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An interconnected network features a structural transition between two regimes [1]: one where
the network components are structurally distinguishable and one where the interconnected network
functions as a whole. Our exact solution for the coupling threshold uncovers network topologies with
unexpected behaviors. Specifically, we show conditions that superdiffusion, introduced in [2], can
occur despite the network components functioning distinctly. Moreover, we find that components of
certain interconnected network topologies are indistinguishable despite very weak coupling between
them.

Several natural and human-made networks—such as
power grids controlled by communications networks, con-
tact networks of human and animal populations for trans-
mission of zoonotic diseases, and transportation net-
works consisting of multiple modes (road, flights, rail-
roads, etc.)—cannot be represented by simple graphs and
have led [3] to the introduction of interdependent, inter-
connected, and multilayer networks in network science
[4, 5]. Interconnected networks are mathematical repre-
sentations of systems where two or more simple networks,
possibly with different functionalities, are coupled to each
other. The omnipresence of interconnected networks has
spurred a variety of research [6–9], with particular inter-
est in dynamical processes such as percolation [10, 11],
epidemic spreading [12–15], and diffusion [2, 16].

Recently, Radicchi and Arenas [1], and Gomez et al.
[2] proposed a stylized interconnected network [17], con-
sisting of two connected networks, GA and GB, each of
size N , with one-to-one interconnection, as sketched in
Fig. 1, where the interconnection strength between the
layers is parametrized by a coupling weight p > 0.
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FIG. 1. One-to-one interconnection of two networks GA and
GB , where the coupling weight is p > 0.

Radicchi and Arenas [1] demonstrated the existence of
a structural transition point p∗. Depending on the cou-
pling weight p between the two networks, the collective
interconnected network can function in two regimes: if
p < p∗, the two networks are structurally distinguishable;

whereas if p > p∗, they behave as a whole.
While studying diffusion processes on the same type

of interconnected network in Fig. 1, Gomez et al. [2]
observed superdiffusion: for sufficiently large p, the dif-
fusion in the interconnected network takes place faster

than in either of the networks separately. Superdiffusion
arises due to the synergistic effect of the network inter-
connection and exemplifies a characteristic phenomenon
in interconnected networks. Placement of the introduc-
tion point of superdiffusion with respect to the critical
point p∗ is missing in the literature.

Whereas the existence of a critical transition p∗ was
reported in [1], here, we determine the exact coupling
threshold p∗. Our exact solution illuminates the role
of each individual network component and their com-
bined configuration on the structural transition phenom-
ena and uncovers unexpected behaviors. Specifically, we
show structural transition is not a necessary condition
for achieving superdiffusion. Indeed, superdiffusion can
be achieved for a coupling weight p even below the struc-
tural transition threshold p∗, which is surprising because,
intuitively, synergy is not expected if the network com-
ponents are functioning distinctly. Moreover, we observe
that the structural transition disappears when one of the
network components has vanishing algebraic connectivity
[18–20], as is the case for a class of scale-free networks.
Therefore, components of such interconnected network
topologies become indistinguishable despite very weak
coupling between them.

Spectral analysis plays a key role in understanding in-
terconnected networks. Hernandez et al. [21] found the
complete spectra of interconnected networks with iden-
tical components. Sole-Ribalta et al. [22] studied the
interconnection of more than two networks with an ar-
bitrary one-to-one correspondence structure. Sanchez-
Garcia et al. [23] employed eigenvalue interlacing [18] to
provide bounds for the Laplacian spectra of an intercon-
nected network with a general interconnection pattern.
In addition, in a similar context of structural transition
as [1], D’Agostino [24] showed that adding interconnec-
tion links among networks causes structural transition.
For a class of random network models, specified by an in-
tralayer [25] and an interlayer degree distribution, Radic-
chi [26] showed when the correlation between intralayer
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and interlayer degrees is below a threshold value, the in-
terconnected networks become indistinguishable.
We study the interconnected network G of Radicchi

and Arenas [1], and Gomez et al. [2], as depicted in Fig.
1. Matrices A and B represent the adjacency matrices of
GA and GB, respectively. The overall adjacency matrix
and Laplacian matrix [18] of the interconnected network
G are

A =

[

A pI
pI B

]

and L =

[

LA + pI −pI
−pI LB + pI

]

,

where LA and LB are the Laplacian matrices of GA and
GB, respectively, and I is the identity matrix. The eigen-
values of the Laplacian matrix L, denoted by 0 = λ1 <
λ2 ≤ · · · ≤ λ2N , are the solutions of the eigenvalue prob-
lem

