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Evaluating the concentration dependence of static and dynamic properties of macromolecules in semi-dilute
polymer solutions requires accurate calculation of long-range hydrodynamic interactions (HI) and short range
excluded volume (EV) forces. In conventional Brownian Dynamics Simulations (BDS), computation of HI ne-
cessitates construction of a dense diffusion tensor commonly performed via Ewald summation. Krylov subspace
techniques allow efficient decomposition of this tensor (computational cost scales as O

(

N2
)

, where N is the to-
tal number of beads in the period simulation box in bead-spring representation of macromolecules) and in turn
computation of Brownian displacements in the box. In this paper, a matrix-free approach for calculation of HI
is implemented which leads to O

(

N log N
)

scaling of computational expense. The fidelity and computational
efficiency of the algorithm is demonstrated by evaluating the asymptotic value of center of mass diffusivity
of polymer molecules at very low concentrations and their radius of gyration scaling as a function of number
of beads in the dilute and semi-dilute concentration regime (with the concentration up to 5 times the overlap
concentration). In turn, a favorable comparison between our results and the blob theory is shown.

I. INTRODUCTION

The effect of concentration on equilibrium and dynamic
properties of polymer solutions has been observed experimen-
tally even at very low concentrations[1–3]. Accurate determi-
nation of the aforementioned properties of the polymer so-
lutions near or above c∗ (the concentration at which chains
begin to partially overlap at equilibrium), i.e. the semi-dilute
regime, is of great importance to the polymer physics as well
as polymer processing communities. To this end, develop-
ment of hi-fidelity and computationally efficient simulation
techniques for this class of fluids is important both from a
scientific perspective and in industrial applications.

Brownian dynamics simulation is a mesoscopic simulation
technique that has been extensively used to study the equilib-
rium and non-equilibrium properties of solutions in a broad
range of solute concentration, e.g., dilute and semi-dilute sus-
pension of particles with simple or complex structure[4–6] or
synthetic and biological polymeric solutions[7–12]. In BDS,
the influence of the solvent on the meso-scale solutes is im-
plicitly considered via random Brownian and hydrodynamic
drag forces.

In polymeric solutions, hydrodynamic interaction is present
which results in the perturbation of the velocity field around
a polymer segment due to the movement of all segments of
the same chain (intra-chain interaction) and the segments of
other chains (inter-chain interaction). Because of the long-
range nature of HI, the simulations of large multi-chain sys-
tem is pre-dominantly performed for homogeneous system in
unbounded domain which necessitates the application of peri-
odic boundary condition. Excluded volume is another impor-
tant interaction that needs to be considered. This interaction
is short-range, in the sense that the interaction is restricted to
the entities involved in the cutoff radius. For polymer solu-
tions, the EV effect arises due to the fact that polymer seg-
ments can not physically overlap and consequently there is
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a repulsive force between different parts of a molecule[13].
Clearly, this could indirectly introduce an attractive interac-
tion between the polymer and the solvent.

For dilute polymer solutions in presence of HI, the most
time consuming operation in performing BDS is the decom-
position of the diffusion tensor[12]. The straight forward ap-
proach for the decomposition is the Cholesky factorization
which for a bead-spring chain with Nb beads requires O

(

N3
b

)

operations[4]. The Chebyshev polynomial and the Krylov
subspace based techniques are two elegant alternatives which
can reduce the number of operations to O

(

N2.25
b

)

and O
(

N2
b

)

,
respectively. Recent comparison of the three aforementioned
techniques has revealed that the Krylov subspace approach is
the best choice, for all Nb & 10, when the diffusion tensor is
updated at each time step[12]. In semi-dilute polymer solu-
tions, Nc chains are considered in a periodic box, so the num-
ber of interacting beads is N = Nc×Nb. Due to the long-range
nature of HI, each bead interacts not only with the beads inside
the primary simulation box, but also with particles in all peri-
odic replicas (images) of the primary box. This sum is known
to be slowly and/or conditionally convergent[14, 15]. Similar
to Electrostatic interactions (which is also an example of long-
range interaction), Ewald summation can be employed to split
the original sum into two exponentially decaying sums in real
and reciprocal spaces[14–16]. In this approach, one can dis-
tribute the computational load between the real and reciprocal
space sums by tuning a parameter α, such that for instance
one of the computations scales as O (N) and the other scales
as O

(

N2
)

[15]. Hence, in a straight forward implementation
of the Ewald sum, the construction of the diffusion matrix re-
quires O

(

N2
)

operations. This procedure followed by the de-

composition which also scales as O
(

N2
)

(if the Krylov sub-
space method is used) are the most cost prohibitive procedures
in simulating the polymer solutions with concentrations well
above c∗. Similar arguments apply for colloidal suspensions
which contain N particles in the simulation box.

To mitigate the high computational cost of simulating long-
range electrostatic interactions, approximation methods such
as particle mesh Ewald (PME)[17, 18] and/or particle-particle
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particle-mesh (P3M)[19, 20] have been successfully intro-
duced. Smooth particle mesh Ewald (SPME) is another vari-
ant of PME which has improved accuracy due to utilization
of high-order B-splines instead of the Lagrange function in
PME, in the grid value assignment and interpolation parts of
the algorithm. In this approach, small subset of interacting
particles is treated in the real space while the main load (large
number of particles) is transferred to the reciprocal space sum
where fast Fourier transform (FFT) is employed to acceler-
ate the computations. Efficient implementation of this method
leads to the scaling of O

(

N log N
)

.
Guckel[21] applied the idea of PME method developed for

electrostatic interactions to hydrodynamic interactions of rigid
particles in Stokes flow. Subsequently, Brady and co-workers
introduced Accelerated Stokesean Dynamics (ASD)[22, 23]
which benefits from PME algorithm in calculation of the far-
field mobility matrix. Saintillan et al.[6] combined SPME
and ASD algorithms to simulate long-range HI of sediment-
ing fibers. For polymer solution systems confined between
two parallel walls, Hernández-Ortiz et al.[24, 25] introduced
a “general geometry Ewald-like” BDS method that scales as
O

