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Considering systems of self-propelled polar particles with nematic interactions (“rods”), we com-
pare the continuum equations describing the evolution of polar and nematic order parameters,
derived either from Smoluchowski or Boltzmann equations. Our main goal is to understand the dis-
crepancies between the continuum equations obtained so far in both frameworks. We first show that
in the simple case of point-like particles with only alignment interactions, the continuum equations
obtained have the same structure in both cases. We further study, in the Smoluchowski framework,
the case where an interaction force is added on top of the aligning torque. This clarifies the origin
of the additional terms obtained in previous works. Our observations lead us to emphasize the need
for a more involved closure scheme than the standard normal form of the distribution when dealing
with active systems.

I. INTRODUCTION

“Self-propelled rods”, i.e. elongated objects spending
energy to displace themselves typically along their long
axis, are among the most generic and ubiquitous objects
studied in active matter physics. Living and inert exam-
ples abound: elongated bacteria swimming or crawling
on a surface [1], chemically-propelled micro- and nano-
rods [2], biofilaments displaced by molecular motors [3–
7], shaken granular particles [8], etc. Their main inter-
action often amounts to alignment due, e.g., to direct
contact via collisions. In many cases the fluid in which
the self-propelled rods move can be treated as inert, sim-
ply providing friction. This “dry active matter” setting
nevertheless shows non-trivial collective properties [9–
15]. Among these, the emergence of dense (almost close
packed), polarly-oriented clusters has been noted repeat-
edly and is a quite natural outcome of aligning collisions:
when two rods meet, they often either end up aligned
or anti-aligned (“nematic” alignment). In the first case,
they will stay alongside each other for quite a while, even
in the absence of attractive interactions, and may recruit
others, forming clusters.

Numerical work on various models of moving elon-
gated objects interacting via steric repulsion has revealed
the possibility of complex (and not yet fully understood)
phase diagrams, even for simple rigid rods. The ubiquity
of dense clusters, forming even at low global densities,
seems a priori to be a major difficulty in building theoret-
ical, continuum descriptions of these systems since most
approaches so far rely on the hypotheses that only bi-
nary interactions need to be considered and/or that rods
decorrelate between collision events. Nevertheless, such
continuum descriptions have been considered, notably by
us, in the past.

Theoretical approaches typically yield continuum (or
“hydrodynamic”) equations governing a nematic and a

polar order field, as well as a continuity equation for the
density field. By ’continuum equations’, we mean here
a reduced set of evolution equations for conserved and
order parameter fields. The first derivations of such sets
of equations were performed by Baskaran and Marchetti,
who treated explicit collisions between thin rods [16, 17],
while a different route, treating aligning point-like par-
ticles, was followed by Peshkov et al. [20]. These works
predicted the emergence of global nematic order at the
deterministic level, that is, without including noise in the
continuum equations.

Baskaran and Marchetti first studied the case of in-
teracting self-propelled rods assuming overdamped mi-
croscopic dynamics from the outset [16]. In a second
paper they included inertia in the microscopic dynamics
[17], with linear and angular momentum transfer during
collisions between rods. They derived a Fokker-Planck
equation for the joint probability distribution of posi-
tions and velocity, and then took the overdamped limit
of the kinetic equation, obtaining a Smoluchowski equa-
tion for the one-particle probability density. Continuum
equations for the density, polar and nematic fields were
then obtained from the Smoluchowski equation, and the
linear stability of the basic homogeneous states was stud-
ied. This derivation yields important modifications of
the Smoluchowski equation that result in nonlinearities
in the continuum equations that are not obtained when
considering overdamped dynamics from the outset. Here
we focus on the equations reported in [17].

Following the kinetic approach pioneered by [19] for
polar constant-speed point-like particles aligning ferro-
magnetically, Peshkov et al. treated the case where the
same particles align nematically, i.e. anti-align when their
incoming angle is larger than π

2 [20]. They obtained well-
behaved nonlinear partial differential equations whose so-
lutions were shown to be in good qualitative agreement
with the Vicsek-like model they were derived from.
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The sets of equations resulting from these works bear
strong similarities, but also differences. In this paper, we
explain and discuss the origin of these differences.

II. MODELS AND MAIN GOALS

We consider self-propelled polar particles moving in
two dimensions at constant speed v0. When isolated,
their polarity angle θ diffuses at long times. They align
nematically with neighbors. To match previous studies
[16, 17, 20, 21], we consider either pure diffusion of the
angle θ with rotational diffusion coefficient DR, or ’run-
and-tumble’ type dynamics where θ is changed, with a
probability λR per unit time, into θ′ = θ + η, where η
is a random variable of distribution P (η). Moreover, we
neglect positional diffusion in sections II and III, and
later reintroduce it in section IV.
In the following, we compare continuum equations ob-

tained starting from a Smoluchowski equation and from
a Boltzmann equation. Both these kinetic equations gov-
ern the time evolution of the probability f(r, θ, t) to have
a particle at position r with polarity θ, at time t. Al-
though derived from different starting points, these equa-
tions bear strong formal similarities, and one may thus
expect the resulting continuum equations describing the
evolution of the relevant order parameter fields (here, the
polar and nematic fields) to be similar, with changes af-
fecting only the precise values of the coefficients. It was
found, however, that the continuum equations obtained
in [16, 17] starting from the Smoluchowski equation on
one side, and in [20, 21] starting from the Boltzmann
equation on the other side, possess many differences, as
described below. The goal of this paper is on the one
hand to emphasize the formal similarities of the two ap-
proaches, by formulating them in a common framework,
and on the other hand to outline the origins of the dif-
ferences in the resulting continuum equations.