[

LA + pI −pI
−pI LB + pI

] [

vA
vB

]

= λ

[

vA
vB

]

, (1)

where vA and vB contain elements of the eigenvector v =
[vTA, v

T
B]

T corresponding to GA and GB, respectively, and
satisfy the following eigenvector normalization

vTAvA + vTBvB = 2N. (2)

The algebraic connectivity λ2(L) of the interconnected
network is the smallest positive eigenvalue of the Lapla-
cian matrix L and the Fiedler vector v2 is its correspond-
ing eigenvector. Algebraic connectivity of networks has
been studied in depth [18, 20] since Fiedler’s seminal pa-
per [19]. Algebraic connectivity quantifies the connect-
edness of a network and specifies the rate of convergence
in a diffusion process [27] to its steady state. The Fiedler
vector plays a key role in spectral partitioning of net-
works (see e.g. [18]).
Superdiffusion occurs if the algebraic connectivity

λ2(L) of the interconnected network is larger than the
algebraic connectivity of each network component [2],

λ2(L) > max{λ2(LA), λ2(LB)}. (3)

Condition (3) indicates that diffusion in the intercon-
nected network G spreads faster than in GA or GB if
isolated. This condition does not hold for all intercon-
nected networks. Gomez et al. [2] proved a necessary
condition for superdiffusion is to have 1

2λ2(LA + LB) >
max{λ2(LA), λ2(LB)}. In this case, the criterion (3)
for superdiffusion is met for sufficiently large coupling
weights, since the algebraic connectivity λ2(L) is a mono-
tone function of the coupling weight p and increases from
0 when p = 0, to 1

2λ2(LA + LB) as p → ∞.
The structural transition phenomenon of [1] can be

understood through the behavior of the Fiedler vector
of the interconnected network as a function of coupling
weight p. For the eigenvalue problem (1), λ = 2p

and vA = −vB = u , [1, . . . , 1]T is always a solu-
tion [1, 2]. Therefore, if the coupling weight p is small
enough, the algebraic connectivity of the interconnected

network is λ2(L) = λ = 2p. Thus, the Fiedler vec-
tor v2 = [uT ,−uT ]T corresponding to λ2(L) = 2p indi-
cates that networks GA and GB are structurally distinct
[1]. By increasing the coupling weight p, the eigenvalue
λ = 2pmay no longer be the smallest positive one. Radic-
chi and Arenas [1] showed the existence of a structural
transition at a threshold value p∗ such that for p > p∗,
the eigenvalue λ = 2p exceeds the algebraic connectivity
λ2(L), thus indicating an abrupt structural transition.
Moreover, Radicchi and Arenas [1] argued that the cou-
pling threshold is upper-bounded by one fourth of the
algebraic connectivity of the superpositioned network Gs

with adjacency matrix A+ B, which is equivalent to

p∗ ≤
1

2
λ2

(

LA + LB

2

)

. (4)

Although coupling threshold p∗ is a critical quantity
for interconnected networks, little is known apart from
the upper bound (4). We now explain our new method
to find the exact expression for the coupling threshold
p∗.
Since elements of the Laplacian matrix L are continu-

ous functions of p, so are its eigenvalues [28]. This implies
that the transition in the Fiedler vector of the intercon-
nected network is not a result of any abrupt transition
of the eigenvalues of L, but rather due to crossing of
eigenvalue trajectories as functions of p. Specifically, the
Fiedler vector transition occurs precisely at the point
where the second and third eigenvalues of L coincide.
Therefore, coupling threshold p∗ is such that λ = 2p∗ is

a positive, repeated eigenvalue of L.
As detailed in the Supplemental Material [29, B.i.],

we find that repeated eigenvalues occur at λ = 2p∗ for
N − 1 different values of p∗, namely p∗ = 1

2λi(Q) for
i ∈ {2, · · · , N}, whereQ can be expressed in the following
forms [29, B.ii]:

Q , L̄− L̃L̄†L̃ (5)

= 2(LA −
1

2
LAL̄

†LA) = 2(LB −
1

2
LBL̄

†LB) (6)

= LAL̄
†LB = LBL̄

†LA, (7)

where L̄ , 1
2 (LA+LB), L̃ , 1

2 (LA−LB), and the super-

script † denotes the Moore–Penrose pseudo-inverse [18].
Transition in the algebraic connectivity occurs at the
coupling threshold corresponding to the smallest positive
eigenvalue of Q, i.e.,

p∗ =
1

2
λ2(Q). (8)

Furthermore, the coupling threshold p∗ can be alterna-
tively obtained as [29, B.iii.]

