0τ)2) sinh

(
1

4

√
−(δϕ2 + 4(ω0τ)2)

)]
(B2)

c−(ω0τ) =
e
iω0τ

2 δϕ

δφ2 + 4(ω0τ)2
sinh

(
1

4

√
−(δϕ2 + 4(ω0τ)2)

)
, (B3)

where ω0 = γB.
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A. Ruschhaupt, X. Chen, and J. G. Muga, Adv. At.
Mol. Opt. Phys. 62, 117 (2013).

[9] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo,
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[38] A. Böhm, Quantum Mechanics: Foundations and Appli-

cations (Springer-Verlag, New York, 1994).
[39] A. C. Aguiar Pinto, M. C. Nemes, J. G. Peixoto de Faria,

and M. T. Thomaz, Am. J. Phys. 68, 955 (2000).
[40] R. M. White, Quantum Theory of Magnetism (Springer,

Berlin, 2006).

http://dx.doi.org/10.1103/PhysRevLett.114.177206
http://dx.doi.org/10.1103/PhysRevLett.114.177206
http://dx.doi.org/10.1103/PhysRevE.90.052132
http://arxiv.org/abs/arXiv:1410.1883
http://dx.doi.org/10.1103/PhysRevE.91.042141
http://dx.doi.org/10.1103/PhysRevE.91.042141
http://link.aps.org/doi/10.1103/PhysRevLett.108.190602
http://link.aps.org/doi/10.1103/PhysRevLett.108.190602
http://dx.doi.org/10.1063/1.4885277
http://dx.doi.org/10.1063/1.4885277
http://dx.doi.org/10.1103/PhysRevE.77.021128
http://dx.doi.org/http://dx.doi.org/10.1016/j.chemphys.2010.04.042
http://dx.doi.org/http://dx.doi.org/10.1016/j.chemphys.2010.04.042
http://dx.doi.org/10.1038/nphys3229
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1103/PhysRevE.90.062121
http://dx.doi.org/10.1103/PhysRevE.90.062121
http://dx.doi.org/10.1103/PhysRevLett.101.070403
http://link.aps.org/doi/10.1103/PhysRevLett.109.203006
http://link.aps.org/doi/10.1103/PhysRevLett.109.203006
http://link.aps.org/doi/10.1103/PhysRevLett.112.030602
http://dx.doi.org/10.1103/PhysRevE.87.022143
http://stacks.iop.org/1742-5468/2009/i=07/a=P07013
http://scitation.aip.org/content/aapt/journal/ajp/68/10/10.1119/1.1285944

	Shortcuts to adiabaticity from linear response theory
	Abstract
	Introduction
	Quantum work from linear response theory
	Parametric harmonic oscillator
	Linear response approach
	Exact solution
	Range of validity of linear response theory
	Optimal protocols – shortcuts to adiabaticity

	 Spin-1/2 in a time-dependent magnetic field
	Quantum adiabatic invariant

	Complex systems
	Concluding Remarks
	Acknowledgments
	Approximate solution within linear response
	Derivation of time-dependent coefficients c+ and c-
	References