A. Comparing Smoluchowski and Boltzmann

equations

The Smoluchowski and Boltzmann equations for the
probability density f(r, θ, t) are respectively given by

∂tf + v0e(θ) ·∇f = DR∂
2
θf − ∂θ(fτ)−∇ · (fF ) (1)

∂tf + v0e(θ) ·∇f = Idif [f ] + Icol[f ] (2)

(see below for notations). The Smoluchowski equa-
tion (1) was derived in [18] by coarse-graining a micro-
scopic model of long, hard thin rods undergoing colli-
sions. That work also included translational diffusion,
which is neglected here to simplify the comparison be-
tween the two approaches (the effect of translational dif-
fusion is discussed in Sec. IV). The Boltzmann equa-
tion (2) was obtained in [20] for point particles with pre-
scribed nematic alignment interactions. On the left hand

side both equations contain a convective mass flux due
to self-propulsion at speed v0, with e(θ) = (cos θ, sin θ)
a unit vector along the direction of self-propulsion. The
speed v0 was set equal to 1 in [20] (without loss of gen-
erality), but is retained here for clarity.
The content of the right hand side of Eq. (1) can be

described as follows: DR is a rotational diffusion coeffi-
cient representing a Gaussian white noise process that re-
orients the particle’s self-propulsion velocity at each time
step; τ is the mean-field torque exerted by the other rods,
given by (to first order in spatial gradients)

τ(r, θ, t) =

∫

dθ′K1 (θ − θ′) f (r, θ′, t)

+

∫

dθ′ K2(θ
′, θ) ·∇f (r, θ′, t) , (3)

where K1 and K2 are collision kernels describing hard
rods collisions. The second term in Eq. (3) takes into
account the difference in position of the center of the
colliding rods due to their finite size (see Appendix A).
Finally, the mean-field force F is given by (to lowest order
in gradients)

F =

∫ π

−π

dθ′G(θ, θ′)f(r, θ′, t) , (4)

where G is again a hard rod collision kernel describing
linear momentum transfer in a collision.
The content of the right hand side of Eq. (2) can be

described as follows: Idif [f ] is a generator of rotational
reorientation through an arbitrary stochastic process η,

Idif [f ] = λR

∫ π

−π

dθ′f(θ′)
[

〈δ2π(θ
′ + η− θ)〉η − δ2π(θ

′ − θ)
]

(5)
(with λR a frequency of “tumbling” events) and Icol[f ] is
the collision integral defined as

Icol[f ] =

∫ π

−π

dθ1

∫ π

−π

dθ2KB(θ2 − θ1)f(r, θ1)f(r, θ2)

×
[

〈δ2π
(

Ψ(θ1, θ2) + η − θ
)

〉η − δ2π(θ1 − θ)
]

(6)

where δ2π is a generalized Dirac distribution taking into
account the 2π-periodicity of angles. The notation 〈. . . 〉η
indicates an average over the noise distribution P (η), and
Ψ(θ1, θ2) is the direction of motion of particle 1 after the
collision between particles 1 and 2, up to an additive
noise η (see Sect. III for details). We assume here that
Ψ(θ1, θ2) favors nematic alignment.
There are three differences between these two kinetic

equations. (i) First, the reorientation events in the Boltz-
mann approach are described by an arbitrary stochastic
process with probability distribution P (η). For a uni-
form distribution P (η) over [−π, π], one recovers run-
and-tumble dynamics, while a (wrapped) Gaussian P (η)
yields Brownian rotational diffusion at rate λR. In the
Smoluchowski equation, in contrast, one has assumed
Gaussian rotational noise from the outset. This slight
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difference, however, has no influence on the structure of
the resulting continuum equations. Moreover, when a
van Kampen expansion is carried out in Eq. (5), in the
case of a distribution P (η) with a small variance σ2 ≪ 1,
one finds Idif [f ] ≃ DR∂

2
θf , with DR = λRσ

2, so that
one recovers a rotational diffusion term as in Eq. (1).
(ii) Secondly, the Smoluchowski equation contains spatial
gradients in both force and torque, while the collision in-
tegral is local in the Boltzmann equation. This difference
arises because the Smoluchowski equation describes rods
of finite length l, necessitating an additional gradient ex-
pansion in the size of the particles, while the Boltzmann
equation assumes point particles. (iii) Finally, a third
subtle distinction exists between the two theories and
lies in the details of the collision kernels whose explicit
forms are discussed below. In the Boltzmann description,
combining the prescribed nematic alignment rule with
the kinetics of collision leads to a kernel of mixed polar
and nematic symmetry. On the other hand the collision
kernel K1 associated to the torque in the Smoluchowski
equation, calculated from hard rod collisions [17], has ne-
matic symmetry in the limit of infinitely thin rods. As
we shall show below, the nematic symmetry is also re-
covered in the Boltzmann case by considering the limit
of infinitely thin rods (while the opposite limit of quasi-
circular particles was originally considered in [20]).

B. Comparing the derived macroscopic

hydrodynamics

Macroscopic continuum equations have been derived
from both the above Smoluchowski and Boltzmann equa-
tions in [17] and in [20, 21]. A first step consists in trans-
forming these equations into a hierarchy of field equations
by introducing the Fourier expansion of f(r, θ, t) in θ:

fk(r, t) =

∫ π

−π

dθf(r, θ, t) eikθ (7a)

f(r, θ, t) =
1

2π

∞
∑

k=−∞

fk(r, t) e
−ikθ (7b)

The complex fields f1 and f2 are related to the vectorial
polar field P and to the tensorial nematic field Q as

ρP=

(

Ref1
Imf1

)

, ρQ=
1

2

(

Ref2 Imf2
Imf2 −Ref2

)

, (8)

where ρ = f0 denotes the density field. To compare the
continuum equations obtained in [17] and in [20, 21], we
rewrite them in a common notation. In two dimensions,
the complex notation f1 and f2 is much more convenient
than the more standard vectorial/tensorial notations.