p∗ =
1

ρ(L†
A + L†

B)
, (9)

where ρ(•) , λN (•) denotes the spectral radius [18].
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The exact coupling threshold equation (8) depends, in

a nonlinear way, on the matrices LA, LB, L̄, and L̃ in
Eq. (5-7), and unveils that the structural transition phe-
nomenon is jointly caused by A and B. Unfortunately,
the exact solution (8) includes the joint influence of the
network components implicitly.
However, the exact solution for the coupling threshold

can lead to several lower and upper bounds for p∗ with
simple, physically informative expressions. Some of these
bounds can be expressed only in terms of of the algebraic
connectivity of each isolated network GA and GB , as well
as the superpositioned network Gs, as [29, B.iv., B.v.]

p∗ ≥
1

λ−1
2 (LA) + λ−1

2 (LB)
, (10)

p∗ ≤ min{λ2(LA), λ2(LB),
1

2
λ2(L̄)}. (11)

We can furthermore find expressions that include ex-
plicit quantities pertaining to the network components
jointly. We refer to such quantities as interrelation de-
scriptors. As an example, we have obtained a class of
upper bounds p∗ ≤ 1

ρ̂nA,nB

which depend on inner prod-

uct of the eigenvectors of GA and GB with tunable accu-
racy and low computational cost as discussed in details
in [29, B.viii.]. For further discussions on the network
interrelation concept, readers can refer to [29, C.].
Expression (10) elegantly lower bounds p∗ by half of

the harmonic mean of λ2(LA) and λ2(LB), and is exact
if v2A = v2B. The upper bounds (11) not only include
the upper bound (4), proposed in [1], but also exhibit
a fundamental property of interconnected networks: the
coupling threshold p∗ is upper bounded by the algebraic
connectivity of each network component.

Interestingly, if the algebraic connectivity of one net-
work, say GA, is much smaller than that of the other net-
work GB, then the network component with the small-
est algebraic connectivity, here GA, prominently deter-
mines the coupling threshold; but neither GB , nor the
superpositioned network Gs, play a major role. Indeed,
if K , λ2(LB)/λ2(LA) > 3, then [29, B.vi.]

K

1 +K
λ2(LA) < p∗ ≤ λ2(LA). (12)

A corollary of (12) is if one of the network components
has a vanishing algebraic connectivity, which is the case
for a class of scale-free networks where λ2 ∼ (lnN)−2

[30], then p∗ → 0, indicating the transition point also
disappears. Therefore, in such cases, even a very small
coupling weight p leads to structural transition. This re-
sult is physically intuitive because a network with a small
algebraic connectivity is vulnerable and loses its unity in
response to external perturbations such as removal of a
few edges/nodes or, as our analysis suggests, a weak cou-
pling to another network.
Considering the opposite situation where the alge-

braic connectivity values of both networks are close to
each other, we can show p∗ > 1

2 max{λ2(LA), λ2(LB)} if

the Fielder vectors are far from being parallel (see [29,
B.vii.]). As a consequence, for each coupling weight p
satisfying 1

2 max{λ2(LA), λ2(LB)} < p ≤ p∗, we have

λ2(L) = 2p > max{λ2(LA), λ2(LB)}. (13)

Comparison of (13) with the superdiffusion criterion (3)
reveals the counterintuitive finding that superdiffusion,
a synergistic characteristic phenomenon of an intercon-

nected network, can occur for values of p < p∗, where the
network components function distinctly!

As mentioned above, the condition that Fielder vectors
of GA and GB are far from being parallel is necessary
for superdiffusion before structural transition. We find
that this condition is indeed general to superdiffusion, re-
gardless of structural transition; because close-to-parallel
Fielder vectors of GA and GB yields λ2(

LA+LB

2 ) ≃
λ2(LA)+λ2(LB)

2 , thus the necessary condition for superdif-

fusion, i.e., λ2(
LA+LB

2 ) > max{λ2(LA), λ2(LB)} can
never be satisfied even for p → ∞. This condition has a
very interesting physical interpretation. When p → ∞,
corresponding nodes in GA and GB become a single en-
tity. According to the important role of the Fiedler vector
in graph partitioning, having close-to-orthogonal Fiedler
vectors of GA and GB means that links of GB connect
those nodes that are far from each other in GA, and vice
versa. Therefore, with close-to-orthogonal Fiedler vec-
tors of GA and GB, the overall interconnected network
gains increased connectivity among its nodes compared
to each isolated component, thus making superdiffusion
feasible.
It is important to distinguish between speed of diffu-