(

N1.25 log N
)

. In the context of BDS, Jain et al.[15] used
another class of optimization which is based on the original
Ewald summation but with an optimal value of α, such that
computational expense is evenly distributed between real and
reciprocal space sums. Jain et al. also used the Chebyshev
polynomial approximation for calculating the decomposition
of diffusion tensor and were able to obtain the computational
time which scales as O

(

N1.8
)

.
Recently, Liu and Chow[26] introduced the “matrix-free”

approach in the context of BDS of colloidal suspensions. In
their approach, the computational burden of the real space
sum is substantially reduced by considering the interaction of
particles within a small cutoff radius. This causes the real part
of the diffusion matrix to be highly sparse, hence, it can be
efficiently computed. To compute the decomposition of diffu-
sion tensor, Liu and Chow used the Krylov subspace method
(Note that in matrix-free algorithm, the direct decomposition
of diffusion matrix, e.g. the Cholesky factorization, can not be
used; see Sec. II C). On the other hand, the reciprocal part is
calculated using highly efficient FFT routines. The final im-
plementation was capable of simulating systems with as many
as 500,000 particles.

While the Ewald summation for HI in ASD is based on
the Oseen-Burgers tensor[22], Beenakker’s Ewald sum[14]
which is widely used in BDS is based on the Rotne-Prager-
Yamakawa (RPY) tensor[15, 16, 26, 27]. The RPY tensor,
consists of two branches, namely far-field solution and the
regularization of the singularity which occurs for inter-bead
distances of less than the diameter of a bead (see Sec. II A).
The Beenakker’s solution only considers the far-field part of
RPY. This solution works well only when the beads do not
overlap, which is the case if a strong enough EV potential is
utilized. However, there should be a correction to the original
Beenakker’s formula for the simulation of the systems where
the overlap of the beads is permitted, e.g., θ-solutions. Zhou
and Chen[27] and Jain et al.[15] resolved this issue by appro-
priately taking into account the second branch of RPY in case

of an overlap.
In this work, we start by formulating the stochastic dif-

ferential equation (SDE) such that it can be used in both
Euler-Murayama as well as semi-implicit predictor-corrector
schemes[8, 12, 28]. Then, we adopt a matrix-free algorithm
for simulating semi-dilute polymer solutions where an opti-
mized version of the Krylov subspace approach recently de-
veloped for calculating Brownian displacements[12, 29] is
implemented. Compared to the original implementation of
matrix-free approach for colloidal suspensions[26], our im-
plementation has the extended capability of correctly account-
ing for the overlap between the beads which is particularly
important for polymer solutions in θ-solvent or slightly better-
than-θ-solvent. Also in this work, the EV potential is incorpo-
rated using the soft Gaussian potential which has been exten-
sively used in predicting the behavior of macromolecules in
slightly better than theta and good solvents[12, 30, 31]. Over-
all, our algorithm has several improved features when com-
pared to those of Stoltz et al.[16] and Jain et al.[15]: (i) it
uses highly efficient libraries for sparse matrix vector multi-
plication (math kernel library or MKL) to calculate the real
space contribution of diffusion tensor; (ii) FFT calculations
are performed using the efficient MKL routines; (iii) fine-
grained level parallelization for shared memory platforms us-
ing OpenMP has been added.

II. SIMULATION ALGORITHM

A. Governing equations

The dynamics of a macromolecule in the semi-dilute poly-
mer solutions can be expressed using a coarse grained bead-
spring model[15, 16, 27]. In this micromechanical model, the
linear flexible polymer molecule with Nk independent statisti-
cal Kuhn steps is discretized using Nb identical beads, which
resemble the centers of hydrodynamic resistance, connected
by Nb − 1 springs, which account for the entropic force be-
tween the neighboring beads. For simulation of semi-dilute
polymer solution, there are Nc bead-spring chains in the simu-
lation box. The box is assumed to have sides with equal length
L; i.e., V = L3. Therefore, the concentration of beads in the
box is given by c = N

V
, where N = Nc × Nb. In what follows,

we use the convention that ν, µ = 1, . . . ,N, β = 1, . . . ,Nb,
γ = 1, . . . ,Nb − 1, i = 1, . . . ,Nc, and q, s = 1, 2, 3. The con-
figurational state of the system can be specified by the posi-
tion vector of all beads rν, or equivalently using the connector
vectors of all springs in the simulation box Qi,γ and the center
of mass of all chains rc,i. As it was shown in earlier studies
of bead-spring models[7, 8, 12], the Itô stochastic differen-
tial equation of motion which describes the time evolution of
beads in bead-spring model can be non-dimensionalized us-
ing the the time scale λH = ζ/4H and length scale lH =

√
kBT/H,

where ζ is the bead friction coefficient, which relates the hy-
drodynamic radius of the bead ab to the solvent viscosity ηs

through the Stokes relation, i.e. ab = ζ/6πηs. H is the Hookean
spring constant, kB is the Boltzmann constant and T is the ab-
solute temperature. As we are dealing with the equilibrium
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properties of the semi-dilute polymeric solutions in this pa-
per, the terms regarding the flow is not present in the SDE.
Furthermore, since we employ the Rotne-Prager-Yamakawa
(RPY) HI tensor[8], the non-dimensionalized SDE does not
contain the spatial derivative of the diffusion tensor and can be
represented as follows (note that the variables expressed in the
rest of the paper are dimensionless unless otherwise stated),

dQ̃ = ˜̄B ·





1

4

u
︷ ︸︸ ︷

D · Fφ dt +
1
√

2
C · dW




(1)

where Q̃ is a block column vector consisting of Nc block
vectors Qi, each of which contains Nb − 1 connector vec-
tors between the adjacent beads of an individual chain i, i.e.
Qi,γ = rν+1 − rν and ν = (i − 1) Nb + γ. ˜̄B is a diagonal square

block matrix with dimensions Nc, where each of its diagonal
elements is B̄ which is the transformation matrix used by Bird
et al.[7] to convert position vectors to connector vectors and is
defined as:

B̄ =





−δ δ 0 . . . 0

0 −δ δ . . . 0
.
.
.
. . .
. . .
. . .
.
.
.