The continuum equations obtained in [17] read (ne-
glecting terms arising from spatial diffusion for ease of

comparison)1

∂tρ+ v0Re(∇
∗f1) = 0 , (9a)

∂tf1 = −DRf1 + ζSf
∗
1 f2 −

v0
2

(∇ρ+∇∗f2)

− λ′
(

f∗
1∇f1 + f1∇

∗f1 − f1∇f∗
1

)

, (9b)

∂tf2 = µSf2 −
v0
2
∇f1 −

κS

2
f∗
1∇f2 −

κ′
S

2
f2∇f∗

1

−
χS

2
f2∇

∗f1 −
χ′
S

2
f1∇

∗f2 , (9c)

where ∇ = ∂x + i∂y and ∇∗ = ∂x − i∂y are the com-
plex derivative operators. Some of the notation has been
changed as compared to the one used in [17] to high-
light the comparison with the equations obtained from
the Boltzmann approach. Specifically, we have tried to
keep notations as close as possible to that of [20], using
subscript ’S’ or ’B’ for the sets of continuum equations
derived from the Smoluchowski and Boltzmann equa-
tions respectively. A few further coefficients needed to
be added, like the coefficient λ′ in Eq. (9b), for which we
kept the original notation since no similar term appear
in [20] (see below). Additionally, we have used ζS = λ,
κS = 3λ′′/5, κ′

S = λ′′/48, χS = λ′′/24, and χ′
S = 3λ′′/5

where each of the λ’s are proportional to the length of
the rods and the square of the self-propulsion speed. The
parameter µS = 4DR(ρ/ρc − 1) controls the stability of
the uniform isotropic state, with ρc a critical density that
scales inversely with the square of the length of the rods
and the square of the self-propulsion speed, v0, i.e., longer
rods and faster rods are destabilized at lower densities.
On the other hand, the equations found in [20] using

the Boltzmann approach are (note that in [20] v0 was set
to 1)2

∂tρ+ v0Re(∇
∗f1) = 0 , (10a)

∂tf1 = −(α− β|f2|
2)f1 + ζBf

∗
1 f2 −

v0
2
(∇ρ+∇∗f2)

+
γ

2
f∗
2∇f2 , (10b)

∂tf2 = (µB − ξ|f2|
2)f2 −

v0
2
∇f1 −

κB

2
f∗
1∇f2

−
χB

2
f2∇

∗f1 −
χB

2
f1∇

∗f2

+
ν

4
∆f2 + ωf2

1 + τ |f1|
2f2 . (10c)

where ∆ = ∇∇∗ is the Laplacian. Note that both co-
efficients µS and µB are positive at high density and/or
low noise, leading to a linear instability of the isotropic

1 In [17], a ’renormalized’ speed ṽ0 has been found in the equation
for f1 instead of v0, but we neglect this correction at this stage
to simplify the discussion. We come back to this point in Sec. IV.

2 As mentionned in [22], Eq. (10c) as published in [20] includes
a misprint, as the term ν

4
∆f2 was erroneously written ν

4
∇2f2,

which is incorrect since complex operators are used here instead
of vectorial ones.
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state (f1 = f2 = 0) towards the onset of nematic order
(f2 6= 0).
In spite of a number of similarities, the sets of equa-

tions (9a,9b,9c) and (10a,10b,10c) do exhibit some differ-
ences. We now highlight them and identify their origin,
summarizing the detailed analysis given in subsequent
sections.

1. Equation (9c) for f2, obtained from the Smolu-
chowski equation, does not contain a saturating
non-linear term |f2|

2f2 that is needed to cutoff
the linear instability and obtain an ordered state
(although this term was added by hand in [17]).
When positional diffusion is neglected, Eq. (9c)
does not contain a diffusion term ∆f2 either. Both
these terms are present in Eq. (10c) thanks to the
Ginzburg-Landau closure ansatz used in [20] that
includes higher order modes than the closure used
in [17].3 This closure also yields terms |f2|

2f1 and
f∗
2∇f2 that are included in Eq. (10b), but not in
Eq. (9b).

2. The terms f∗
1∇f1, f1∇

∗f1, and f1∇f∗
1 are present

in Eq. (9b), but not in Eq. (10b). Similarly, a term
f2∇f∗

1 is present in Eq. (9c), but not in Eq. (10c).
These terms arise because the Smoluchowski equa-
tion derived in [17] incorporates excluded volume
forces and torques arising from the finite size of the
particles. In contrast, the Boltzmann equation used
in Ref. [20] considers effective alignment rules be-
tween point-like particles, and thus includes only
torques (acting during collisions), but no forces.
We note that the finite size of particles could also be
incorporated in a Boltzmann approach [23]. This
difference is therefore at the level of the underly-
ing microscopic model and is not associated with
differences in the closures used.

3. The terms f2
1 and |f1|

2f2 are present in Eq. (10c),
but not in Eq. (9c). As we will show below, this
difference is also due to the different microscopic
models used by the two sets of authors, which re-
sults in a different symmetry of the collision kernels
considered in the two kinetic equations. Baskaran
and Marchetti considered long, thin rods whose col-
lisions are described by a kernel with pure nematic
symmetry. Peshkov et al. considered instead point
particles with nematic alignment and an effective

3 In [17], the fast modes f3 and f4 were discarded. This approach
is in line with standard practice in kinetic theory of molecular or
granular gases, where a closure relation is obtained by constrain-
ing the one-particle phase-space distribution to be a function of
the slowly relaxing fields (the so-called normal form of the distri-
bution) [27]. A higher order closure is, however, needed in both
passive and active systems to derive the nonlinear terms that
yield the ordered phase (see [21] in the case of active systems).
Note that this was recognized by Baskaran and Marchetti in [17]
where the nonlinear term |f2|2f2 was added by hand.

circular excluded volume, resulting in a collision
kernel that contains both terms of nematic and po-
lar Fourier components. We will see below that
considering infinitely thin rods in the Boltzmann
framework also leads to a kernel with nematic sym-
metry.