sion, determined by the smallest positive eigenvalues of
the Laplacian matrix, and the mode of diffusion, deter-
mined by the corresponding eigenvectors. Superdiffusion
concerns the speed of diffusion, while structural transi-
tion corresponds to an abrupt change in modes of diffu-
sion. It would be a wrong idea to assume p < p∗ indicate
that GA and GB are independents (expect for the trivial
case of p = 0). The key point is that having p < p∗ simply
implies that GA and GB are distinguishable. Before the
structural transition the network components do interact
with each other, and as we showed, can even positively
favor the diffusion process speed as the result of increased
overall connectivity in the interconnected network.
To illustrate our analytical assertions, we perform sev-

eral numerical simulations. We generate an intercon-
nected network with N = 1000, where the graph GA is a
scale-free network according to the configuration model
[31] with exponent γ = 3, and GB is a random geomet-

ric network [32] with threshold distance rc =
√

5 logN
πN

.

For generating the random geometric network, N nodes
are uniformly and independently distributed in [0, 1]2 at
random, and nodes of at most distance rc are connected
to each other. For these networks, λ2(LA) ≃ 0.355 and
λ2(LB) ≃ 0.332. Fig. 2 shows the algebraic connectivity
λ2(L) of the interconnected network as a function of the
coupling weight p, and illustrates that Eq. (8) predicts
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FIG. 2. Algebraic connectivity λ2(L) of an interconnected
network with scale-free GA and random geometric GB as a
function of the coupling weight p. For p < p∗ ≃ 0.27 , al-
gebraic connectivity is λ2(L) = 2p. For p > p∗, eigenvalue
λ = 2p is no longer the algebraic connectivity of the inter-
connected network; thus, denoting a structural transition at
p = p∗.

the coupling threshold exactly. Furthermore, this sim-
ulation supports the analytic results for bounds in (11)
and (10).

In order to investigate structural implications of in-
terconnected networks, we design numerical experiments
emphasizing the role of network interrelation. We gener-
ate a set of interconnected networks with identical su-
perpositioned networks. Therefore, differences in the
outcomes do not depend on the superpositioned net-
work. We generate A = [aij ] and B = [bij ] accord-
ing to the following rule: aij = aji = pijwij and
bij = bji = (1 − pij)wij , where wij is an element of
the weighted Karate Club adjacency matrix [33, Fig.
3], and pij is identically independently distributed on
[0, 1] for j < i. Fig. 3 shows different bounds for the
coupling threshold versus the exact values. The upper
bound 1

2λ2(L̄) remains constant, even though the exact
threshold p∗ has a broad distribution. When p∗ is small,
the upper bound 1

2λ2(L̄) is loose, while the upper bound
min{λ2(A),λ2(B)} is tight, as supported by Eq. (12). If
one network component possesses a relatively small al-
gebraic connectivity, Eq. (12) predicts that the coupling
threshold p∗ is determined by the algebraic connectivity
of that component.

In conclusion, we derive the exact critical value p∗ for
the coupling weight in an interconnected network of Fig.
1. In addition to graph properties of each network com-

ponents individually, we find that the inner product of
Fielder vectors of network components is an important
interrelation descriptor for the structural transition phe-
nomenon (see [29, A.iv. Fig. 4] for supporting numer-
ical experiments). Other interrelation descriptors, such
as the commonly used degree correlation [34–37], do not
necessarily yield similar results [29, A.iv. Fig.5]. Even
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FIG. 3. Bounds for the coupling threshold versus the exact
values for a set of interconnected networks with identical av-
eraged network. For each generated network, we compute dif-
ferent bounds for the coupling threshold and compare them
with the exact value. The closer to the black dashed line
y = x, the more accurate the bounds.

though the analysis has been performed for interconnec-
tion of two networks, we demonstrate in [29, D.] that our
method can be readily generalized to multiple, intercon-
nected networks.
Our exact solution reveals diversified behaviors in in-

terconnected networks; encompassing the case where the
slightest coupling between network components results
in a structural transition, as well as the case where cou-
pling strength that is sufficiently large to cause superdif-
fusion is not large enough to cause structural transition.
This emphasizes the importance and power of deliberate
design for interconnected networks. In particular, our
finding of superdiffusion without structural transition en-
courages further exploration of dynamical processes and
interconnection architectures which allow the very bene-
fits of interconnections while preserving the autonomy of
each subsystem.
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A. Dı́az-Guilera, S. Gómez, and A. Arenas, Phys. Rev. E
88, 032807 (2013).
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