0 . . . 0 −δ δ





Nb−1×Nb

(2)

with δ being the 3 × 3 unit tensor. The diffusion matrix D

is also a block matrix which contains N × N blocks and due
to lang-range nature of HI, each block involves the sum of
the corresponding RPY HI tensor Υνµ over infinite periodic
images. Υνµ between the beads ν and µ is written as,

Υνµ =






δ ν = µ (3a)

3
√
πh∗

4rνµ







1 +
2πh∗2

3r2
νµ



 δ +



1 − 2πh∗2

r2
νµ





rνµrνµ

r2
νµ



 ν , µ; rνµ ≥ 2
√
πh∗ (3b)

[(

1 −
9rνµ

32
√
πh∗

)

δ +
3

32
√
πh∗

rνµrνµ

rνµ

]

ν , µ; rνµ < 2
√
πh∗ (3c)

where rνµ =
∣
∣
∣rνµ

∣
∣
∣ and rνµ = rν − rµ. h∗ is the hydrody-

namic interaction parameter which is related to dimensionless
hydrodynamic radius, h∗ = (1/

√
π) a and a =

ab

lH
. Note that

Fφ = FS + FEV is the block force vector defined based on all
conservative interactions, i.e. FS

ν which is the net spring force
and the FEV

ν , the total EV force on a bead due to the interaction
with all other beads. FS

ν is obtained from the tension in the
neighboring springs Fc

i,γ and Fc
i,γ−1 with Fc

i,γ defined based on
the connector vector between the adjacent beads, Qi,γ, and the
corresponding force law. For instance, FENE force law which
refers to the Warner approximation to the inverse Langevin
function is written as,

Fc
i,γ =

Qi,γ

1 − Q2
i,γ/b

(4)

where Qi,γ =
∣
∣
∣Qi,γ

∣
∣
∣ and

√
b is the maximum dimensionless

length of polymer springs. Other forms of force law can be
found elsewhere[12]. FEV

ν is calculated using the soft Gaus-
sian potential introduced by Prakash and Öttinger[30]:

FEV
ν =






∑

µ,ν

(
z∗

d∗5

)

rνµ exp
(

− r2
νµ

2d∗2

)

rνµ ≤ rc,F

0 rνµ > rc,F

(5)

where the parameter z∗ is an indication of EV potential
strength and d∗ specifies the spatial range of the potential. The
solvent quality can be shown to scale with the square root of

molecular weight, i.e. z = z∗

χ(b)3

√
Nb. In this equation, χ is

a function of b due to finite extensibility of the chain, where
in the limit of Hookean spring χ = 1. χ (b) can be directly
obtained for a given force extension behavior[31], and for the
case of FENE force law it is χ2 = b

b+5 . The effective radius for
EV interaction is specified with rc,F . Note that the conserva-
tive spring force on the beads is obtained by using the relation
FS = − ˜̄BT · Fc. Also, the term D · Fφ can be interpreted as a
vector containing the velocity u of all beads.

C is the coefficient matrix which satisfies the following
equation,

D = C · CT (6)

The solution to Eq. (6) is not unique. Cholesky decompo-
sition is a straight forward approach to determine C, however
as the computational expense scales with O

(

N3
)

, the polyno-

mial approximation of D
1/2, e.g. the Chebyshev or the Krylov

based techniques, are the two best alternatives[12]. Since the
diffusion tensor is symmetric, the Lanczos approach is used
to construct the orthonormal basis for the Krylov subspace.
In the rest of the paper, “Lanczos” is used to designate the
Krylov subspace technique. W is a 3N dimensional Wiener
process[8], defined for all beads in the simulation box.

The evolution equation for the position of center of mass of
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the chain i, i.e., rc;i = (1/Nb)
∑Nb

β=1 ri,β, is written as,

r
q

c;i,n+1 = r
q

c;i,n +
1

Nb





1

4

Nb∑

β=1

u
q

{i,β},ndt +
1
√

2

Nb∑

β=1

∆S
q

{i,β},n




(7)

where {q = 1, 2, 3} refers to the 3 Cartesian coordinates and
∆Sn = Cn · ∆Wn.

The numerical integration of the two governing differen-
tial equations (Eqs. 1 and 7) can be performed either by
the Euler-Murayama or a semi-implicit predictor-corrector
scheme[12]. We have implemented both integration methods.
In the predictor-corrector scheme, as Fφ gets updated in the
corrector steps, it is necessary to calculate D · Fφ, which in
the case of large N is a very expensive procedure. On the
other hand, at equilibrium where 10−3

. dt ≤ 10−2, the Euler-
Murayama method results in sufficient accuracy. Hence, this
method is used in our computations reported in this paper.
However, in non-equilibrium simulations, the difference be-
tween the appropriate time step for the Euler-Murayama and
the semi-implicit predictor-corrector can be around 3 orders
of magnitude, particularly at high flow strength[32]. This is-
sue, namely, the efficiency of the predictor-corrector versus
the Euler-Murayama method for non-equilibrium simulations
will be addressed in a future communication.

