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We demonstrate the synthesis of sparse sampling and dimensionality-reduction to characterize
and model nonlinear dynamical systems over a range of bifurcation parameters. First, we construct
modal libraries using the classical proper orthogonal decomposition in order to expose the dominant
low-rank coherent structures. Here, libraries of the nonlinear terms are also constructed in order
to take advantage of the discrete empirical interpolation method and projection that allows for the
approximation of nonlinear terms from a sparse number of grid points. The selected grid points are
shown to be effective sensing/measurement locations for characterizing the underlying dynamics,
stability, and bifurcations of nonlinear dynamical systems. The use of empirical interpolation points
and sparse representation facilitates a family of local reduced-order models for each physical regime,
rather than a higher-order global model, which has the benefit of physical interpretability of energy
transfer between coherent structures. The method advocated also allows for orders-of-magnitude
improvement in computational speed and memory requirements. To illustrate the method, the
discrete interpolation points and nonlinear modal libraries are used for sparse representation in
order to classify and reconstruct the dynamic bifurcation regimes in the complex Ginzburg-Landau
equation. It is also shown that point measurements of the nonlinearity are more effective than linear
measurements when sensor noise is present.

I. INTRODUCTION

The theoretical study of nonlinear dynamical systems
pervades the physical, biological and engineering sci-
ences. Today, these studies are increasingly driven by
computational simulations that are of growing complex-
ity and dimension due to increasing computational power
and resolution in numerical discretization schemes. Yet
most dynamics of interest are known ultimately to be
low-dimensional in nature [1], thus contrasting, and in
antithesis to, the high-dimensional nature of scientific
computing. Reduced-order models (ROMs) are of grow-
ing importance in scientific applications and comput-
ing as they help reduce the computational complex-
ity and time needed to solve large-scale, engineering
systems [2, 3]. Specifically, ROMs provide a princi-
pled approach to approximating high-dimensional spatio-
temporal systems. However, the complexity of evaluat-
ing low-rank approximations remains challenging due to
higher-order nonlinear terms [4, 5]. The empirical in-
terpolation method (EIM), and the simplified discrete
empirical interpolation method (DEIM) for the proper
orthogonal decomposition (POD) [6, 7], overcomes this
difficulty by providing a computationally efficient method
for discretely (sparsely) sampling and evaluating the non-
linearity. These methods ensure that the computational
complexity of ROMs scale favorably with the rank of the
approximation, even for complex nonlinearities.

An alternative computational strategy for handling the
nonlinearity is based upon machine learning techniques
of dimensionality reduction whereby libraries of learned
POD modes can be constructed and inner products pre-
computed for a number of distinct dynamical regimes
of the nonlinear dynamical system [8–11]. This strat-

egy also evokes the power of compressive sensing for ef-
ficiently identifying the active POD subspace necessary
for a low-dimensional Galerkin-POD truncation [6, 7]. In
this manuscript, we combine the power of the DEIM with
the library building strategy. Specifically, we show that
building libraries that encode the nonlinearities allows
one to (i) take advantage of the DEIM to evaluate the
nonlinearities, (ii) more robustly classify the dynamical
regime the system is in, and (iii) identify the discrete sen-
sor locations to construct a nonlinear model reduction.
Our method allows for orders-of-magnitude improvement
in computational speed and memory requirements, thus
making it highly attractive for computational physics
simulations.

We demonstrate the full integration of the methods on
a canonical model of mathematical physics and nonlinear
dynamical systems, the cubic-quintic Ginzburg-Landau
(CQGLE) equation. However, the methodology can be
more broadly applied to nonlinear dynamical systems. In
biophysical applications, for instance, advances in neuro-
science over the past decade have revealed two critical,
and seemingly ubiquitous, phenomena: (i) that meaning-
ful input/output of signals in high-dimensional networks
of neurons are encoded in low-dimensional patterns of
dynamic activity [12–17], and (ii) that sparsity plays a
key role in encoding and decoding strategies, especially
in neural computation [18, 19]. This typifies the state-
of-the-art in neuroscience, which manifests the most so-
phisticated functionality in information processing and
computation known in any system.
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A. Dimensionality Reduction

Although a variety of dimensionality-reduction tech-
niques exist, the ROM methodology considered here is
based upon the proper orthogonal decomposition [6, 7].
The POD method is ubiquitous in the dimensionality
reduction of physical systems. It is alternatively re-
ferred to as principal components analysis (PCA) [20],
the Karhunen–Loève (KL) decomposition, empirical or-
thogonal functions (EOF) [21], or the Hotelling trans-
form [22, 23]. Snapshots (measurements) of many non-
linear dynamical system often exhibit low-dimensional
phenomena [1], so that the majority of variance/energy
is contained in a few modes computed from a singular
value decomposition (SVD). For such a case, the POD
basis is typically truncated at a pre-determined cut-off
value, such as when the modal basis contain 99% of the
variance, so that only the first r-modes (r-rank trunca-
tion) are kept. There are numerous additional crite-
ria for the truncation cut-off, and recent results derive
a hard-threshold value for truncation that is optimal for
systems with well-characterized noise [24]. The SVD acts
as a filter, and often the truncated modes correspond
to random fluctuations and disturbances. If the data
considered are generated by a dynamical system (nonlin-
ear system of ordinary differential equations of order n),
it is then possible to substitute the truncated POD ex-
pansion into the governing equation and obtain Galerkin
projected dynamics on the rank-r basis modes [7, 11].
Recall that we are assuming that the nonlinear dynami-
cal systems under consideration exhibit low-dimensional
attractors, thus the Galerkin truncation with only a few
modes should provide an accurate prediction of the evo-
lution of the system [8, 9]. Note that it has also been
shown recently that it is possible to obtain a sketched -
SVD by randomly projecting the data initially and then
computing the SVD [25–27].

B. Sparse Sampling

Efficiently managing the computation of the nonlinear-
ity (inner products) in dimensionality reduction schemes
is of paramount importance. This was recognized early
on in the reduced order modeling community, and a va-
riety of techniques where proposed to accomplish the
task. Among the first methods used was the technique
of Everson and Sirovich developed for gappy data [28].
In their sparse sampling scheme, random measurements
were used to perform reconstruction tasks of inner prod-
ucts. Willcox [29] and Karniadakis [30] built on these
ideas by advocating principled approaches for selecting
sampling locations for Gappy POD.

