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An analytical expression for the fluctuation-rounded stretch-coil transition of semiflexible poly-
mers in extensional flows is derived. The competition between elasticity and tension is known to
cause a buckling instability in filaments placed near hyperbolic stagnation points, and the effect of
thermal fluctuations on this transition has yet to receive full quantitative treatment. Motivated by
the findings of recent experiments as well as our simulations, we solve for the amplitude of the first
buckled mode near the onset of the instability. This reveals a stochastic supercritical bifurcation,
which is in excellent agreement with full numerical simulations.

The nonlinear dynamics of elastic filaments driven by
hydrodynamic forces have received significant attention
in recent times, sparked mainly by advances in experi-
ments ranging from the microscopic [1–3] to the macro-
scopic [4] lengthscales, as well as by the development
of efficient low-dimensional models to quantitatively de-
scribe them [5–8]. Of particular interest are semiflex-
ible filaments, which are in between the extremities of
entropy-dominated floppy polymers and rigid rods in
terms of elastic stiffness. Pertinent to the contents of this
Rapid Communication is that these particles allow for a
competition between bending forces and flow-induced in-
ternal stresses, in the presence of thermal fluctuations.

Understanding the configurational transitions of semi-
flexible filaments is key to deciphering a plethora of dy-
namics ranging from tumbling [2, 3] to buckling [1, 9] to
helical coiling [8], which in turn could result in atypical
transport [10, 11] or non-Newtonian behavior [7, 12]. Be-
side offering rich mechanical properties that enable such
dynamics, semiflexible biopolymers are of paramount im-
portance to living cells: eukaryotic cells are structurally
supported by a cytoskeletal system comprised of filamen-
tous actin. Configurational transitions in such systems
have been suggested to lie at the core of biological pat-
tern formation via self-organizational phenomena such as
cytoplasmic streaming [13].

Much like an elastic beam simply loaded at its ends,
an elastic filament placed in a viscous fluid can undergo a
buckling transition if the hydrodynamic force acting on it
overcomes its elastic restoring force. This may be driven
by internal forces generated in response to an imposed
flow [1, 6–9, 11], or by an external force [14]. Motivated
by the recent experiments of Kantsler and Goldstein [1]
and by the rising ubiquity of microfluidic trap devices
[15] that employ such flows, we focus here on the former
scenario — specifically, the buckling transition of a semi-
flexible filament placed at the stagnation point in a linear
hyperbolic flow. Adapting our approach to simple shear
is straightforward. Inextensibility of such filaments is en-
sured by an internal tensile force that acts to resist length
changes. It is the competition of this very line tension
with bending forces that results in non-trivial shape in-
stabilities, and the effect of thermal fluctuations on such
instabilities is the subject of this Rapid Communication.

Euler buckling, wherein an elastic beam is loaded con-
stantly at its ends, is well understood, and recent efforts
[16, 17] have shown that the effect of stochastic forces
is to smoothen the otherwise sharp transition from a
straightened to a buckled configuration. Although we ex-
pect a rounded transition in the case of filaments placed
in a viscous fluid as well, extending these theories to
the fluid-structure interaction problem is not straight-
forward, primarily due to the non-uniform tensile force
that drives the buckling instability. In the non-Brownian
limit, Young and Shelley [6] were the first to quantify a
dynamic instability leading to the so-called stretch-coil
transition when the driving flow strength exceeds a crit-
ical value. Following this, Kantsler and Goldstein [1]
comprehensively observed this transition in single actin
filaments using microfluidics, and showed that while fluc-
tuations round the bifurcation, it is broadly consistent
with the athermal linear predictions. More recently,
Deng et al. [18] approached the same problem numeri-
cally and reported a similar transition. While their sim-
ulations captured the effect of Brownian noise on nonlin-
ear filament dynamics, an analytical description of this
stochastic bifurcation has yet to receive a quantitative
treatment. Here, we present the first mathematical de-
scription of the stretch-coil transition in the presence of
thermal fluctuations.

We consider a slender, inextensible filament placed in
an external flow field of characteristic flow strength γ̇ in
a Stokesian fluid of viscosity µ. The filament has length
L and a characteristic radius of cross section b = εL
(with ε � 1), which defines the slenderness parameter
c = log(1/ε2). The material of the filament is assumed
to be homogeneous with bending rigidity κ, which deter-
mines the thermal persistence length `p = κ/kBT . This
is the lengthscale over which bending forces and thermal
forces are comparable, and semiflexible filaments fall in
the regime where `p ∼ L.