It should also be noted that the positions of the beads are
obtained from the conversion of Q̃ to R, where Ri,β = ri,β−rc,i,
with the help of the equation R = B̃ · Q̃ and the matrix B̃ is
Nc × Nc matrix with only diagonal non-zero blocks B which
is defined as follows,

Bβγ =






γ

Nb
δ γ < β

−
[

1 − γ

Nb

]

δ γ ≥ β
(8)

B. Ewald representation of infinite sum

It was stated in the Sec. II A that Dνµ contains the hydro-
dynamic interaction of bead ν with beads µ not only in the
simulation box (primary image) but also in all other replicas
of primary image which span the entire space. It is known
that HI is long range in nature, i.e., it scales with 1/r. There-
fore, to overcome the convergence issue of the infinite sum,
Beenakker[14] used the idea of Ewald summation to split the
sum into two exponentially decaying sums, one in the real
space and the other in the reciprocal (or Fourier) space:

Dνµ = D
sel f
νµ + Dreal

νµ + D
recip
νµ (9)

where the first term is the correction due to self interaction and
the last two terms are the contribution of the real and the re-
ciprocal space summation, respectively. Each term is written
as,

D
sel f
νµ =

(

1 − 6
√
π
αa +

40

3
√
π
α3a3

)

δνµδ (10a)

Dreal
νµ =

′∑

n∈Z3

M(1)
α

(

rνµ,n
)

(10b)

D
recip
νµ =

1

V

∑

kλ,0

exp
(

−ikλ · rµν
)

M(2)
α (kλ) (10c)

Here, the parameter α controls the relative computational load
between the reciprocal and the real space and hence their con-
vergence rate. If large values of α are selected, the real space
sum converges faster than its reciprocal counterpart. δνµ is

the Kronecker delta. The vector n =
(

nx, ny, nz

)

with integer
components specifies all images including the primary image
(n = 0). However, as indicated by the prime on the summa-
tion over n, n = 0 is omitted for ν = µ. M

(1)
α is a 3 × 3 matrix

which is a function of the vector connecting bead µ to beads ν
in different images, i.e. rνµ,n = rν − rµ + nL. M

(1)
α is written

as,

M(1)
α (r) =




C1erfc (αr) + C2

exp
(

−α2r2
)

√
π




δ+ (11)




C3erfc (αr) + C4

exp
(

−α2r2
)

√
π





rr

r2

where r = |r|, erfc() denotes the complementary error func-
tion, and the Ci parameters are defined as follows,






C1 =
3a
4r
+ a3

2r3

C2 = 4α7a3r4 + 3α3ar2 − 20α5a3r2 − 9
2αa + 14α3a3 + αa3

r2

C3 =
3a
4r
− 3a3

2r3

C4 = −4α7a3r4 − 3α3ar2 + 16α5a3r2 + 3
2αa − 2α3a3 − 3αa3

r2

(12)

In Eq. 10c kλ =
2π
L

l where l ∈ Z3 and M
(2)
α is written as,

M(2)
α = m(2)

α

(

δ −
kλkλ

k2

)

(13)

where k = |kλ| and m
(2)
α is defined as follows,

m(2)
α =

(

a −
a3k2

3

) (

1 +
k2

4α2
+

k4

8α4

)

6π

k2
exp

[

−
k2

4α2

]

(14)

Eq. 10b implicitly assumes no overlap between the beads,
since Beenakker[14] exploited Eq. 3b to derive the Ewald sum
of the RPY formulation for the HI tensor. To remove this as-
sumption, Zhou and Chen[27] introduced a correction which
is applied by adding Eq. 3b to the real part of the diffusion
tensor for a pair of beads and subsequently subtracting Eq. 3c
when there is an overlap between the two beads. This is par-
ticularly important for the primary image and all the images in
its vicinity (27 replicas in total). This approach is equivalent
to adding a 3 × 3 matrix M∗ to the RHS of Eq. 10b in case of
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an overlap[15]:

Dreal
νµ =

′∑

n∈Z3

M(1)
α

(

rνµ,n
)

+ M∗
(

rνµ,n
) (

1 − δνµ
)

(15)

where M∗, which is included only for ν , µ, is defined as,

M∗ =






0 r ≥ 2a
[

1 − 9r
32a
− 3a

4r
− a3

2r3

]

δ +
[

3r
32a
− 3a

4r
+ 3a3

2r3

]
rr
r2 r < 2a

(16)

C. SPME representation of infinite sum

In this section, we present the matrix-free approach that
is employed for the simulation of semi-dilute bead-spring
polymer solutions. This approach uses smooth particle mesh
Ewald for the calculation of reciprocal space based on the
original SPME method for Electrostatic interactions by Ess-
mann et al.[18]. PME based techniques for dealing with long
range HI were also considered previously[6, 22, 26]. Our
matrix-free approach is very similar to the one implemented
by Liu and Chow[26] for simulation of suspension of Brow-
nian particles and hence, we try to follow similar nomencla-
tures and notations throughout this section.

Primarily, we are looking to obtain uν =
(

D · Fφ
)

ν
=

∑

µ Dνµ ·Fφµ . The RPY Ewald operator on the force Fφ can be
expressed as:

D · Fφ =

ureal

︷     ︸︸     ︷

Dreal · Fφ +

urecip

︷      ︸︸      ︷

Drecip · Fφ +

usel f

︷     ︸︸     ︷

Dsel f · Fφ (17)

where the three terms on the RHS are related to the real, recip-
rocal and self parts of RPY interaction tensor. The reciprocal
term can be written as:

u
recip
ν =

∑

kλ,0

∑

µ=1

exp
(

−ikλ · rµν
)

M(2)
α (kλ) · Fφµ (18)

After some minor manipulations, Eq. 18 can be rewritten
as:

u
recip
ν =

∑

m,0,µ

exp (2πim · rν) M(2)
α

(

2πm′
)

· exp
(

−2πim · rµ
)

F
φ
µ

(19)
where m, the reciprocal lattice vector, is defined by m =

m1a∗1 + m2a∗2 + m3a∗3, where a∗
i

parameters are the conjugate
reciprocal vectors defined based on ai parameters which are
the unit vectors that form the edges of the simulation box.
The two aforementioned vectors are related as a∗q · as = δqs.
For a box with dimensions L × L × L, m = 1/L (m1,m2,m3)
where mi range is 0, . . . ,K − 1. Note that the periodic fea-
ture of complex exponentials were used to map the range

of kλ to those of mesh grid points. Also, kλ = 2πm′ and
m′ = m′1a∗1 + m′2a∗2 + m′3a∗3 where m′

i
is defined as

m′i =






mi 0 ≤ mi ≤ K/2

mi − K otherwise
(20)

The term
∑

µ exp
(

−2πim · rµ
)

F
φ
µ can be interpreted as the

discrete Fourier transform of the forces F
φ
µ, i.e. F̃ (m):

u
recip
ν =

∑

m,0

exp (2πim · rν) M(2)
α

(

2πm′
)

· F̃ (m) (21)

here the summation over m can be regarded as the inverse
Fourier transform.