The EIM was also developed for the purpose of ef-
ficiently managing the computation of the nonlinear-
ity. And as with Gappy POD, principled techniques
for sparse measurements where also advocated early on
in its history [31]. A variant of this techniques, the DEIM

method, was specifically tailored to POD with Galerkin
projection. Indeed, the DEIM approximates the nonlin-
earity by using a small, discrete sampling of spatial points
that are determined in an algorithmic way. This ensures
that the computational cost of evaluating the nonlinear-
ity remains proportional to the rank of the reduced POD
basis. As an example, consider the case of an r-mode
POD-Galerkin truncation. A simple cubic nonlinearity
requires that the POD-Galerkin approximation be cubed,
resulting in r3 operations to evaluate the nonlinear term.
The DEIM approximates the cubic nonlinearity by us-
ing O(r) discrete sample points of the nonlinearity, thus
preserving a low-dimensional (O(r)) computation, as de-
sired. The DEIM approach combines projection with in-
terpolation. Specifically, the DEIM uses selected inter-
polation indices to specify an interpolation-based projec-
tion for a nearly optimal `2 subspace approximating the
nonlinearity. The EIM/DEIM are not the only methods
developed to reduce the complexity of evaluating non-
linear terms, see for instance the missing point estima-
tion (MPE) [32], “best points” method [31], or gappy
POD [28–30, 33] methods already mentioned. However,
they have been successful in a large number of diverse ap-
plications and models [5]. In any case, the MPE, gappy
POD, and EIM/DEIM use a small selected set of spa-
tial grid points to avoid evaluation of the expensive inner
products required to evaluate nonlinear terms (See back-
ground section on POD modeling).

The discrete sampling points given by the DEIM to
evaluate the nonlinearity get a new interpretation in the
current work. Specifically, we show them to be the ef-
fective locations for placing sensors in the nonlinear dy-
namical system in order to (i) determine the dynamic
regime of the system, (ii) reconstruct the current state of
the system, and (iii) produce a POD-Galerkin prediction
(nonlinear model reduction) of the future state of the sys-
tem. Such tasks are accomplished by using ideas of sparse
representation [34] and compressive sensing [35–42]. In
particular, the theory of compressive sensing shows that
a small number of measurements are sufficient to perform
a reconstruction provided there exists a sparse represen-
tation (or basis) of the data. Sparsity techniques have
also been shown to be highly effective for numerical so-
lution schemes [43, 44]. In our case, the sparse basis is
generated from a library learning procedure of a nonlin-
ear dynamical system that exhibits low-rank dynamics.
More than that, however, we also build libraries of the
nonlinearities, thus pre-computing the low-dimensional
structures observed in the different dynamical states of
the nonlinear dynamical system. This allows for more
robust dynamical classification as well as allowing easy
evaluation of the nonlinear terms through the DEIM. The
combination of library building, compressive sensing and
the DEIM is demonstrated to be a highly effective and in-
tuitively appealing methodology for scientific computing
applications. It further highlights the need in modern sci-
entific computing of nonlinear dynamical systems to inte-
grate a variety of data-driven modeling strategies, many
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of which are being developed under the aegis of dimen-
sionality reduction, in order to most efficiently simulate
large-scale systems.

C. Physical Interpretation

The ideas presented here are more than just numer-
ical efficiencies. Indeed, the methodology identifies the
underlying modal structures that drive the dynamics of
the nonlinear dynamical system, thus helping to under-
stand the fundamental interactions and physics of the
system. Throughout the development of 20th-century
physics and engineering sciences, the understanding of
many canonical problems has been driven by recasting
the problem into its natural basis (mode) set. The ma-
jority of classical problems from mathematical physics
are linear Sturm-Liouville problems whose ideal modal
representations are generated from eigenfunction decom-
positions, i.e. special functions. In quantum mechanics,
for instance, Gauss-Hermite (denoted by Hn(x)) polyno-
mials are the natural basis elements for understanding
the harmonic oscillator. Likewise, spherical harmonics
(denoted by Y ml (θ, ϕ)) are critical in the computation of
atomic orbital electron configurations as well as in rep-
resentation of gravitational fields, the magnetic fields of
planetary bodies and stars, and the characterization of
the cosmic microwave background radiation.

For modern dynamical systems, nonlinearity plays a
dominant role and shapes the underlying modes, thus
necessitating a new approach, such as that presented
here, for extracting these critical spatio-temporal struc-
tures. Remarkably, although nonlinearity creates new
modal structures, it does not destroy the underlying low-
dimensional nature of the dynamics. Distinct physical
regimes may be obtained by varying bifurcation parame-
ters, and these regimes will typically have different local
bases and physical interactions. Instead of developing a
global interpolated model, which may obscure these dis-
tinct physical mechanisms, we advocate a hierarchy of
models along with sparse sampling and library learning
to classify and characterize the system parameters from a
few online measurements. Methods that take advantage
of such underlying structure are critical for developing
theoretical understanding and garnering insight into the
fundamental interactions of the physical, engineering and
biological systems under consideration.

The paper is outlined as follows. In Sec. II, an overview
of the mathematical framework of the POD method and
the the DEIM is given. This is followed up in Sec. III with
an introduction of the cubic-quintic Ginzburg-Landau
equation, to which the methods proposed here will be
applied. The library building procedure that encodes
the various dynamical regimes of our model equation are
discussed in Sec. IV. Once the libraries are constructed,
the DEIM points, or sensor locations, are computed in
Sec. V and their ability to classify dynamical regimes is
evaluated in Sec. VI. The reconstruction of the dynam-

ics and future state projection is discussed in Sec. VII. A
summary of our findings and an outlook on the method
are given in the concluding Sec. VIII.