In this section, we have summarized the differences
between the two models both at the kinetic and at the
hydrodynamic level. We have also briefly identified the
origin of these differences. The technical aspects of these
conclusions are unfolded in detail in the subsequent sec-
tions. In section III, we show that a strong formal anal-
ogy emerges between the Smoluchowski and Boltzmann
equations when considering the limit of point-like parti-
cles with interactions reducing to alignment rules. The
continuum equations obtained for the order parameters
have essentially the same structure in both cases, and
take precisely the same form in the limit of thin rods.
Then, in section IV, we explain how further terms emerge
when including forces in addition to alignment torques
in the Smoluchowski equation, thus obtaining a general-
ization of Eqs. (9b,9c), taking into account the relevant
(lowest order) nonlinear terms.

III. POINT-LIKE PARTICLES WITH NEMATIC

ALIGNMENT INTERACTIONS

In this section, we derive continuum equations both
from the Smoluchowski and Boltzmann equations for
point-like particles interacting only via alignment in-
teractions (i.e., torques). In the case of the Smolu-
chowski equation, this corresponds to only incorporat-
ing the mean torque given by the first term in Eq. (3),
but neglecting the mean forces given by the second term
of Eq. (3) and Eq. (4). In the case of the Boltzmann
equation only torques were included from the outset in
Eq. (2). By point-like particles, we mean that we con-
sider the limit where explicit excluded volume contribu-
tions are neglected, although the particles still have a
“shape” that defines the region of interaction and there-
fore determines their collision rate. This shape is chosen
as needle-like in the work by Baskaran and Marchetti and
as circular in the work by Peshkov et al..

A. Smoluchowski equation

Following an approach similar to the one used [24–
26] for polar self-propelled particles, we first consider the
force-free Smoluchowski equation, in which interaction
between particles appears through the average torque τ
exerted by neighboring particles (from now on, we set
v0 = 1)

∂tf + e(θ) ·∇f = DR∂
2
θf − ∂θ(fτ) . (11)
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The local average torque τ can generically be expressed
as

τ(r, θ, t) =

∫

dr′
∫

dθ′K̃(r′ − r, θ′, θ)f(r′, θ′, t) . (12)

The gradient term given in Eq. (3) is obtained by ex-
panding Eq. (12) in gradients and assuming that |r− r′|
is of order of the length of the rods. To simplify the
comparison with the Boltzmann approach that consid-
ers point particles, we neglect these terms here and sim-
ply write K̃(r′ − r, θ′, θ) = δ(r′ − r)K(θ′ − θ), where
we have also taken into account rotational invariance.
We assume space reversal symmetry, which leads to
K(−θ) = −K(θ). We also assume that K(θ) obeys
a nematic symmetry K(θ + π) = K(θ), which is valid
for thin rods undergoing collisions, when cap-on-cap col-
lisions can be neglected [17]. Hence the local average
torque reads

τ(r, θ, t) =

∫

dθ′K(θ′ − θ)f(r, θ′, t) (13)

Passing to Fourier components, we obtain the following
hierarchy of equations:

∂tfk +
1

2
∇fk−1 +

1

2
∇∗fk+1 (14)

= −DS
k fk +

ik

2π

∞
∑

q=−∞

K̂−qfk−qfq

where DS
k = DRk

2, and

K̂q =

∫ π

−π

eiqθK(θ)dθ (15)

Due to the nematic symmetry of the interaction, all odd
Fourier modes K̂2m+1 = 0. Defining

JS
k,q =

ik

2π
K̂−q (16)

we get for the Fourier transform of the Smoluchowski
equation

∂tfk +
1

2
∇fk−1 +

1

2
∇∗fk+1 (17)

= −DS
k fk +

∞
∑

q=−∞

JS
k,qfk−qfq

Note that due to the symmetry K(−θ) = −K(θ), JS
k,q is

real. In addition, JS
k,q = 0 for odd q due to the nematic

symmetry of the interaction.
For k = 0, Eq. (17) directly leads to the continuity

equation

∂tρ+Re(∇∗f1) = 0 (18)

To derive closed equations for f1 and f2, we need to re-
sort to an approximation scheme. For an almost isotropic

distribution, that is, for small values of the Fourier har-
monics fk (k > 1), Eq. (17) can be rewritten to linear
order as

∂tfk +
1

2
∇fk−1 +

1

2
∇∗fk+1 = µS

k fk (19)

with µS
k = (JS

k,k +JS
k,0)ρ−DS

k . At low density, the linear

coefficient µS
k is negative. Whether µS

k becomes positive
or not at higher density depends on the sign of JS

k,k+JS
k,0.

The precise values of these coefficients depend on the de-
tails of the chosen interactions, which we do not specify
explicitly here. We however assume that interactions fa-
vor nematic alignment, resulting in JS

2,2 + JS
2,0 > 0. As

a result, µS
2 becomes positive above a transition density

ρt –or equivalently, below a given threshold value of DS
2

at fixed density. For ρ just slightly above ρt, µ
S
2 is posi-

tive and small, leading to a slow instability of the state
f2 = 0, a regime in which the dynamics of the system can
be reduced to that of a few coupled modes. In constrast,
we assume that JS

1,1 + JS
1,0 < 0 since interactions do not

favor polar order, so that µS
1 remains negative.

Following [20, 21], we introduce a truncation procedure
close to the instability threshold of the linearized equa-
tion. We use the following scaling ansatz, with ǫ a small
parameter:

ρ− ρ0 ∼ f1 ∼ f2 ∼ ǫ, f2k−1 ∼ f2k ∼ ǫk (k > 0) (20)

To lighten notations, we further introduce the coefficient
CS

k,q defined as

CS
k,q = JS

k,q + JS
k,k−q (21)

The nematic symmetry, which implies JS
k,q = 0 for odd

q, in turn leads to CS
k,q = 0 if k is even and q is odd:

CS
2m,2l+1 = 0.