1. Spreading the forces

As it was shown above,

F̃ (m) =
∑

µ






∏

q

exp
(

−2πi
mq

K
ξµ,q

)




F
φ
µ (22)

here ξµ,q = K/Lrµ,q. To take advantage of the fast Fourier trans-
form (FFT), the force on the non-equally spaced particles can
not be directly used. Instead, the forces have to be spread
onto a regular mesh which is the primary task of PME based
methods. This can also be achieved by interpolating complex
exponential on the regular grid defined earlier using the prop-
erties of Euler exponential splines[18]:

exp
(

−2πi
mq

K
ξµ,q

)

≈ b∗q
(

mq

)
+∞∑

k=−∞
Mp

(

ξµ,q − k
)

exp
(

−2πi
mq

K
k

)

(23)
The functions Mp are the cardinal B-splines of order p

(piecewise polynomials of degree p − 1):






M2(x) =






1 − |x − 1| 0 ≤ x ≤ 2

0 x < 0, x > 2

Mp(x) = x
p−1 Mp−1(x) + p−x

p−1 Mp−1(x − 1) p > 2

(24)

The Mp functions spread the forces for the particles near
the boundaries based on the corresponding periodic grids in-
side the simulation box. b∗q

(

mq

)

is the complex conjugate of

bq

(

mq

)

which is given by bq

(

mq

)

=
exp(2πi(p−1)mq/K)

∑p−2
k=0 Mp(k+1) exp(2πimq

k/K)
.

The distribution of the forces on the nearby grids is depicted
in Fig. 1.

2. Forward Fourier Transform (3D FFT)

Now Eq. 22 is approximated as,
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Figure 1. Spreading the force on the regular mesh, where the cells
represent the grid points. The filled cell is the nearest point to the
particle and the cells bounded by the dash-dot line are p3 grid points
at which the force on the particle is distributed.

F̃ (m) ≈ F̂ (m) =






∏

q

b∗q
(

mq

)





F

[

Fφ,g
]

(m1,m2,m3) (25)

where Fφ,g is the forces on the regular grid, i.e. Fφ,g =
∑

µ

{∏

q Mp

(

ξµ,q − kq

)}

F
φ
µ, and F [·] is the forward FFT op-

erator which is defined as,

F
[

Fφ,g
]

(m1,m2,m3) = (26)

K−1∑

k1,k2,k3=0






∏

q

exp

[

−2πi
mqkq

K

]



Fφ,g (k1, k2, k3)

.

3. Backward Fourier Transform (3D IFFT)

Now back to Eq. 21, again we use the properties of Euler
exponentials but this time for exp (2πim · rν):

u
recip
ν =

K−1∑

k1,k2,k3=0






∏

q

Mp

(

ξν,q − kq

)






∑

m,0






∏

q

bq

(

mq

)

b∗q
(

mq

)






×M(2)
α

(
2πm′

) ·F
[

Fφ,g
]

(m1,m2,m3)






∏

q

exp

[

−2πi
mqkq

K

]




(27)
If we define the influence function, I (m1,m2,m3) which is a

3×3 matrix at each of K×K×K grid points as I (m1,m2,m3) =
{
∏

q

∣
∣
∣
∣bq

(

mq

)∣∣
∣
∣

2}

M
(2)
α (2πm′), then,

u
recip
ν =

K−1∑

k1,k2,k3=0






∏

q

Mp

(

ξν,q − kq

)





F
−1

[

I ·F
[

Fφ,g
]]

(28)
where

F−1
[

I ·F
[

Fφ,g
]]

(k1, k2, k3) =
∑

m,0

(

I ·F
[

Fφ,g
])

(m1,m2,m3)
{∏

q exp
[

−2πi
mqkq

K

]}

.

4. Interpolation of the velocities to particle positions

The Eq. 28 means the back interpolation of
the velocities on the grid, i.e. urecip,g (k1, k2, k3) =

F−1
[

I ·F
[

Fφ,g
]]

(k1, k2, k3), to the position of the par-
ticles which is done with the same functions used for
spreading task.

D. Accuracy of Ewald summation

The parameters which influence the accuracy of Ewald
summation technique are identified as Ewald parameter α
which changes the distribution of load between the real and
the reciprocal spaces, real space cutoff radius rc,D, and kmax, a
parameter which defines the accuracy in the reciprocal space
summation. As shown below, these three parameters are re-
lated. In fact, only rc,D and kmax are required to be optimized
to ensure the accuracy of the Ewald summation.

Fincham[33] proposed a method to choose the optimal val-
ues of these parameters for electrostatic interactions. Similar
discussions were made by Jain et al.[15] for the hydrodynamic
interactions. Following the arguments made by Fincham[33]
and Jain et al.[15] and based on Eqs. 11 and 14, the con-
vergence of the real and reciprocal space sums is determined
by exp

(

−α2r2
c,D

)

and exp
(

− k2

4α2

)

, respectively. Mexp is defined

such that exp
(

−M2
exp

)

becomes negligibly small, therefore,






α =
Mexp

rc,D

kmax =
2M2

exp

rc,D

(29)

Hence, the accuracy of the real and reciprocal space sums
and therefore the Ewald summation are tuned using rc,D and
Mexp.