II. BACKGROUND FOR MODEL REDUCTION

Our innovations are built upon two key methods which
are used for model reduction and approximating nonlin-
ear dynamical systems. The first approach is the well-
known POD-Galerkin method, which is used to reduce
the dimension of systems in a principled way. However,
computing the form of the nonlinearity in the reduced-
order system is an expensive offline computation, as in-
ner products of the full high-dimensional system must
still be computed. Online evaluation of the nonlinear
terms in the reduced-order model may remain expensive,
as these typically involve dense matrix or tensor opera-
tions of the same order as the degree of nonlinearity. The
second approach highlighted is the DEIM algorithm [5]
which reduces the complexity of evaluating the nonlinear
terms. In particular, it gives a principled way to sparsely
sample the nonlinearity in order to approximate the non-
linear terms in a low-dimensional way.

A. POD

Consider a high-dimensional system of nonlinear dif-
ferential equations that can arise, for example, from
the finite-difference discretization of a partial differential
equation:

du(t)

dt
= Lu(t) +N(u(t)), (1)

where u(t) = [u1(t) u2(t) · · · un(t)]T ∈ Rn and n �
1. Typically under discretization of a single spa-
tial variable, uj(t) = u(xj , t) is the value of the
field of interest at the spatial location xj . The lin-
ear part of the dynamics is given by L ∈ Rn×n
and the nonlinear terms are in the vector N(u(t)) =
[N1(u(t)) N2(u(t)) · · · Nn(u(t))]T ∈ Rn. The non-
linear function is evaluated component-wise at the n spa-
tial grid points used for discretization.

For achieving high-accuracy solutions, n is typically
required to be a very large number, thus making
the computation of the solution expensive and/or in-
tractable. The POD-Galerkin method is a principled
dimensionality-reduction scheme that approximates the
function u(t) with rank-r-optimal basis functions where
r � n. These optimal basis functions are computed from
a singular value decomposition of a series of temporal
snapshots of the nonlinear dynamical system. Specif-
ically, suppose snapshots of the state, u(tj) with j =
1, 2, · · · , p, are collected. The snapshot matrix X =
[u(t1) u(t2) · · · u(tp)] ∈ Rn×p is constructed and the
SVD of X is computed: X = ΦΣW∗. The r-dimensional
basis for optimally approximating u(t) is given by the
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TABLE I: DEIM algorithm for finding approximation basis for the nonlinearity and its interpolation indices.

DEIM algorithm
Basis

• collect data, construct snapshot matrix X = [u(t1) u(t2) · · · u(tp)]
• construct nonlinear snapshot matrix N = [N(u(t1)) N(u(t2)) · · · N(u(tp))]
• singular value decomposition of N N = ΞΣNW∗

N

• construct approximating basis (first m columns) Ξm = [ξ1 ξ2 · · · ξm]
Interpolation Indices (Iteration Loop)

• choose the first index (initialization) [ρ, γ1] = max |ξ1|
• approximate ξj by ξ1, ..., ξj−1 at indices γ1, ..., γj−1 Solve for c: PT ξj = PTΞj−1c with P = [eγ1 · · · eγj−1 ]
• select γj and loop (j = 2, 3, ...,m) [ρ, γj ] = max |ξj −Ξj−1c|

first r columns of matrix Φ, denoted by Φr. Thus the
POD-Galerkin approximation is given by

u(t) ≈ Φra(t) (2)

where a(t) ∈ Rr is the time-dependent coefficient vector
and r � n. Plugging this modal expansion into the gov-
erning equation (1) and applying orthogonality (multi-
plying by ΦT

r ) gives the dimensionally reduced evolution

da(t)

dt
= ΦT

r LΦra(t) + ΦT
r N(Φra(t)). (3)

By solving this system of much smaller dimension, the so-
lution of a high-dimensional nonlinear dynamical system
can be approximated.

This standard POD procedure [7] has been a ubiqui-
tous algorithm in the reduced-order modeling commu-
nity. However, it also helps illustrate the need for in-
novations such as the DEIM, Gappy POD and/or MPE.
Consider the nonlinear component of the low-dimensional
evolution (3): ΦT

r N(Φra(t)). For a simple nonlinear-
ity such as N(u(x, t)) = u(x, t)3, consider its impact
on a spatially-discretized, two-mode POD expansion:
u(x, t) = a1(t)φ1(x)+a2(t)φ2(x). The algorithm for com-
puting the nonlinearity would require the evaluation of

u(x, t)3 = a31φ
3
1 + 3a21a2φ

2
1φ2 + 3a1a

2
2φ1φ

2
2 + a32φ

3
2 . (4)

The dynamics of a1(t) and a2(t) would then be computed
by projecting onto the low-dimensional basis set by tak-
ing the inner product of this nonlinear term with respect
to both φ1 and φ2. Thus the number of computations
not only doubles, but the inner products must be com-
puted with the n-dimensional vectors. Methods such as
the DEIM overcome this high-dimensional computation
and instead produce an O(r) dimensional evaluation of
the nonlinear terms.

B. DEIM

As outlined in the previous section, the shortcomings of
the POD-Galerkin method are generally due to the evalu-
ation of the nonlinear term N(Φra(t)). To avoid this dif-
ficulty, the DEIM approximates N = N(Φra(t)) through

projection and interpolation instead of evaluating it di-
rectly. A considerable reduction in complexity is achieved
by the DEIM because evaluating the approximate nonlin-
ear term does not require a prolongation of the reduced
state variables back to the original high dimensional state
approximation required to evaluate the nonlinearity in
the POD approximation. The DEIM therefore improves
the efficiency of the POD approximation and achieves a
complexity reduction of the nonlinear term with a com-
plexity proportional to the number of reduced variables.
The DEIM constructs these specially selected interpola-
tion indices that specify an interpolation-based projec-
tion to provide a nearly `2 optimal subspace approxima-
tion to the nonlinear term without the expense of orthog-
onal projection [5].

In the DEIM, a low-rank representation of the nonlin-
earity, taken as snapshots in time, is computed from the
singular value decomposition

N = [N(u1) N(u2) · · · N(up)] = ΞΣNW∗
N (5)

where the matrix Ξ contains the optimal (in an `2 sense)
basis set for spanning the nonlinearity. Specifically, we
consider the rank-m basis set Ξm = [ξ1 ξ2 · · · ξm] that
approximates the nonlinear function (m� n andm ∼ r).
The approximation to the nonlinearity N is given by:

N ≈ Ξmc(t) (6)

where c(t) is similar to a(t) in (2). Since this is a highly
overdetermined system, a suitable vector c(t) can be
found by selecting only m rows of the system. The DEIM
algorithm was specifically developed to identify which m
rows to evaluate.