After truncation of Eq. (17) to order ǫ3 for k = 1 and
k = 2, one obtains the equations governing the evolution
of f1 and f2,

∂tf1 +
1

2
(∇∗f2 +∇ρ) = µS

1 f1 (22a)

+ CS
1,2f

∗
1 f2 + CS

1,3f
∗
2 f3

∂tf2 +
1

2
(∇∗f3 +∇f1) = µS

2 f2 + CS
2,4f

∗
2 f4 (22b)

These equations are not closed, as they also involve the
higher order harmonics f3 and f4. We thus make use of
Eq. (17) for k = 3 and k = 4, truncating them to order
ǫ2 since f3 and f4 appear in Eqs. (22a) and (22b) only
in space derivatives or multiplied by another small field.
We then obtain

f3 =
1

2µS
3

∇f2 −
CS

3,2

µS
3

f1f2 (23a)

f4 = −
CS

4,2

2µS
4

f2
2 (23b)



6

Injecting Eqs. (23a) and (23b) in Eqs. (22a) and (22b),
we obtain closed equations for f1 and f2,

∂tf1 = µS
1 f1 −

CS
1,3 C

S
3,2

µS
3

|f2|
2f1 + CS

1,2f
∗
1 f2

−
1

2
∇ρ−

1

2
∇∗f2 +

CS
1,3

2µS
3

f∗
2∇f2 (24a)

∂tf2 = µS
2 f2 −

CS
2,4C

S
4,2

2µS
4

|f2|
2f2 −

1

2
∇f1

−
1

4µS
3

∆f2 +
CS

3,2

2µS
3

∇∗(f1f2) (24b)

B. Boltzmann equation

In the case of the Boltzmann equation, interactions are
described as instantaneous collisions, and the equation
reads

∂tf + e(θ) ·∇f = Idif [f ] + Icol[f ] (25)

where Idif and Icol are defined in Eqs. (5) and (6) respec-
tively. The dynamics is defined such that the angles θ′1
and θ′2 after collisions are given by

θ′1 = Ψ(θ1, θ2) + η1, θ′2 = Ψ(θ2, θ1) + η2 (26)

where η1 and η2 are independent noises drawn from P (η).
We assume here that Ψ(θ1, θ2) favors nematic alignment.
Using symmetry properties, Ψ(θ1, θ2) can generically be
parameterized as [21]

Ψ(θ1, θ2) = θ1 +H(θ2 − θ1) (27)

where H is an arbitrary function which encodes the
nematic symmetry of the interaction, and is thus π-
periodic. After expansion in angular Fourier series, one
finds for the Boltzmann equation [20, 21],

∂tfk +
1

2
∇fk−1 +

1

2
∇∗fk+1 (28)

= −DB
k fk +

∞
∑

q=−∞

JB
k,qfk−qfq

where the coefficients DB
k and JB

k,q are given by

DB
k = −λR(1− P̂k) (29a)

JB
k,q = P̂kIk,q − Ik,0 (29b)

with

P̂k =

∫ ∞

−∞

dη P (η) eikη (30a)

Ik,q =

∫ π

−π

dθ KB(θ) e
−iqθ+ikH(θ) (30b)

Note that Eq. (28) is formally identical to Eq. (17). The
only difference, apart from the specific values of the co-
efficients, is that JB

k,q is a priori nonzero for all (k, q),
as it is not constrained by a nematic symmetry. In the
explicit model considered in [20] where particles are con-
sidered to have an almost circular shape of diameter d0
(the interaction radius), one has (setting v0 = 1)

KB(θ
′ − θ) = 4d0

∣

∣

∣

∣

sin
θ′ − θ

2

∣

∣

∣

∣

(31)

which is not invariant under the nematic symmetry θ →
θ + π. This absence of nematic symmetry is due to the
fact that K(θ′ − θ) corresponds to the collision rate of
polar particles, which depends on the velocity difference
of the particles. However, for non-circular particles, a
simple heuristic generalization of Eq. (31) can be pro-
posed, modulating the collision rate by an orientation-
dependent interaction radius d(θ′ − θ). In the limit of
infinitely thin rods, one finds (in the frame moving with
the particle of orientation θ),

d(θ′ − θ) = d0

∣

∣

∣

∣

cos
θ′ − θ

2

∣

∣

∣

∣

(32)

so that the collision kernel obtained in this limit,

Kthin
B (θ′ − θ) = 4d(θ′ − θ)

∣

∣

∣

∣

sin
θ′ − θ

2

∣

∣

∣

∣

= 2d0| sin(θ
′ − θ)|

(33)
indeed obeys a nematic symmetry. One thus recovers, in
the limit of infinitely thin rods, the property JB

2m,2l+1 =
0, as in the Smoluchowski case.
The derivation of the continuum equations for the po-

lar and nematic order parameters follows exactly the
same lines as in Sect. III A, and one finds (see [21] for
details)

∂tf1 = µB
1 f1 −

CB
1,3 C

B
3,2

µB
3

|f2|
2f1 + CB

1,2f
∗
1 f2 (34a)

−
1

2
∇ρ−

1

2
∇∗f2 +

CB
1,3

2µB
3

f∗
2∇f2

∂tf2 = µB
2 f2 −

CB
2,4C

B
4,2

2µB
4

|f2|
2f2 (34b)

+
1

2
CB

2,1f
2
1 −

CB
2,3C

B
3,2

µB
3

|f1|
2f2 −

1

2
∇f1

−
1

4µB
3

∆f2 +
CB

3,2

2µB
3

∇∗(f1f2) +
CB

2,3

2µB
3

f∗
1∇f2

These equations have essentially the same form as
Eqs. (24a) and (24b). The additional terms f2

1 , |f1|
2f2

and f∗
1∇f2 that appear in the equation for f2 are due to

the lack of nematic symmetry of the kernel KB(θ
′ − θ).