III. OPTIMAL FEATURES OF THE MATRIX-FREE

ALGORITHM

This section, summarizes the main distinguishing features
of matrix-free method when compared to the original Ewald
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summation as well as the straight forward implementations of
PME based algorithms. As the term “matrix-free” implies,
all instances of tensor variables are avoided in the numerical
calculations. Specifically, Drecip · Fφ is directly calculated us-
ing the SPME technique without explicitly calculating Drecip.
Dsel f is diagonal and therefore is calculated efficiently without
storing the matrix. Dreal is, in general, a dense matrix which is
made sparse in the matrix-free approach (as described in detail
in Sec. III A). ˜̄B and B̃ are both highly sparse and are treated
efficiently using optimized MKL routines for sparse matrices.

A. Sparsification of Dreal

As pointed out earlier in the paper, Dreal has to be sparse
in the matrix-free approach. To this end, rc,D is made very
small such that each bead interact with only a few surround-
ing beads. The sparse Dreal is then constructed using the com-
bination of cell linked-list and the Verlet list[34, 35]. As the
elements Dreal

νµ are 3 × 3 tensors, the sparse variant of Dreal

is stored based on the MKL’s block compressed sparse row
format[26]. Furthermore, as Dreal is symmetric, MKL’s sparse
matrix vector operations (SpMV) for symmetric matrices is
used in calculation of Dreal ·Fφ and SpMV operations involved
in the Lanczos algorithm.

B. Efficient implementation of SPME

Following the original matrix-free approach for HI[26], the
N × K3 transformation matrix P is defined as,

P
(

µ, k1 + k2K + k3K2
)

=






3∏

q=1

Mp

(

ξµ,q − kq

)






(30)

note that P has only p3 non-zero terms at each row, which
means that it is considerably sparse. It is stored according to
the well-known compressed sparse row format. In addition, P

only depends on the configuration of the system and hence can
be computed a priori in each time step and reused for all the
corresponding SpMV operations involved in the calculation
of D · Fφ and the Lanczos decomposition.

Next, the forces on the particles are spread to the regular
grid,

[

F
φ,g
x , F

φ,g
y , F

φ,g
z

]

= PT ·
[

F
φ
x , F

φ
y , F

φ
z

]

Then, the forward 3D FFT at all grid points, i.e. F
[

Fφ,g
]

,
is performed using efficient MKL discrete Fourier trans-
form interfaces. In this regard, “in-place real-complex” stor-
age scheme is used which is more efficient than “out-place
complex-complex” variant from the memory transactions per-
spective.

Subsequently, the influence function is applied by calculat-
ing I · F

[

Fφ,g
]

again at all grid points. It is obvious from
the definition of I in Sec. II C 3 that influence function is not

dependent on configuration of the system. Hence, it can be
stored once the number of mesh points are known. How-
ever, the memory efficient way of storing this function is to

store only
{
∏

q

∣
∣
∣
∣bq

(

mq

)∣∣
∣
∣

2}

m
(2)
α and calculate

(

δ − kλkλ
k2

)

on-

the-fly[26]. Furthermore, owing to the inversion symmetry
of reciprocal space, the influence function is stored for about
half of the grid points[15, 26]. This operation is followed by
the inverse 3D FFT, where F−1

[

I ·F
[

Fφ,g
]]

is calculated at
the regular grid points.

The last step in SPME is to interpolate the velocities at grid
points to the location of the particles,

[

u
recip
x , u

recip
y , u

recip
z

]

= P ·
[

u
recip,g
x , u

recip,g
y , u

recip,g
z

]

C. The frequency of updating D

One of the strategies used to increase the speed of the cal-
culation is to update the diffusion tensor after every λRPY time
steps[12, 26, 32, 36]. The appropriate choice of λRPY was
investigated in our recent paper[12] and it was found that
λRPYdt is the key parameter which determines the accuracy
of the integration. Here, our implementation benefits from
this approach. Specifically, in cases where the diffusion ten-
sor changes slowly, λRPY > 1 is utilized.

IV. RESULTS AND DISCUSSION

A. Error definition in iterative Lanczos

In order to track the accuracy of the Lanczos approximation
method, one has to define the error in estimation of correlated
vectors. We use the error expression proposed by Ando et
al.[36] based on two consecutive iterations

E(m) =

∣
∣
∣
∣

∣
∣
∣
∣∆S̃

(m) − ∆S̃
(m−1)

∣
∣
∣
∣

∣
∣
∣
∣
2

∣
∣
∣
∣

∣
∣
∣
∣∆S̃

(m−1)
∣
∣
∣
∣

∣
∣
∣
∣
2

(31)

For block version of the algorithms, the first column of

∆S̃
(m)

is used to calculate the error. The convergence cri-
teria is met when the value of error falls below a certain
threshold. Based on the results presented by Ando et al.[36],
E(m) = E(L) = 0.01 was selected as an indication of sufficient
accuracy to reproduce the results of the Cholesky decomposi-
tion within the statistical error.

B. Algorithm Verification

To validate the accurate implementation of the Ewald and
matrix-free algorithms, the equilibrium properties of the di-
lute and semi-dilute polymer solutions are evaluated in both θ
and good solvents. To this end, the mean-square-displacement
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(MSD) and long time diffusivity of center of mass Dcm is used
to track movement of the chains in a θ-solvent:

Dcm = lim
τ→∞

MSD (τ)

6τ
= lim
τ→∞

〈

(rc (t + τ) − rc (t))2
〉

6τ
(32)

In the case of theta or good solvent, the mean-square end-
to-end distance and the mean-square radius of gyration are
utilized as:

〈

R2
ee

〉

=
〈(

rNb
− r1

)2
〉

(33)

〈

R2
g

〉

=
1

Nb

〈
∑

β

(

rβ − rc

)2
〉

(34)

1. Diffusivity in θ-solvent

To validate the diffusivity of center of mass in semi-dilute
regime, the values of MSD and Dcm for a system of multi-
chains with Nb = 20 at different c/c∗ were computed (see Fig.
2).