The DEIM algorithm begins by considering the vec-
tors eγj ∈ Rn which are the γj-th column of the n di-
mensional identity matrix. We can then construct the
projection matrix P = [eγ1 eγ2 · · · eγm ] which is cho-
sen so that PTΞm is nonsingular. Then c(t) is uniquely
defined from

PTN = PTΞmc(t), (7)

and thus,

N ≈ Ξm(PTΞm)−1PTN. (8)



5

The tremendous advantage of this result for nonlinear
model reduction is that the term PTN requires evalua-
tion of nonlinearity only at m indices, where m� n. The
DEIM further proposes a principled method for choosing
the basis vectors ξj and indices γj . The DEIM algorithm,
which is based upon a greedy-like search, is detailed in [5]
and further demonstrated in Table I.

C. Application to ROMs

The POD and DEIM provide a number of advantages
for nonlinear model reduction of nonlinear dynamical sys-
tems. POD provides a principled way to construct an
r-dimensional subspace Φr characterizing the dynamics.
The DEIM augments the POD method by providing a
method to evaluate the problematic nonlinear terms us-
ing an m-dimensional subspace Ξm that represents the
nonlinearity. Thus a small number of points, specifically
m, can be sampled to approximate the nonlinear terms
in the ROM.

The method proposed here capitalizes on these meth-
ods by building low-dimensional libraries associated with
the full nonlinear system dynamics as well as the spe-
cific nonlinearities. Moreover, the sparse measurement
locations computed by the DEIM are found to be highly
effective for sensor placement. Such sensors, as will be
shown in what follows, can be used with sparse represen-
tation and compressive sensing to (i) identify dynamical
regimes, (ii) reconstruct the full state of the system, and
(iii) provide an efficient nonlinear model reduction and
POD-Galerkin prediction for the future state. Moreover,
we show that point measurements of the nonlinearity of
the dynamical system can be much more robust to noise
for accomplishing the above tasks.

The concept of library building of low-rank “features”
from data is well established in the computer science
community. In the reduced-order modeling community,
it has recently become an issue of intense investigation.
Indeed, a variety of recent works, for instance from Am-
sallem, Charbel and co-workers [45, 46] and Peherstor-
fer and Willcox [47–49], have produced libraries of ROM
models that can be selected and/or interpolated through
measurement and classification (typically clustered with
k-means type algorithms). Alternatively, cluster-based
reduced order models use a k-means clustering to build a
Markov transition model between dynamical states [50].
These recent innovations are similar to the ideas advo-
cated here. However, the focus of this work is on deter-
mining nearly optimal sparse sensor locations that work
across all the libraries. Further, we build two sets of li-
braries: one for the full dynamics and a second for the
nonlinearity so as to make it computationally efficient
with the DEIM strategy. Before these more formal tech-
niques based upon machine learning were developed, it
was already realized that parameter domains could be de-
composed into subdomains and a local ROM/POD com-
puted in each subdomain. Patera et al. [51] used a par-

titioning based on a binary tree whereas Amsallem et
al. [52] used a Voronoi Tessellation of the domain. Such
methods were closely related to the work of Du and Gun-
zburger [53] where the data snapshots were partitioned
into subsets and multiple reduced bases computed. The
multiple bases were then recombined into a single basis,
so it doesn’t lead to a library per se. For a review of these
domain partitioning strategies, please see Ref. [54].

III. MODEL PROBLEM

One of the canonical nonlinear PDEs in mathematical
physics and pattern forming systems is the Ginzburg-
Landau (GL) equation and its many-variants [1]. It has
been used to model a variety of physical systems from
condensed matter to biological waves. Here we consider
a variant of the GL equation arising in mode-locked laser
theory that has cubic and quintic nonlinear terms and a
fourth-order derivative [55]:

iUt +

(
1

2
− iτ

)
Uxx − iκUxxxx + (1− iµ)|U |2U

+(ν − iε)|U |4U − iγU=0, (9)

where U(x, t) is a complex valued function of space and
time. Under discretization of the spatial variable, U(x, t)
becomes a vector u with n components, i.e. uj(t) =
U(xj , t) with j = 1, 2, · · ·n.

An efficient and exponentially accurate numerical so-
lution to (9) can be found using standard spectral
methods [11]. Specifically, the equation is solved by
Fourier transforming in the spatial dimension and then
time-stepping with an adaptive 4th-order Runge-Kutta
method. The extent of the spatial domain is x ∈ [−20, 20]
with n = 1024 discretized points. Note that in what
follows, the indices for evaluation of the nonlinear term
correspond to the collocation points away from the cen-
ter spatial point of the computational domain so that x0
is the 513th point in the domain. Here, we allow the
parameters β = (τ, κ, µ, ν, ε, γ) to vary in order to dis-
cover various dynamical regimes that exhibit low-rank
structure and stable attractors. Table II shows six differ-
ent parameter regimes that have unique low-dimensional
attractors (see [10]). The evolution of the system for pa-
rameter regimes β1, β3 and β5 is illustrated in Fig. 1.
Such stereotypical low-dimensional behaviors, which are
commonly observed in pattern forming systems [1], will
serve as the basis for our library building methodology,
especially in regards to using a small number of mea-
surements to identify the βj regime, reconstruct the so-
lution, and project a future state. Although our results
are demonstrated on this specific PDE, the methodology
is quite general.
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FIG. 1: Evolution dynamics of (9) for the parameter regimes
β1, β3 and β5 over the time interval t ∈ [0, 40]. The initial
transients are quickly attenuated away, leaving the stable at-
tractor for the given βj regime. Sampling of the dynamics for
library building occurs once the transients have decayed.