These terms vanish in the limit of infinitely thin rods,
where one recovers the same equations as obtained by
Baskaran and Marchetti on the basis of the Smoluchowski
equation. In other words, when only torques, but no
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forces are included in the kinetic equation, the two ki-
netic equations yield the same continuum equations and
the differences in the published continuum equations ob-
tained by the two approaches are entirely due to differ-
ences in the microscopic models.

IV. PARTICLES WITH INTERACTION

FORCES AND TORQUES

To understand the remaining differences between the
two set of published continuum equations we need to ex-
amine the remaining terms in the Smoluchowski equa-
tion. Specifically, Eq. (9b) contains terms coupling the
polar order parameter with its space derivative that are
not in Eq. (10b). In terms of the complex notations used
here, such terms yield a linear combination of f∗

1∇f1,
f1∇

∗f1 and f1∇f∗
1 . Also, the term f2∇f∗

1 appearing in
Eq. (9c) was not obtained in Eq. (24b).

These additional terms arise because the Smoluchowski
equation derived by Baskaran and Marchetti contains two
additional terms as compared to the Boltzmann equation
used by Peshkov et al.. The first one is the mean force
given in Eq. (4) that describes momentum transfer in
a collision. The second one is the second term in the
torque given in Eq. (3), that arises from the difference
in the position of the center of two colliding rods, and
hence incorporates the finite size of the particles. Note
that both terms could also be incorporated in a Boltz-
mann approach. Both terms are of first order in the spa-
tial gradients and yield terms of the same symmetry in
the continuum equations. In this section we discuss the
terms arising form the mean force, while those due to
the nonlocal torque are discussed in Appendix A. In ad-
dition, Baskaran and Marchetti incorporated positional
diffusion in [17], leading to the following Smoluchowski
equation, with the short notation e = e(θ),

∂tf + eα∂αf = D0∆f +D1

(

eαeβ −
1

2
δαβ

)

∂2
αβf

+ DR∂
2
θf − ∂θ(fτ)−∇ · (fF ) (35)

where D0 and D1 are the isotropic and anisotropic dif-
fusion coefficients, and F and τ are the force and torque
given in Eqs. (4) and (3), respectively (but we will ignore
here the second term on the right hand side of Eq. (3)
and discuss it in Appendix A).

Starting from the Smoluchowski equation (35), the fol-
lowing continuum equations (rewritten here in the cur-

rent complex notation) have been obtained [17],

∂tρ+Re(∇∗f1) = Dρ∆ρ+
DQ

2
Re(∇∗2f2) (36a)

∂tf1 = −DRf1 −
1

2
∇ρ−

1

2
∇∗f2 + λf∗

1 f2

− λ′
(

f∗
1∇f1 + f1∇

∗f1 − f1∇f∗
1

)

+
1

2
(Db +Dspl)∆f1 +

1

2
(Db −Dspl)∇

2f∗
1 (36b)

∂tf2 = µSf2 −
ṽ0
2
∇f1 +

DQ

16
∇2ρ

−
3λ′′

10
(f∗

1∇f2 + f1∇
∗f2)−

λ′′

96
(2f2∇

∗f1 + f2∇f∗
1 )

(36c)

where ṽ0 is a renormalized speed. In the following, we
aim at rederiving the generic form of Eqs. (36a,36b,36c),
including the relevant nonlinear terms.
On general grounds, the kernel G(θ, θ′) in Eq. (4) as-

sociated to the force exerted by a particle of orientation
θ′ on a particle of orientation θ can be decomposed onto
the directions parallel and perpendicular to e(θ),

G(θ, θ′) = G||(θ
′ − θ) e(θ) +G⊥(θ

′ − θ) e⊥(θ) (37)

with e⊥(θ) = e(θ + π
2 ). The scalar functions G|| and

G⊥ depend only on the angle difference, by rotational
symmetry. For non-chiral particles, the force G(θ, θ′)
obeys a reflection symmetry, characterized by

G||(−θ) = G||(θ), G⊥(−θ) = −G⊥(θ) (38)

The angular Fourier transform of fF can be decomposed
into parallel and transverse contributions:

∫ π

−π

dθ eikθf(r, θ, t)F (r, θ, t) = F
||
k + F

⊥
k (39)

with

F
||
k =

∫ π

−π

dθeikθf(θ)

∫ π

−π

dθ′f(θ′)G||(θ
′ − θ) e(θ) (40a)

F
⊥
k =

∫ π

−π

dθeikθf(θ)

∫ π

−π

dθ′f(θ′)G⊥(θ
′ − θ)e⊥(θ) (40b)

where we have written simply f(θ) instead of f(r, θ, t) to
lighten notations. After some algebra, we can eventually
write ∇ · (fF ) in the form

∇ · (fF ) =

∞
∑

q=−∞

M−q∇
∗(fqfk+1−q)

+

∞
∑

q=−∞

Mq∇(fqfk−1−q) (41)

where

Mq =
1

4π
(Ĝ||

q + iĜ⊥
q ) (42)
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with Ĝ
||
q and Ĝ⊥

q the Fourier transforms of G|| and G⊥

Ĝ||
q =

∫ π

−π

dθ eikθG||(θ) (43a)

Ĝ⊥
q =

∫ π

−π

dθ eikθG⊥(θ) (43b)