The overlap concentration is calculated using c∗ = N/(4π/3)R3
g,0

where Rg,0 is the radius of gyration at infinite dilute limit. It
is known that in a θ-solution (irrespective of concentration

regime)
〈

R2
g

〉

= χ2 N2
b
−1

2Nb
and

〈

R2
ee

〉

= 3χ2 (Nb − 1)[7, 37]. Our

simulations for low concentrations, i.e., c/c∗ = 10−4 ∼ 10−1,
typically consist of an equilibrium run of around 10 dimen-
sionless longest relaxation times, λ1, followed by a production
run of from 25 to 50 relaxation times. As the macromolecules
are in a θ-solvent, λ1 is estimated using the Zimm formula,

λ1,Z ≈
1.22N

3/2
b

h∗π2 . Nc = 20 was used in the simulations for low
concentrations and hence the final results of MSD and Dcm

are reported based on averaging over 20-50 independent runs.
For higher concentrations, namely c/c∗ = 1 and 3, Nc = 50
was used with the equilibrium run similar to lower concentra-
tions but a production run of from 40 to 80 λ1. The results
of different independent runs for high concentration cases are
similar within the standard error-bar. The parameter h∗ was
chosen to be 0.25 and the time step size is 0.01. The springs
are assumed Hookean. The parameters specifying the accu-
racy of Ewald and matrix-free algorithms are given in Table I.
The rc,D for SPME algorithm is chosen such that the diffusion
tensor remain semi-positive-definite throughout the course of
simulation. Since there is a large degree of overlap between
the beads in a θ-solution, the minimum cut-off radius for very
dilute cases were found to be on the order of box dimension.
Subsequently, the real-space part of D ·Fφ for the cases where
rc > 0.42L is obtained using dense matrix calculations. For
matrix-free simulations, the degree of B-splines is equal to 4.

The asymptotic behavior of Dcm at low concentrations are
further compared against the value of Dcm at infinite dilute so-
lution at similar conditions using a recently developed algo-
rithm in our group[12]. It is shown in Fig. 2(b) that the value
of Dcm at very low concentrations is correctly approaching the

infinite dilute solution results. Furthermore, The differences
between the Ewald and matrix-free results for both MSD and
Dcm, lie within the statistical error-bar (see Fig. 2(a)-(b)).
Note that the approach and the parameters are chosen closely
correspond to simulations of Jain et al.[15]. Hence, the results
are in a very good agreement with their findings. Moreover,
the radius of gyration and end-to-end distance for all cases
studied in this section were in excellent agreement with the
theoretical values (see Table I).

2. Static dimension in good-solvent

In this section, the behavior of multi-chain systems in good
solvent is evaluated both in dilute as well as semi-dilute
regimes (see Fig. 3). The static size of the chains for low
concentrations (c/c∗ < 0.1) is expected to be equivalent to the
dimensions of the chains in infinite dilution[11, 16]. Similar
to infinitely dilute solution, the dimensional scaling for multi-
chain systems with low concentration is expected to follow
〈

R2
g

〉

∝ N2ν
b

where ν is the effective EV exponent. Again the
conventional BDS algorithm by Saadat and Khomami[12] is
employed to determine the dimension of the macromolecules
at c/c∗ = 0. It was found by Saadat and Khomami[12] that the
effective excluded volume exponent based on center of mass
diffusivity for the bead-spring system with FENE force-law
and b = 20 is νcm = 0.581± 0.01. Following the same param-
eter setting in the infinite dilute case, zχ3 = 1 is selected for
Nb = 10 and is increased based on zχ3 ∝

√
Nb for higher num-

ber of beads. The broadness of the EV potential is determined
based on d∗ = z∗

1/5[38]. The simulations in this section involve
an equilibrium run of more than one chain relaxation time and
the production run of between 5 to 15 relaxation times. The
chain relaxation time here is approximated using λ ≈ R2

g/6Dcm

(see Table II). For the simulations of this section, the degree of
B-splines is set as 6. It should be noted that the simulation box
size is selected such that L ≥ 2Ree to prevent any unrealistic
interaction of chain with itself.

At higher concentrations, however, one chain is surrounded
by several other chains. Therefore, an individual macro-
molecule experiences the repulsion due to the other chains in
its vicinity which results in the reduction in its dimensions.
The blob theory takes this into consideration when determin-
ing the Rg scaling[11, 39],

Rg/Rg,0 = (c/c∗)−
(2ν−1)/(6ν−2) (35)

Here, we use this known theoretical fact to validate our
matrix-free algorithm. To this end, the radius of gyration of
the multi-chain systems with the relative concentration c/c∗ =

5 is determined. It is clearly seen in Fig. 3 that the results of
our BDS algorithm for multi-chain systems in good solvents
and dilute condition match the infinite dilution case. Although
the theoretical scaling based on blob model holds true for long
chains, the simulated static radius of gyration is consistent
with the predictions from blob theory for Nb & 20. Note
that the relaxation time in semi-dilute regime is approximated
based on diffusivity obtained by Dcm/Dcm,0 = (c/c∗)−

(1−ν)/(3ν−1)[11].
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Figure 2. (a) The mean-square-displacement and (b) the diffusivity of center of mass in θ-solvent obtained using both Ewald and matrix-free
techniques along with Lanczos algorithm for decomposition of diffusion tensor. The filled and open symbols represent the results for the Ewald
and the matrix-free algorithms, respectively.

Table I. The simulation setup parameters for multi-chain systems at different concentrations. L is obtained using the analytical radius of
gyration of polymers in θ-solvent. The simulation results of end-to-end distance and radius of gyration is given for both Ewald and matrix-free
algorithms.