τ κ µ ν ε γ description
β1 -0.3 -0.05 1.45 0 -0.1 -0.5 3-hump, localized
β2 -0.3 -0.05 1.4 0 -0.1 -0.5 localized, side lobes
β3 0.08 0 0.66 -0.1 -0.1 -0.1 breather
β4 0.125 0 1 -0.6 -0.1 -0.1 exploding soliton
β5 0.08 -0.05 0.6 -0.1 -0.1 -0.1 fat soliton
β6 0.08 -0.05 0.5 -0.1 -0.1 -0.1 dissipative soliton

TABLE II: Values of the parameters from equation (9) that
lead to six distinct dynamical regimes. To exemplify our al-
gorithm, the first, third and fifth regimes will be discussed in
this paper.

IV. LIBRARIES

As can be seen from Fig. 1 and Table II, generic initial
conditions evolve towards a variety of low-dimensional
attractors. This suggests that each dynamic regime, with
a given βj , can be approximated by a small number of
modes via a POD reduction. These modes will constitute
our library modes in what follows. For each of the six

regimes βj in Table II, we build a library of POD modes.
The number of POD modes r is selected to capture 99%
of the total variance (energy). For the β1, β2, β5 and β6
regimes, only a single mode is required so that r = 1. For
the β3 regime r = 6, whereas for the β4 regime, r = 14
in order to capture the fluctuations observed. Figure
3(a) illustrates the library POD modes in differing colors
for all of the βj regimes except β4. The exclusion of
the β4 modes in this visualization is simply due to the
large number (r = 14) necessary in comparison to the
other dynamical regimes. As illustrated in Fig. 2, library
building is the first step in a training module aimed at
learning the low-rank dynamical behavior of a nonlinear
dynamical system.

In practice, a dynamical system such as (9) may change
over time due to evolution or modulation of the param-
eters βj . Thus the dynamics may evolve from one at-
tractor to another with some prescribed transition time
(typically on the order of O(1) time for (9)). One of
the primary goals of this and previous [8, 56] work is to
find optimal and sparse sensor locations whereby limited
measurements of the system are taken in order to clas-
sify the dynamical regime. Interestingly, the previous
efforts [8] used expert-in-the-loop knowledge to help se-
lect the optimal measurement positions. For the simple
model considered here, such expert knowledge can be ac-
quired from familiarity with the POD library modes and
considering locations of maximal variance. However, for
a more general system, this is a difficult task that could
greatly benefit from a more principled mathematical ap-
proach. The DEIM algorithm will provide this approach.
Moreover, as required by the DEIM, we also build low-
rank libraries for the cubic and quintic terms associated
with the dynamical regimes βj . In doing so, we not only
find effective sensor locations, but we also circumvent the
computational difficulties of the POD in evaluating the
nonlinear terms.

To library build, consider the following linear and non-
linear functions associated with the governing equations
(9) for a given parameter regime βj :

NL(U) = U (10a)

N3(U) = |U |2U (10b)

N5(U) = |U |4U (10c)

NNL(U) = (i+ µ)|U |2U + (iν + ε)|U |4U , (10d)

where the second and third terms are the standard cu-
bic and quintic nonlinearities of (9) and the last term
enforces their prescribed relative weighting.

Associated with each nonlinearity (10) are a set of mea-
surements and snapshot matrices. For a snapshot matrix
sampled at p temporal locations [u1 u2 · · · up] ∈ Rn×p,
we can construct the nonlinear Rn×psnapshot matrices

NL = [u1 u2 · · · up] (11a)

N3 = [N3(u1) N3(u2) · · · N3(up)] (11b)

N5 = [N5(u1) N5(u2) · · · N5(up)] (11c)

NNL = [NNL(u1) NNL(u2) · · · NNL(up)]. (11d)
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FIG. 2: Training and execution modules for the library learning and sensor location optimization with the DEIM. The training
module samples the various dynamical regimes (β1, β2, · · · , βJ) through snapshots. For each dynamical regime, low-rank
libraries are constructed for the nonlinearities of the nonlinear dynamical system (ΦL,βj , Φ3,βj , Φ5,βj , ΦNL,βj ). The DEIM
algorithm is then used to select sparse sampling locations and construct the projection matrix P. The execution module
uses the sampling locations to classify the dynamical regime βj of the nonlinear dynamical system, reconstruct its full state
(u = ΦL,βj(PΦL,βj)

†ũ), and provide a low-rank Galerkin-POD approximation for its future (u = ΦL,βja(t)). Note that

(PΦL,βj)
† denotes the Moore-Penrose pseudo-inverse of (PΦL,βj).

The singular value decomposition of these matrices will
give a basis for approximation of each of the nonlineari-
ties for a given βj as well as the standard snapshot matrix
of POD. Specifically, the SVD gives the library of modes:
ΦL,βj

, Φ3,βj
, Φ5,βj

and ΦNL,βj
(See Fig. 2).

The POD modes can be arranged in a collection of
library elements, ΨL, Ψ3, Ψ5 or ΨNL, by concatenating
the POD modes from each of the different βj regimes.
Thus the construction of multiple libraries would take
the form

ΨL = [ΦL,β1 ΦL,β2 · · · ΦL,β6 ] (12a)

Ψ3 = [Φ3,β1
Φ3,β2

· · · Φ3,β6
] (12b)

Ψ5 = [Φ5,β1
Φ5,β2

· · · Φ5,β6
] (12c)

ΨNL = [ΦNL,β1
ΦNL,β2

· · · ΦNL,β6
] . (12d)

The number of basis elements (rank) for the cubic and
quintic terms in a given POD library coincides with the
rank r required for each βj , i.e. r = m. Note that the
library ΨL is the library containing the POD modes used
for POD-Galerkin projections of the future state. It is
also the only library constructed in previous work [8, 9].
Figure 3(b,c) shows the cubic and quintic library modes
for (9). They can be compared to the standard POD
modes illustrated in Fig. 3(a). Although the modes look
quite similar, we will show that the classification can be
improved using the libraries of nonlinearities. Further,
evaluation of the nonlinearities through the DEIM now
remains a low-order computation.
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FIG. 3: Library modes for (a) the full system, (b) the cubic
nonlinearity, and (c) the quintic nonlinearity. The modes are
color coded by their dynamical regime from β1 to β6 as given
in Table II. The rank-r for each library is chosen by selecting
the modes that comprise 99% of the total variance for a given
dynamical regime.