The Fourier coefficients Ĝ
||
q and Ĝ⊥

q are constrained by

symmetries. The coefficient Ĝ
||
q is real and Ĝ⊥

q is purely
imaginary due to the reflection symmetry Eq. (38). It

thus follows that Mq is real. Note also that Ĝ
||
−q = Ĝ

||
q

and Ĝ⊥
−q = −Ĝ⊥

q , a property that we have used in
Eq. (41).
In Fourier transform, the Smoluchowski equation thus

reads (see [21] for a similar derivation of the anisotropic
diffusion terms)

∂tfk +
1

2
∇fk−1 +

1

2
∇∗fk+1 = D0∆fk +

D1

4
(∇2fk−2 +∇∗2fk+2)−DS

k fk +

∞
∑

q=−∞

JS
k,qfk−qfq

+
∑

q

M−q∇
∗(fqfk+1−q) +

∑

q

Mq∇(fqfk−1−q) (44)

As we show below, applying the closure scheme used in
Ref. [17] one obtains continuum equations for ρ, f1 and f2
that have the same form as those of [17]. Of course, the
detailed expression of the coefficients differs since we have
neglected the gradient term in the torque, but we were

interested here only in the structure of the continuum
equations.

To examine the effect of the closure, we truncate
Eq. (44) to order ǫ3 for ρ, f1 and f2, yielding

∂tρ+Re(∇∗f1) = D0∆ρ+
D1

2
Re(∇∗2f2) + 2(M0 +M−1)Re

(

∇∗(ρf1)
)

+ 2(M1 +M−2)Re
(

∇∗(f∗
1 f2)

)

(45)

∂tf1 +
1

2
∇∗f2 +

(1

2
−M0ρ

)

∇ρ = µS
1 f1 +D0∆f1 +

D1

4
∇2f∗

1 + CS
1,2f

∗
1 f2 + CS

1,3f
∗
2 f3

+ (M0 +M−2)∇
∗(ρf2) + (M2 +M−2)∇|f2|

2 +M−1∇
∗f2

1 + (M1 +M−1)∇|f1|
2 (46)

∂tf2 +
1

2
(∇∗f3 +∇f1) = µS

2 f2 +D0∆f2 +
D1

4
∇2ρ+ CS

2,4f
∗
2 f4 + (M−1 +M−2)∇

∗(f1f2)

+ (M−1 +M2)∇(f∗
1 f2) + (M0 +M−3)∇

∗(ρf3) + (M0 +M1)∇(ρf1) (47)

For f3, Eq. (23a) is changed into

f3 =
1

µS
3

(

1

2
− (M0 +M2)ρ

)

∇f2 −
CS

3,2

µS
3

f1f2 (48)

while one recovers Eq. (23b) for f4. Using these last
equations as closure relations, we find for f1 and for f2

∂tf1 = µS
1 f1 −

(1

2
−M0ρ

)

∇ρ−
1

2
∇∗f2 +D0∆f1 +

D1

4
∇2f∗

1 −
CS

1,3 C
S
3,2

µS
3

|f2|
2f1 + CS

1,2f
∗
1 f2 + γf∗

2∇f2

+ 2M−1f1∇
∗f1 + (M1 +M−1)(f1∇f∗

1 + f∗
1∇f1) + (M0 +M−2)∇

∗(ρf2) + (M2 +M−2)f2∇f∗
2 (49a)

∂tf2 = µS
2 f2 −

CS
2,4C

S
4,2

2µS
4

|f2|
2f2 −

1

2
∇f1 + (M0 +M1)∇(ρf1) +D∆f2 +

D1

4
∇2ρ

+ χ(f1∇
∗f2 + f2∇

∗f1) + (M−1 +M2)(f
∗
1∇f2 + f2∇f∗

1 ) (49b)
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where the coefficients are given by

γ =
CS

1,3

µS
3

(1

2
− (M0 +M2)ρ

)

+ (M2 +M−2) (50a)

D = D0 −
1

µ3

(1

2
− (M0 +M−3)ρ

)(1

2
− (M0 +M2)ρ

)

(50b)

χ =
CS

3,2

µS
3

(1

2
− (M0 +M−3)ρ

)

+ (M−1 +M−2) (50c)

Note that, unlike the torque, the force kernel used by
Baskaran and Marchetti [17] does not have the nematic
symmetry, as in generalG(θ+π, θ′) 6= G(θ, θ′). Were this
symmetry present the Fourier coefficients would satisfy

Ĝ
||
2n = Ĝ⊥

2n = 0, leading to M2n = 0 for any integer n.

V. DISCUSSION

In this paper, we have examined the differences be-
tween the continuum equations for interacting self-
propelled rods previously obtained in the literature from
the Smoluchowski equation [17] and from the Boltzmann
equation in [20]. The differences, not surprisingly, arise
either from (i) the use of different microscopic models
or (ii) the use of different closures of the moment ex-
pansion of the kinetic equation. Concerning the model:
Baskaran and Marchetti considered long, thin rods with
finite and anisotropic excluded volume (hence incorpo-
rating momentum transfer in a collision and nonlocality
on the scale of the difference in position of the colliding
rods), while Peshkov et al. considered point-like particles
with nematic alignment rules and circular interaction ar-
eas. Additionally, while Baskaran and Marchetti used a
simple truncation that neglects all moments higher than
the second, Peshkov et al. employed a more sophisticated
closure that allows one to derive in particular the nonlin-
ear term responsible for the onset of the ordered state.
We show here that when the same microscopic model and
the same closure are used, the Smoluchowski and Boltz-
mann approach yield the same continuum equations, al-
beit with different microscopic expression for the param-
eters. This is perhaps not surprising, but it is reassuring
to demonstrate the equivalence for these nonequilibrium
systems.
One interesting result is that even in the simplest case

of point-like particles with nematic aligning interactions,
where only strictly local aligning torques are included,
the shape of the interaction region controls the symme-
try of the collision frequency and the symmetry of the
interaction kernel. The needle-like particles considered
by Baskaran and Marchetti yield a collision kernel that
contains only even Fourier components in the angle de-
scribing the difference in orientation of the interacting
particles, and hence has pure nematic symmetry. The
circular point-particles considered by Peshkov et al. yield
a collision kernel that contains both even and odd Fourier

components, and hence has mixed polar and nematic
symmetry. This leads to additional terms in the equa-
tions of Ref. [20] not obtained in Ref. [17, 18]. We ex-
pect that these additional terms will generally be present
when one considers finite-thickness rods, so that cap-on-
cap collisions are not negligible. Numerical integration
however indicates that at low density, these terms do not
play an important role in the behavior of the equation.
The terms f∗

