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Presented are quantum simulation results using a measurement-based quantum lattice gas algo-
rithm for Navier-Stokes fluid dynamics in 241 dimensions. Numerical prediction of the kinematic
viscosity was measured by the decay rate of an initial sinusoidal flow profile. Due to local quantum
entanglement in the quantum lattice gas, the minimum kinematic viscosity in the measurement-

based quantum lattice gas is lower than achievable in a classical lattice gas.

The numerically

predicted viscosities precisely match the theoretical predictions obtained with a mean field ap-
proximation. Uniform flow profile with double shear layers, on a 16K x 8K lattice, leads to the
Kelvin-Helmholtz instability, breaking up the shear layer into pairs of counter-rotating vortices that
eventually merge via vortex fusion and dissipate because of the nonzero shear viscosity.

I. INTRODUCTION

An efficient and accurate numerical simulation of the
Navier-Stokes equations over large and complex domains,
at high Reynolds numbers, and under turbulent flow con-
ditions is of extreme interest to the engineering and scien-
tific community. The availability of an increasing number
of processor cores each year has helped to enable a cor-
responding increase in the simulation domain size and
Reynolds number, but algorithms that make the most
efficient use of the available parallel computing resources
are also needed.

Three main paradigms for addressing the simulation
of incompressible viscous fluid dynamics have developed
over the years: (1) a macroscopic approach starting with
the hydrodynamic equations of motion, (2) a microscopic
approach starting with particle dynamics, directly mod-
eling particle motion and particle-particle collisions, and
(3) a mesoscopic approach using a kinetic Boltzmann
equation of motion.

The first (macroscopic) paradigm starts with the
macroscopic governing equations of motion of divergence
free flow and the Navier-Stokes equation that, respec-
tively, derive from mass continuity and momentum con-
servation

V-v=0, Btv+v~Vv:$+VV2v. (1)
These equations are a closed set with the pressure, P, be-
ing determined from a nonlinear Poisson equation found
by taking the divergence of the momentum equation.
This paradigm employs numerical techniques to decon-
struct (1) for computer implementation. Two main
methods in this high-level approach have evolved to solve
partial differential equations like the classical incompress-
ible flow equations above: spectral methods and stencil-
based methods. Spectral methods use assumed basis
functions such as a Fourier series for a truncated series
expansion of the solution [1]. Test functions are used
to ensure that the differential equations are satisfied as

closely as possible by the truncated series expansion. In
recent work, Schlatter and Orlu [2] have extended the
Reynolds number of their simulations up to a value of
4300 by using 3.2 x 10° modes. Stencil-based methods
such as the use of finite differences, where the govern-
ing equations are discretized and solved for on a grid,
sacrifice accuracy in exchange for better parallel perfor-
mance due to lower communication requirements since
only neighboring values need to be communicated. Piroz-
zoli and Barnardini [3] were recently able to achieve a
Reynolds number of approximately 4000 using 34 x 10°
grid sites using a finite difference technique. More recent
work with a stencil-based method has extended the sim-
ulation domain to 4.1 x 102 grid points through the use
of 1.97 x 10° cores [4].

The second (microscopic) paradigm involves the calcu-
lation of the motion of particles in such a manner that the
Navier-Stokes equations emerge from the particle motion.
Molecular dynamics (MD) does this in the most simple
and accurate manner by calculating the motions of in-
dividual atoms or molecules acted upon by interatomic
potentials. Simulations of continuum flows have been
shown to match results given by the Navier-Stokes equa-
tions [5]. However, the computational resources required
to track every individual atom or molecule currently limit
MD to low Reynolds numbers due to the small simulation
domain sizes [6].

The desire to increase simulation domain size and
therefore Reynolds number has led to the development
of various lattice-based methods. Lattice-based methods
have the ability to incorporate microscopic physics, are
able to take advantage of computer processor paralleliza-
tion, and have reduced memory requirements since par-
ticle positions are descretized. The classical lattice gas
method solves for the motion of particles having discrete
momenta on a discrete lattice subject to both particle
collisions and streaming. In 1986 Frisch, Hasslacher, and
Pomeau showed that the use of a triangular (Bravais) lat-
tice with six momentum states reproduced isotropic two-
dimensional flow as given by the Navier-Stokes equations
[7]. In 1987 Frisch et al. extended the model to three-



dimensional flows through the use of a four-dimensional
face centered hypercube (fchc) lattice, where the three-
dimensional flow is obtained by projecting the fche lattice
onto three dimensions [8]. The microscopic method pre-
sented here, a quantum mechanical generalization of the
classical lattice gas method, is called the quantum lattice
gas method.

The third (mesoscopic) paradigm starts with a Boltz-
mann equation model of collisional processes in gases [9].
In the kinetic Boltzmann equation method the collision
operator includes terms in a hierarchy of particle-particle
interactions. This hierarchy can be cut off and the colli-
sion operator linearized, such as in the Bhatnager-Gross-
Krook (BGK) approximation [10], to direct the flow dis-
tribution function toward a local equilibrium chosen to
be the Maxwellian distribution. When implemented on
a discrete spacetime, this kinetic method becomes the
lattice Boltzmann method [11]. The lattice Boltzmann
method was originally developed as a computational fluid
dynamics technique to reduce the statistical noise in-
herent in the classical lattice gas, and the method was
usually implemented in the BGK approximation [12-
14]. However, the lattice Boltzmann method in the BGK
approximation suffers from numerical instability as the
viscosity is reduced in order to increase the simulation
Reynolds number.