V. DEIM FOR SENSOR LOCATIONS

The idea of using a limited (sparse) number of sensors
to characterize the dynamics has previously been con-
sidered in [8–10]. However, no algorithm was specified
to determine the best locations for the sensors, although
optimal sensor placement has been investigated in the
context of categorical decisions [56]. Indeed, the pre-
vious work relied on expert-in-the-loop selection of the
sensors in order to classify the dynamics. Interestingly,
the DEIM algorithm gives a principled way to discretely
and sparsely sample the nonlinearity in order to evaluate
the various inner products for a POD reduction. These
same DEIM spatial sampling locations make good sensor
locations for classification and reconstruction. Since the
interpolation indices from the DEIM algorithm [5] corre-
spond to the entries with largest magnitude of the resid-
ual error between the chosen basis and its approximation
at each step (see last line of the table I), it becomes
interesting to see what the classification/reconstruction
will be if we pick these locations for sensors. As demon-
strated in Fig. 2, determining the sensor locations is part
of a training module.

We apply the DEIM algorithm outlined in Table I
on the nonlinear POD (SVD) library modes (Ψ3, Ψ5

or ΨNL) computed from (11) and (12). The applica-
tion of the algorithm yields the DEIM interpolation lo-
cations which we will call our sensor locations. Note that
the indices indicate the distance away from the center
of the computational grid. Thus x0 = 0, x±1 = dx,
x±2 = 2dx, etc. Or more generally, the index n corre-

Cubic Quintic Nonlinear
|U |2U |U |4U N(U)

Sensor xβ1 xβ3 xβ5 xβall xβ1 xβ3 xβ5 xβall xβ1 xβ3 xβ5 xβall

one 0 0 0 0 0 0 0 0 0 9 0 0
two 5 15 12 6 4 13 10 6 6 21 6 6
three 13 26 17 22 13 23 15 20 13 32 15 13

TABLE III: Summary of sensor location vectors (indices for
evaluation) from the DEIM algorithm. The table summarizes
the findings from Fig. 4, giving precise grid cells to be used in
evaluating the nonlinear inner products in the Galerkin-POD
approximation.

sponds to xn = ndx. Thus the indices depend on the
specific discretization of the domain. Sensor locations
are computed for each of the nonlinearities: Φ3,βj

, Φ5,βj

and ΦNL,βj
for j = 1, 2, 3. Each dynamical regime βj

and nonlinear library gives a unique set of sensor loca-
tions. Our goal is to evaluate the placement of 3 sensors.
Table III and its accompanying figure gives a vector of
the indices for the locations xβj

of the 3 sensors found
for three regimes β1, β3 and β5 using the libraries Φ3,βj

,
Φ5,βj

and ΦNL,βj
. Also represented are the 3 sensor lo-

cations when all three βj regimes are combined into a sin-
gle library, i.e. the best sensor locations for the combined
dynamic library is identified. This regime is represented
in Table III by xβall

.
Application of the DEIM algorithm results in the mea-

surement matrix P of (8). For 3 sensors, generically it
takes the form

P =

 1 0 · · · · · · 0
0 · · · 0 1 0 · · · · · · 0
0 · · · · · · 0 1 0 · · · 0

 (13)

where the specific columns containing the nonzero en-
tries are given by the indices found from the DEIM and
shown in Table III. More precisely, this matrix is ex-
actly the output of the DEIM algorithm. In our scenario,
the construction of the P matrix is made for each non-
linearity as well as for each dynamical regime βj . This
gives the sensor locations for the sparse sensing scheme
presented in the next section. Figure 4 illustrates the lo-
cations of the sensors and the value of library modes at
the prescribed locations for both the cubic and quintic
nonlinearities. Figure 5 shows a histogram of the vari-
ous sensor location evaluations. In particular, the three
dominant locations are at the indices n = 0, 6 and 13.
Thus they will be used in what follows.

VI. CLASSIFICATION

Our goal is to make use of recent innovations in sparse
sampling and compressive sensing [35–42] for characteriz-
ing the nonlinear dynamical system [8–10]. Specifically,
we wish to use a limited number of sensors for classi-
fying the dynamical regime of the system. With this
classification, a reconstruction of the full state space can
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FIG. 4: Location of indices determined by the DEIM for the libraries of nonlinearities |U |3, |U |5 and N(U). The spatial domain
x ∈ [−20, 20] is discretized on a periodic domain with n = 1024 points. The center point of the domain corresponds to x(0) = 0.
The index values are the number of grid points ndx away from the center grid point, e.g. x(5) = 5dx. The left grid shows
the location of the DEIM indices (black boxes) determined by the algorithm in Table I for the regimes β1, β3 and β5 as well
as the combination of all three regimes together βall. The middle panel shows the library mode ΦL,β1 (laid out vertically)
as a function of the spatial variable x(n). Indicated on this transverse mode are the measurement locations for the different
DEIM nonlinearities and βj regimes. The right two panels show the β1, β3 and β5 modes with the black lines indicating the
measurement locations for n = 0, 6 and 13. This allows one to visualize where the measurement occur on the mode structures.

FIG. 5: Histogram of sensor placement locations based upon
Fig. 4. The top three sensor location indices are located at
n = 0, 6 and 13. Thus we use these locations in our simula-
tions for classification and reconstruction.

be accomplished and a POD-Galerkin prediction can be
computed for its future. In general, if we have a sparse
measurement ũ ∈ Rq, where q is the number of measure-
ments, then

ũ = Pu , (14)

where u is the full state vector and P is the sampling
matrix determined by the DEIM given by (13). In the
previous section, we constructed the matrix P for q = 3.

The full state vector u can be approximated with the

POD library modes (u = ΨLc), therefore

ũ = PΨLc, (15)

where ΨL is the low-rank matrix whose columns are POD
basis vectors concatenated across all β regimes and c
is the coefficient vector giving the projection of u onto
these POD modes. If PΨL obeys the restricted isometry
property [57] and u is sufficiently sparse in ΨL, then it
is possible to solve the highly-underdetermined system
(15) with the sparsest vector c. Mathematically, this is
equivalent to the optimization problem

c = arg min
c′
||c′||0, subject to ũ = PΨLc.