1∇f1, f1∇
∗f1 and f1∇f∗

1 present in the
work by Baskaran and Marchetti, but not in that of
Peshkov et al., arise from both the mean force given in
Eq. (4) and the nonlocal contribution to the torque in
Eq. (3). Here the discussion of the latter has been rele-
gated to Appendix A, but both contributions to the ki-
netic equation must be included to consistently evaluate
the coefficients of these terms, as shown in [17]. These
terms encode the fact that the polarization in the hard
rod models is actually the physical flow velocity of the
fluid of rods. They include the convection term P ·∇P

that is the analog of the convective nonlinearity in the
Navier-Stokes equation of passive fluids and a∇|P|2 con-
tribution to the pressure that arises from self propulsion.
The mean force and nonlocal torque also yield additional
terms Re

(

∇∗(ρf1)
)

and Re
(

∇∗(f∗
1 f2)

)

in the continuity
equation (45). These do not appear in Eq. (9a) because
nonlinear terms in the hydrodynamic variables in the
continuity equation were neglected in [17]. Isotropic and
anisotropic diffusion terms, as appearing in Eqs. (36a),
(36b) and (36c), are also reproduced when positional dif-
fusion is taken into account, see Eqs. (45), (49a) and
(49b). Finally, a renormalization of the velocity v0 = 1,
in agreement with Eq. (36c), is obtained in Eq. (49b), by
expanding the term ∇(ρf1).
Note that the non-locality of the interactions, only con-

tributes to order ǫ4 to the average force. These terms
are therefore neglected in the truncation procedure. The
only terms of order ǫ3 in the equation for fk (k = 0, 1, 2)
are of the form ρ∆fk, ρ∇

2fk−2 and ρ∇∗2fk+2 (for k = 0
only in this last case) and thus would just renormalize
the existing diffusion terms.
Finally, let us mention that the non-locality of inter-

actions (or, in other words, the finite excluded volume
of particles) can also be accounted for in the Boltzmann
framework. The corresponding study goes beyond the
scope of the present note, and will be the subject of a
future publication [23].
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Appendix A: Non-local average torque

In this appendix, we briefly sketch the derivation of
the Fourier transform of the Smoluchowski equation in
the case of weakly non-local interactions affecting the
torque only. We start from the non-local average torque
Eq. (12), and first rewrite the kernel using the change of
variables r′ − r = se(φ). From rotational symmetry, we
obtain

K̃(r′ − r, θ′, θ) = K(s, θ′ − θ, φ− θ) (A1)

Expanding the torque to first order in gradient, we get

τ(θ) =

∫ π

−π

dθ′ K1(θ
′ − θ)f(θ′)

+

∫ π

−π

dθ′
∫ π

−π

dφK2(θ
′ − θ, φ− θ) e(φ) · ∇f(θ′)

≡ τ1(θ) + τ2(θ) (A2)

where we have defined

K1(θ
′ − θ) =

∫ π

−π

dφ

∫ ∞

0

ds sK(s, θ′ − θ, φ− θ) (A3a)

K2(θ
′ − θ, φ− θ) =

∫ ∞

0

ds s2K(s, θ′ − θ, φ− θ) (A3b)

Note that Eq. (3) is recovered by introducing

K2(θ
′, θ) =

∫ π

−π

dφK2(θ
′ − θ, φ− θ) e(φ) . (A4)

From Sect. III A, we know that the Fourier transform of
τ1(θ) is given by

∫ π

−π

dθ eikθτ1(θ) =

∞
∑

q=−∞

JS
k,qfk−qfq (A5)

A similar calculation for the Fourier transform of τ2 yields

∫ π

−π

dθeikθτ2(θ) =
∑

q

(L−qfk+1−q∇
∗fq − Lqfk−1−q∇fq)

(A6)
with

Lq =
i

4π
K̂q,1 (A7)

and

K̂q1,q2 =

∫ π

−π

dθ1

∫ π

−π

dθ2K2(θ1, θ2) e
−iq1θ1−iq2θ2 (A8)

Note that due to the nematic symmetry K2(θ1 + π, θ2 +
π) = K2(θ1, θ2), one has L2n = 0, hence the sum may be
carried over odd q’s only in Eq. (A6). Pluging the ex-
pression (A6) of the torque into the Fourier transform of
the Smoluchowski equation (with force term) eventually
leads to

∂tfk +
1

2
∇fk−1 +

1

2
∇∗fk+1

= D0∆fk +
D1

4
(∇2fk−2 +∇∗2fk+2)

−DS
k fk +

∞
∑

q=−∞

JS
k,qfk−qfq

+
∑

q

(kL−q +M−q +Mq−k−1)fk+1−q∇
∗fq

+
∑

q

(kLq +Mq +Mk−1−q)fk−1−q∇fq (A9)

The resulting equation thus has the same structure as
Eq. (44), after expansion of the derivatives of products
and relabelling. Only the values of the coefficients differ.
This however leads to a reweighting of the different terms
which generically breaks the symmetry between terms
like f1∇

∗f2 and f2∇
∗f1, or f∗

1∇f2 and f2∇f∗
1 observed

in Eq. (49b).
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