The slender-body equation [19] provides a balance be-
tween the anisotropic viscous drag on the filament and
the internal forces felt along its backbone. Denoting by
x(s, t) the position of the filament centerline at arclength
location s ∈ [−L/2, L/2], and making the system dimen-
sionless using standard methods [11, 20], this balance



2

(a)

(b)

(c)

FIG. 1. (Color online) Snapshots from three separate numer-
ical simulations showing typical filament shapes as a result of
the buckling instability. Higher modes are observed as we in-
crease the flow strength from (a) µ̄ = 16000 to (b) µ̄ = 32000
to (c) µ̄ = 64000. Streamlines of the hyperbolic flow are
shown in dotted lines, and the flow is compressional along
the horizontal and extensional along the vertical. The persis-
tence length in each case is `p = 10L.

reads

xt(s, t) = µ̄u∞(s, t)−M(s, t) · f(s, t). (1)

Here, u∞ is the imposed velocity field, µ̄ = 8πγ̇µL4/κ
is a dimensionless flow strength, and subscripts denote
partial differentiation with the corresponding variable.
M(s, t) = λ1I + λ2xs(s, t)xs(s, t) is a configuration-
dependent second-order mobility tensor that captures the
local anisotropic drag with λ1 = c + 1 and λ2 = c − 3.
The force distribution f(s, t) on the filament has contri-
butions from Euler-Bernoulli elasticity and a fluctuating
Brownian term: f = −(Txs)s + xssss + f br. T (s) is the
non-uniform line tension, which is not a material prop-
erty but a Lagrange multiplier acting to ensure filament
inextensibility. The Brownian contribution follows from
the fluctuation-dissipation theorem and, under the cur-
rent non-dimensionalization, is such that 〈f br(s, t)〉 = 0
and 〈f br(s, t)f br(s′, t′)〉 = 2(L/`p)M

−1δ(t− t′)δ(s− s′).
Simplifying the slender-body equation and using xs ·

xs = 1 (following inextensibility) and hence xs · xss = 0,
one finds

xt = µ̄u∞ + λ1Txss + (λ1 + λ2)Tsxs − λ1xssss
− λ2(xs · xssss)xs + (λ1I + λ2xsxs) · f br.

(2)

The simulations shown in this Rapid Communication
follow a Brownian dynamics algorithm [11] that solves
Eq. (2). The line tension is unknown a priori and is
obtained dynamically as a solution to a differential equa-
tion that results from applying the identity (xs ·xs)t = 0.
Free-end boundary conditions are used to ensure that
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FIG. 2. (Color online) Percentage of excited modes across
a range of flow strengths. The vertical dashed lines denote
the deterministic thresholds for the first three modes (shapes
shown), and the shaded area represents the percentage of
cases where no buckling was recorded. All simulations are
for `p/L = 10. Each vertical section is a distribution across
200 simulations.

the total force and torque on the filament be zero:
xss|s=±1/2 = xsss|s=±1/2 = T |s=±1/2 = 0. For all re-
sults reported here, we use an aspect ratio of ε = 0.01.

Figure 1 shows snapshots from our simulations, and
they resemble the shapes seen in the experiments
of Kantsler and Goldstein [1] at corresponding flow
strengths (Σ in their notation being equal to µ̄/4λ1π

4).
When placed along the compressional axis of a suffi-
ciently strong flow, the filament experiences a negative
tension along its backbone whose balance with viscous,
elastic, and thermal forces dictates the observed shapes.
As it buckles, it also reorients and eventually aligns with
the extensional axis where the now positive tension acts
to stretch it. Solving for the non-Brownian and linearized
dynamics of an initially straight filament in such a flow,
Young and Shelley [6] deduced that an instability first
occurs at µ̄cr ≈ 1478, and that higher modes are desta-
bilized at subsequent thresholds. Experiments as well as
our simulations show qualitatively similar modes as the
deterministic predictions, albeit with shape fluctuations
owing to Brownian kicks. A key difference is that ther-
mal fluctuations excite multiple modes regardless of flow
strength by equipartition of energy [1], thus affecting the
distribution of modes seen in the event of buckling. To
quantify this, we identify the predominant mode whose
amplitude grows beyond a noise floor of 0.05L in 200 dif-
ferent simulations each for various flow strengths. The
distribution of excited modes is shown vs µ̄ in Fig. 2,
and the trends in dominant shapes, although strongly
rounded by fluctuations, are consistent with the deter-
ministic predictions. This is reminiscent of the stochastic
Euler buckling problem [16, 17], where thermal fluctua-
tions have been shown to round the transition near the
deterministic critical force. This motivates the following
analysis where we quantify the transition near the first
deterministic threshold, or critical flow strength associ-
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ated with the first buckling mode.
To analyze this transition, we first adopt a Monge rep-

resentation and write x(s, t) = (s, h) where h(s, t) is the
deflection away from the axis of compression in the hy-
perbolic flow u∞ = (−x, y) = (−s, h). Further, we as-
sume that the parabolic form of tension corresponding
to a straightened filament placed at the origin holds even
when it is deformed — an assumption that is justified
for small deflections away from the axis as arise near
the onset of buckling. This tension profile can be de-
termined by manipulating Eq. (2) and takes the form
T (s) = µ̄(s2 − 1/4)/2(λ1 + λ2). Also, since the variable
h measures vertical deflections away from the y = 0 axis,
we consider only thermal fluctuations in this direction.
Then, the scalar equation for h reads:

∂h

∂t
= µ̄

[
h+

1

2

λ1
λ1 + λ2

(
s2 − 1

4

)
hss + shs

]
− λ1hssss − λ2h2shssss +

√
2λ1

L

`p
ξ(s, t),

(3)

where ξ(s, t) is a white noise with zero mean and corre-
lation 〈ξ(s, t)ξ(s′, t′)〉 = δ(s− s′)δ(t− t′).

Ignoring the non-linear and stochastic terms above and
assuming a form h(s, t) = φ(s)eςt leads directly to the
linear stability results of Young and Shelley [6]. Defin-
ing the terms within the square brackets in (3) as L[h],
marginal linear stability (Re[ς] = 0) in the non-Brownian
case corresponds to the eigenvalue problem

µ̄(n)
cr L[φ(n)(s)] = λ1φ

(n)
ssss(s), (4)

where φ(n) is the n-th buckling mode that is destabilized

at a critical flow strength µ̄
(n)
cr . Since our interest is in the

effect of fluctuations near the first buckling transition, we
use n = 1 from here on and avoid the superscripts. Also,
we introduce a parameter m which is the distance from
the deterministic threshold: µ̄ = µ̄cr + m. In order to
reduce to a form amenable to treatment as a stochas-
tic supercritical bifurcation [21], we introduce the ansatz
h(s, t) = a(t)φ(s) near µ̄cr. Using Eq. (4), the governing
equation becomes:

φ
da

dt
=
mλ1
µ̄cr

aφssss − λ2a3φ2sφssss +

√
2λ1

L

`p
ξ. (5)

Recall that φ and its derivatives solve the eigenvalue
problem (4), which admits orthogonal eigenfunctions.
Projecting Eq. (5) on the first eigenfunction φ then yields
a Langevin equation governing the time dynamics of the
amplitude a(t):

da

dt
= mγa− 2ωa3 +

√
σζ(t). (6)

This is, in fact, a time-dependent stochastic Ginzburg-
Landau model for the amplitude of the first buck-
led mode. Here, γ = λ1A1/µ̄cr, ω = λ2A2/2, and
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FIG. 3. Probability density of the amplitude a according to
Eq. (8) corresponding to σ = 2.04 (`p/L = 10). The deter-
ministic buckling threshold is m = 0, and the distribution
consistently shift towards higher amplitudes as m increases.

σ = 2λ1L/`p are all positive parameters. A1 and
A2 are constants that depend on the shape of the

eigenfunctions, given respectively by
∫ 1/2

−1/2 φφssss ds and∫ 1/2

−1/2 φφ
2
sφssss ds. ζ(t) =

∫ 1/2

−1/2 ξ(s, t)φ(s) ds is a nor-

mal variate with zero mean and correlation 〈ζ(t)ζ(t′)〉 =
δ(t− t′).

Equation (6) has as its deterministic (σ = 0) and linear
(ω = 0) limit the solution a(t) ∼ exp[mγt], which, con-
sistent with the predictions of the linear stability anal-
ysis, decays when m < 0 (µ̄ < µ̄cr) and grows other-
wise. Analyzing the deterministic yet non-linear problem
(σ = 0 6= ω) reveals a supercritical pitchfork bifurcation

at m = 0 with a =
√
γm/2ω when m > 0. The stochas-

tic bifurcation will be shown to correctly limit to this
form as σ → 0.

We now look to quantify the thermal rounding of this
bifurcation for finite `p (σ 6= 0). We first obtain the
Fokker-Planck equation corresponding to Eq. (6), which
provides a deterministic equation for the probability den-
sity ψ(a, t) of the amplitude a:

∂ψ

∂t
= − ∂

∂a

[
(mγa− 2ωa3)ψ

]
+
σ

2

∂2ψ

∂a2
. (7)

A steady solution for the stationary probability density
ψS = ψ(t→∞) can be obtained as

ψS(a;m, γ, ω, σ) =
1

N
exp

[
1

σ
(mγa2 − ωa4)

]
, (8)

where N(m, γ, ω, σ) is a normalization constant such that∫∞
0
ψS da = 1. The effect of the sign of m is obvious in

Eq. (8), shown also in Fig. 3: ψS(a;m ≤ 0) always peaks
at a = 0, whereas a positive value of m shifts the peak to
a finite positive value of a. The non-linearity is critical as
well, as ω = 0 is a Gaussian that always peaks at a = 0.