Minimizing the l0 norm is computationally an np-hard
problem. However, It has been proven that under cer-
tain conditions, a sparse solution of equation (15) can be
found by minimizing the l1 norm instead [36, 38] so that

c = arg min
c′
||c′||1, subject to ũ = PΨLc. (16)

The last equation can be solved through standard con-
vex optimization methods such as the CVX package for
Matlab.

To classify the dynamical regime from limited measure-
ments ũ (specifically 3 spatial measurements), we use the
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FIG. 6: The values of the 24 × 1 projection vector c from
solving using a cubic measurement ũ3 = |ũ|2ũ and the cu-
bic library Ψ3 in (17a). The three panels show the dominant
vector component to be in the β1, β3 and β5 regime respec-
tively, thus showing that it correctly identifies each dynami-
cal regime from 3 measurement locations. The values of the
colored circles correspond to the expression strength of the
different library elements of Fig. 3.

sensor locations matrix P found from the DEIM on the
libraries of nonlinearities. Here, the sensor locations used
for P are from all the library elements combined and the
nonlinearity N(U) (See the last column in Table III re-
marked with red boxes), i.e. n = 0, 6 and 13. Suppose
we have a linear measurement ũ, then we can construct
the vectors ũ3 = |ũ|2ũ and ũ5 = |ũ|4ũ and classify them
using the libraries of nonlinearities. Specifically, the non-
linear classification is accomplished with:

c3 = arg min
c′3

||c′3||1, subject to ũ3 = PΨ3c3 (17a)

c5 = arg min
c′5

||c′5||1, subject to ũ5 = PΨ5c5 . (17b)

Figures 6 and 7 show the coefficient vectors c3 and c5 re-
spectively for measurements performed in the β1, β3 and
β5 regimes. The vectors c3 and c5 clearly act as accu-
rate indicator functions for the dynamical regime, better
than even simple linear measurements siads,Bright:2013.
Indeed, the DEIM algorithm for sensor location does as
well as expert-in-the-loop selections [8–10], but requires
no extensive and pre-existing knowledge about the dy-
namical libraries. We can also make a categorical deci-
sion, with similar results, about the dynamical regime
the dynamics belongs to by computing error of projec-
tion onto a given library and considering which has the
smallest error. This is the same as sparse representation
used for image classification [34].

The above analysis assumes that there is no noise in
the measurements or the system itself. However, most

FIG. 7: The values of the 24×1 projection vector c from solv-
ing using a quintic measurement ũ5 = |ũ|4ũ and the quintic
library Ψ5 in (17b). The three panels show the dominant vec-
tor component to be in the β1, β3 and β5 regime respectively,
thus showing again that point measurements of the nonlinear-
ity correctly identify each dynamical regime from 3 measure-
ment locations. The values of the colored circles correspond
to the expression strength of the different library elements of
Fig. 3.

sensors are subject to noise fluctuations which can impact
the ability of a scheme such as this to correctly identify
βj . As a consequence, we also perform the classification
task with noisy data. First, assume that we collect linear
measurements which have additive noise. Denote this
data by

ū = ũ +N (0, σ2) (18)

where N (0, σ2) is a Gaussian distributed noise term with
variance σ2 .

In order to evaluate the classification, we need to once
again compute the nonlinear terms and run the optimiza-
tion algorithm for computing the library coefficients and
the associated dynamical regime. The statistical result
for 400 trials when σ = 0.2 is shown in Table IV. One
can see that the noise introduces misclassification errors
to the original 100%-accurate classification scheme. How-
ever, multiple measurements still give an accurate clas-
sification overall with the exception of using the quintic
library in the β3 regime.

Interestingly, if point measurements of the nonlinear-
ity are considered, then the results can improve drasti-
cally. For instance, in optics, measurements (full field
or point measurements) are made of the intensity of the
field rather than the field itself. This represents a sim-
ple form of a nonlinear measurement. Thus consider the
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β1 regime β1 β2 β3 β4 β5 β6

|ū|2ū 98.75 0 1.25 0 0 0
|ū|4ū 91 6.5 2.5 0 0 0
ū3 100 0 0 0 0 0
ū5 100 0 0 0 0 0

β3 regime β1 β2 β3 β4 β5 β6

|ū|2ū 2.5 0 61.75 18 17.5 0.25
|ū|4ū 5.5 0 38 34.5 21.75 0.25
ū3 0 0 100 0 0 0
ū5 0 0 100 0 0 0

β5 regime β1 β2 β3 β4 β5 β6

|ū|2ū 5.25 0.75 7.5 5 62 19.5
|ū|4ū 6.75 2 6.25 2.5 61.25 21.25
ū3 0 0 0 0 100 0
ū5 0 0 0 0 100 0

TABLE IV: Classification accuracy with noisy measurements
(σ = 0.2) using 400 realizations in the β1, β3 and β5 regimes.
The accuracy of classification for the correct regime is denoted
by the bold numbers, whereas the other percentages denote
to what extent and where misclassifications occur. The accu-
racy of the classification schemes are evaluated using linear
measurements (ū in (18)) with the cubic and quintic libraries
illustrated in Figs. 6 and 7. Also shown are classification re-
sults using point measurements of the nonlinearity (ū3 and
ū5 in 19). Point measurements of the nonlinearity, if possi-
ble, offer significant accuracy improvement and robustness to
noise.

nonlinear point (spatial) measurements subject to noise:

ū3 = |ũ|2ũ +N (0, σ2) (19a)

ū5 = |ũ|4ũ +N (0, σ2) . (19b)

The classification results for this case are also shown in
Table IV. Note the clear improvement (100% accuracy)
in using point measurements of the nonlinearity for clas-
sification tasks. Thus if the noise is driven by the sensor
itself, then point measurements of the nonlinearity may
be quite advantageous.

VII. RECONSTRUCTION AND THE
GALERKIN-POD APPROXIMATION

The classification step of the last section identifies the
dynamical regime of the nonlinear dynamical system by
using sparsity promoting `1 optimization on the learned
libraries. Once the correct βj regime is determined, re-
construction of the solution and a future state prediction
can be achieved through the POD-Galerkin approxima-
tion. Specifically, once the dynamical regime βj has been
identified, then a subset of modes ΨL → ΦL,βj

form the
correct modal basis for a POD-Galerkin approximation.