Ewald Matrix-Free

c/c∗ L Mexp rc,D

〈

R2
ee

〉 〈

R2
g

〉

rc,D

〈

R2
ee

〉 〈

R2
g

〉

10−4 297.73 3.5 350 57.1±0.3 10.0±0.04 310 57.5±0.3 10.0±0.04

10−3 138.2 3.5 200 57.2±0.4 10.0±0.05 200 57.3±0.1 9.9±0.01

10−2 64.15 3.75 100 57.6±0.5 10.1±0.06 100 56.4±0.5 9.9±0.06

0.1 29.77 4.25 45 56.5±0.4 9.9±0.05 7 58.0±0.4 10.1±0.05

1 18.76 3.75 20 57.6±0.5 10.1±0.07 5 57.8±0.4 10.1±0.06
3 13 3.75 20 57.1±0.6 10.0±0.08 4 57.1±0.7 10.0±0.07

Moreover, as far as the calculation of box dimension is con-
cerned, the Ree/Ree,0 follows the same scaling as that of the ra-
dius of gyration.

C. Computational time scaling

The recent comparison of the BDS algorithm with the lat-
tice Boltzmann molecular dynamics (LB/MD) by Jain et al.
[15] indicated that the BDS with improved Ewald summa-
tion along with Chebyshev polynomial for decomposition is
far more expensive than LB/MD. The matrix-free implemen-
tation for polymer solution developed in this work is expected
to substantially reduce the difference between BDS and other
fast meso-scale simulation methods, such as dissipative parti-
cle dynamics (DPD) and LB/MD. Furthermore, the total exe-
cution time versus the number of beads in the simulation box
is anticipated to scale as O

(

N log N
)

. To this end, the code is

tested on a 16-core Intel Xeon E5-2670 by tracking the wall
clock time spent in the simulation of a multi-chain system
with Nb = 40. The chains are assumed to be in a good sol-
vent, and hence there is EV interaction between each pair of
particles and HI is considered with h∗ = 0.25. A box with side
length equal to 27.8 is considered to ensure L ≥ 2Ree. The
Ewald summation parameters are selected as Mexp = 4.25 and
rc,D = 11 and 5 for Ewald and matrix-free methods, respec-
tively. The values of Mexp and rc,D for matrix-free approach
imply K = 63. The degree of B-splines is chosen to be 6.

Using these parameters, simulations are performed for
about 0.01λ, where λ is obtained using the same procedure
outlined in the Sec. IV B 2. This corresponds to more than
150 time steps with dt = 10−2. The execution time per time
step is depicted in Fig. 4 as a function of N. It should be noted
that the values of the relative error of the mean square radius
of gyration at the end of 0.01λ, calculated for the matrix-free
approach compared to the corresponding results of the Ewald
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Table II. The parameters of dilute and semi-dilute multi-chain system determined based on the diffusivity, radius of gyration and end-to-end
distance of the chains in infinite dilute polymer solution.

c/c∗ = 0.1 c/c∗ = 5

Nb Dcm,0

〈

R2
g,0

〉

λ L (L/Ree) Nc λ L (L/Ree) Nc

10 0.074±0.005 5.476±0.2 12.35 28.23 (5) 42 21.55 14.21 (3) 267

20 0.048±0.003 12.75±0.4 44.27 44.04 (5) 45 77.25 22.17 (3) 286

40 0.031±0.002 30.96±1.0 166.45 69.55 (5) 47 290.44 23.34 (2) 88

60 0.026±0.002 48.43±1.6 310.45 87.83 (5) 48 541.70 29.48 (2) 91

100 0.018±0.001 95.64±3.1 871 127.1 (5) 52 1520 42.66 (2) 99

10
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c/c∗=5
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Figure 3. Mean-square radius of gyration as a function of number of
beads in a multi-chain system with c/c∗ = 0.1 and 5. The errorbars
are smaller than the symbols.

algorithm were less than 5 × 10−4 for all the cases studied in
this section.

Clearly the matrix-free implementation with proper choice
of the Ewald parameters can result in the total execution time
which scales as O

(

N log N
)

. As expected, the scaling of ex-
ecution time for the original Ewald algorithm is as O

(

N2
)

as
the algorithm uses a constant rc,D[15].

V. CONCLUSIONS

In this article, a matrix-free approach is presented to en-
hance the efficiency of the BDS for a large system of macro-
molecules which are coupled through hydrodynamic inter-
action and excluded volume forces. The advantages of the
matrix-free algorithm over the conventional BDS is due to the
fact that all matrices involved in BDS are treated as sparse ma-
trices, which in turn results in considerable speed-up. More-
over, the matrix-free implementation benefits from using the
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Figure 4. Execution time per time step for Ewald as well as matrix-
free algorithms.

SPME method in construction of diffusion tensor along with
the block Lanczos method for computation of Brownian dis-
placements.

The fidelity and computational efficiency of the matrix-free
approach in equilibrium condition is shown by evaluating the
mean-square-displacement and the averaged diffusivity of the
center of mass for a broad range of concentration in a θ-
solvent as well as the mean-square end-to-end distance and
the mean-square radius of gyration for chains with different
degree of fine-graining in a theta or good solvent. The matrix-
free results for center of mass diffusivity are found to be in
excellent agreement with the ones obtained using the origi-
nal Ewald summation technique. Moreover, the asymptotic
values of diffusivity at very low concentrations correctly ap-
proach to the infinite dilution case. The radius of gyration of
chains with different number of beads in dilute regime of con-
centration was predicted consistent to infinitely dilute system.
At higher concentration, namely c/c∗ = 5, the results of

〈

R2
g

〉

are in a very good agreement with the values predicted by blob
theory[11, 39].
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Lastly, it is shown that the computational cost of the matrix-
free technique is reduced by more than two orders of mag-
nitude compared to conventional BDS for systems contain-
ing more than 103 beads. Furthermore, while the execution
time for the method based on the Ewald summation and the
Lanczos algorithm, results in the computational cost scaling
of O

(

N2
)

, the matrix-free technique improves the scaling to
O

(

N log N
)

.
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