We can now solve for the expected value 〈a〉 =
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FIG. 4. (Color online) Expected value of the amplitude of
the first buckled mode as a function of flow strength. The
dashed line is the deterministic pitchfork bifurcation; the solid
lines (red for `p/L = 100 and blue for `p/L = 10) follow
Eq. (9) and depart from the sharp transition for increasingly
noisy systems. The symbols (red circles for `p/L = 100 and
blue triangles for `p/L = 10) are extracted from simulations
without any fitting parameters.

∫∞
0
aψS da of the amplitude, which reads:

〈a〉 =
1

G

√
2σ

γ|m|π exp

[
γ2m2

8ωσ

] [
1 + erf

(
γm

2
√
ωσ

)]
, (9)

where

G =


√

2

π
K1/4

[
γ2m2

8ωσ

]
: m < 0,

I−1/4

[
γ2m2

8ωσ

]
+ I1/4

[
γ2m2

8ωσ

]
: m ≥ 0,

(10)

and Iν(x) and Kν(x) are, respectively, the modified
Bessel functions of the first and second kind.

Figure 4 shows the predicted amplitude as the flow
strength is varied across the deterministic threshold.
Akin to constantly loaded fibers, the effect of thermal
fluctuations is to round the sharp transition. Non-trivial
modes are excited at arbitrary flow strengths as a conse-
quence of equipartition of energy, and this manifests as
a finite amplitude of the first buckled mode well below
µ̄cr. Evaluating the limit of (9) as m→ 0 indicates that
the corresponding expected value is indeed non-zero and

varies as σ1/4 ∼ `
−1/4
p , i.e., the amplitude at the deter-

ministic threshold is larger for more flexible filaments.
Beyond µ̄cr, 〈a〉 crosses over and approaches the deter-

ministic pitchfork bifurcation value of
√
γm/2ω. This

approach is slower as `p decreases, suggesting a larger
mean projected length in the buckled state. Recall from

Eq. (6) that the finite buckled amplitude in the deter-
ministic case is set by the component of the elastic force
along the local tangent vector. The effect of thermal
fluctuations beyond the transition is to reduce this ampli-
tude, which can be viewed as an effectively stiffer spring
against hydrodynamic compression. This coupling be-
tween elasticity and Brownian motion is crucial — an
increase in temperature hardens the filament and acts
to straighten it out, which is contrary to floppy poly-
mers that are driven solely by configurational entropy
and shrink in response to increasing temperature. This
again is reminiscent of constantly loaded beams under
the influence of thermal fluctuations, where an apparent
stretching has been reported past the critical force [16].

In order to test this prediction, we compare it against
full numerical simulations of Eq. (2) using a Brownian
dynamics algorithm [11]. We place a filament in a hyper-
bolic flow which is dynamically adjusted to remain com-
pressional along the direction of the end-to-end vector.
This eliminates filament reorientation and provides long-
time statistics, which are necessary for comparison with
the stationary probability distribution derived above. Af-
ter an initial transience, a stochastically steady state is
reached. This is ensemble-averaged and compared to φ(s)
to obtain a numerical prediction for the expected value
of a. Higher modes may be excited by thermal fluc-
tuations, and we eliminate these in our averages. The
result is shown in Fig. 4 for two different values of `p
and matches excellently with our predictions without
any fitting parameters. The simulations also display the
smoothed trend in the transition, as well as the apparent
pre-buckling softening and post-buckling hardening due
to the particular nature of the stochastic bifurcation.

We have analytically quantified the buckling transition
of a semiflexible filament in extensional flow as a stochas-
tic supercritical bifurcation, with the resulting expres-
sion specifying the exact nature of the finite-temperature
rounding of the transition. While this analysis solves a
vital facet of fluid-filament interaction problems at the
microscale, it also provides a powerful tool for experimen-
talists to extract mechanical properties of single macro-
molecules by fitting shape deformations around critical
points. The theory presented here, while elaborated for
extensional flows, is also sufficiently general to be ex-
tended to other flows commonly encountered in microflu-
idics. For instance, predicting the transition to the first
deformed mode in simple shear, often called ‘hairpins’
[2, 12], is straightforward once the appropriate form of
the tension is known [22]. Generalization of the analy-
sis to include multiple modes is an open problem that
warrants attention, as is the coupled description of de-
formation and rotation after buckling.

We thank Raymond E. Goldstein for useful conversa-
tions on this work. This work was supported by NSF
CAREER grant CBET-1532652.
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