To be more precise, recall that only a limited number of
measurements are made as in (14). But now u = ΦL,βj

c

where the vector c is now the projection onto the smaller
set of library modes associated with a single βj . Thus
instead of (15), we now we have

ũ = PΦL,βjc . (20)

Unlike the classification step, we can now determine c
by simply solving the above equation using a standard
Moore-Penrose pseudo-inverse operator † [58] so that
c = (PΦL,βj

)†ũ, i.e. it solves for c by minimizing the
`2 norm. With c determined, the reconstruction of the
solution thus follows:

u = ΦL,βj
(PΦL,βj

)†ũ (21)

This is the reconstruction of the system given the sparse
measurement vector ũ and a classification βj . The POD-
Galerkin approximation for the future state can then be
accomplished by using (3) and with the DEIM algorithm
for evaluating the nonlinearities (8). The initial condi-
tion for the POD-Galerkin is given from (21). Thus as
advocated in previous work [8, 9], accurate classification
is accomplished with `1 optimization (decoding) while
the more standard `2 norm is used for reconstruction
and POD-Galerkin projection (encoding). Figure 2 illus-
trates the execution state outlined here for classification,
reconstruction and projection.

The computational efficiency of the proposed method
can be evaluated. Of course, there is no computational
savings in the training stage of the algorithm. Indeed,
there is some computational overhead associated with
building the libraries (an SVD evaluation of O(N3)) and
running the DEIM algorithm (of O(N)). However, once
the training stage is done, then the compressive sensing,
which is a small `1 optimization procedure can be used
to identify the correct POD modes and project into the
future with a Galerkin-POD approximation. In the case
of the CQGLE considered here, this provides a computa-
tional savings of three orders of magnitude, both in com-
putational time and memory requirements. This high-
lights the potentially transformative use of reduced-order
models in computational physics and for simulations of
multi-scale nonlinear dynamical systems.

VIII. CONCLUSIONS AND OUTLOOK

In conclusion, we advocate a general theoretical frame-
work for nonlinear dynamical systems whereby low-rank
libraries representing the optimal modal basis are con-
structed, or learned, from snapshot sampling of the dy-
namics. In order to make model reduction methods such
as POD computationally efficient, especially in evaluat-
ing the nonlinear terms of the governing equations, li-
braries of nonlinearities are also constructed during the
learning stage. This allows for the application of the
discrete empirical interpolation method which identifies
a limited number of spatial sampling locations that can
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allow for reconstruction of the nonlinear terms in a low-
dimensional manner. Such sparse sampling of the nonlin-
earity is directly related to compressive sensing strategies
whereby a small number of sensors can be used to char-
acterize the dynamics of the nonlinear system. Indeed,
the POD method, when combined with the DEIM and
compressive sensing, can (i) correctly identifying the dy-
namical parameter regime, (ii) reconstruct the full state
dynamics and (iii) produce a low-rank prediction of the
future state of the nonlinear dynamical system. All of
these tasks are accomplished in a low-dimensional way,
unlike standard POD-Galerkin models whose nonlinear-
ities can prove to be computationally inefficient.

To be more precise about our learning algorithm for
the nonlinear dynamical system, we construct the li-
brary modes representing the dynamics by the `2-optimal
proper orthogonal decomposition. Several libraries are
constructed: one for linear snapshot measurements, one
for each nonlinear term, and one which combines all the
nonlinear terms together with their prescribed weight-
ings. The DEIM algorithm then allows us to identify
sparse measurement locations capable of both classify-
ing the dynamics regime of the nonlinear dynamical sys-
tem and efficiently evaluating the inner products of the
nonlinear terms for a POD-Galerkin projection of the
system. Indeed, the dynamical state is identified from
limited noisy measurements using the sparsity promot-
ing `1 norm and the compressive sensing architecture.
The strategy for building modal libraries by concate-
nating truncated POD libraries across a range of rel-
evant bifurcation parameters may be viewed as a sim-
ple dimensionality-reduction implementation of machine
learning. The resulting modal libraries are a natural
sparse basis for the application of compressive sensing.
After the expensive one-time library-building procedure,
accurate identification, projection, and reconstruction
may be performed entirely in a low-dimensional frame-
work.

The method is effective for nonlinear dynamical sys-
tems where POD approximations are relevant. Thus it
can be applied only to systems where low-dimensional
attractors are the key dynamical features of interest.
Specifically, it fails if such attractors are not present, if
wave propagation is the dominant dynamical feature (al-
though modifications exist to account for this), and/or
intrinsically high-dimensional systems such as turbulent
flows. More broadly, the methodology can also be ex-

tended to complex systems that exhibit low-dimensional
attractors in their repertoire of dynamical behaviors. As
an example, one need only consider encoding schemes in
neuro-sensory systems whereby the collective behavior
of networked neurons produce emergent low-dimensional
patterns of activity for given stimulus [17, 59].

With three DEIM determined sensor locations, it is
possible to accurately classify bifurcation regimes, re-
construct the low-dimensional content, and simulate the
Galerkin projected dynamics of the complex Ginzburg
Landau equation. In addition, we investigate the per-
formance of sparse representation with the addition of
sensor noise. For moderate noise levels, the method
accurately classifies the correct dynamic regime. Point
measurements of the nonlinearity dramatically improve
the classification procedure. Interestingly, the DIEMs
algorithm not only provides efficient sensor positioning,
it also helps perform POD-Galerking truncations in a
fully low-rank manner, thus avoiding the computational
expense of evaluating nonlinear terms using the POD
methodology. Overall, the combination of `2 low-rank
representations and `1 sparse sampling enables efficient
characterization and manipulation of low-rank dynamical
systems.

For modern nonlinear dynamical systems, it is known
that nonlinearity plays a dominant role and shapes the
underlying spatio-temporal dynamics and modal struc-
tures, thus necessitating a new approach, such as that
presented here, for extracting these critical structures.
As has been demonstrated, although nonlinearity drives
new modal structures, it does not destroy the underlying
low-dimensional nature of the dynamics. Methods that
take advantage of such underlying structure are critical
for developing theoretical understanding and garnering
insight into the fundamental interactions of a vast array
of physical, engineering and biological systems.
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