To alleviate this problem, the entropic lattice Boltz-
mann method (ELB) has been developed to replace the
lattice BGK linear collision approximation — particle-
particle interactions are generated using an appropri-
ate Lyapunov functional to model the collisional process
[15, 16]. The Lyapunov functional determines both the
equilibrium distribution and the path to that distribution
and thus can be used to control the stability properties of
the model. Vahala et. al. [17] used ELB to calculate tur-
bulence characteristics at a Reynolds number of 25,000
by using a 1600 grid and found excellent agreement with
Large Eddy Simulation lattice Boltzmann (LES-LB) re-
sults. A quantum lattice gas model, such as the partic-
ular one presented below, can also be implemented as
a mesoscopic model and in this case is referred to as a
quantum lattice Boltzmann equation model [18].

II. QUANTUM LATTICE GAS METHOD

Quantum computing and the development of quan-
tum algorithms represent a paradigm shift in the way
computing is done. Whereas a single bit (the smallest
unit of memory storage in a classical digital computer)
can only have one of two values, 0 or 1, quantum com-
puting is based on a quantum state of a qubit, which
is the superposition of the two discrete quantum states
|0) and |1) . The qubit state |g) is thus «|0) + 8|1),
where |a|? and |3|? are the probabilities of the qubit be-
ing in either of the two respective states. The values
of the complex coefficients « and S are constrained by
|a|? 4+ |8 = 1 such that the probability of the qubit

being in the |0) state plus the probability of it being in
the |1) state is unity. So quantum computing offers a
new way to address the problem of modeling fluid dy-
namics. One generalization of the classical lattice gas
method is a measurement-based quantum lattice gas al-
gorithm [18, 19]. An overview description of the quan-
tum lattice gas model of quantum computation is given
in Ref. [20], and numerical results obtained by a super-
computer implementation of incompressible viscous fluid
flow in 241 dimensions are reported below.

Computation can be reversible when implemented as
a microscopic quantum algorithm. For a reversible al-
gorithm, a unitary evolution operator, e *#7/" can be
specified that acts at time ¢ on the total system wave
function, |¥(t)), which constitutes the state of all the
qubits or the quantum computer’s memory. If there are
n qubits, the quantum space |¥(t)) occupies an expo-
nentially large Hilbert space with 2" dimensions. A new
quantum state at a later time, |¥(¢ 4 7)), is obtained by
application of the unitary operator, which can be repre-
sented by a unitary matrix of size 2"x 2"

U(t+ 7)) = e /M W(1)), 2)

where n is the number of qubits in the system. Thus a
solution for the system state at a later time requires a
single computational step on a quantum computer, and
the computational step is the same regardless of the num-
ber of particles in the quantum simulation. It has also
been found serendipitously that quantum algorithms for
the solution of a variety of mathematical problems, even
when implemented on classical computers, can provide a
significant computational speedup [20-26].

The Hamiltonian ﬁ — H, + H' contains both a free
kinetic energy part H, and a particle-particle interaction
part H’. These two parts of the hermitian generator are
decomposed into two distinct operators and separated
by a measurement operation, such that the reversible
evolution operator e*ifl AT converted to a dissipative
evolution operator e " HeT/A T ¢=iH'T/h where we use the
tilde symbol to denote the lattice-gas generators.! This
represents the measurement step. The collide operator
C = e H'T/h creates entangled cluster states at every
point in the system. After that (post-collision), the oper-
ator ' = IP causes collapse of the entangled cluster state
via operator P and then injects this state back into the
full Hilbert space by tensor product operator Z. Finally
(post-measurement), the stream operator S = ¢ Hor/h

1 Since [Ho, H'] # 0, we know that e~iHoT/h £ '/ he—iHT/h
However, there exists hermitian generators H, and H’ such that
e~ iHoT/heiH T/l oy c—iHT/h ¢4 yery high-order accuracy when

entanglement in the quantum state is localized to the Hilbert

subspace at a point, and this localization is represented by I'

[27]. So the hermitian generators in (3) are akin (but are not

equal) to their counterparts in (2), i.e. Ho # Ho and H' # H'.



models the free particle motion confined to the lattice.
The effective hydrodynamics behavior of the quantum
lattice gas algorithm for modeling a Navier-Stokes fluid
is tested here via quantum simulations carried out using
the measurement-based quantum algorithm

(W(t+ 7)) = e Hom/Mfe=tH'T/h gy (¢)). (3)

The measurement-based quantum lattice gas (3) origi-
nally proposed as a practical algorithm for computational
fluid dynamics [28] is tested here in various 241 dimen-
sional simulations. We find that (3) is a valid represen-
tation of (1).

The measurement-based quantum lattice gas is a gen-
eralization of a classical lattice gas. A classical lattice
gas algorithm for fluid dynamics in 2+1 dimensions was
developed by Frisch, Hasslacher, and Pomeau, and it is
known a the FHP model [7]. The occupancy probabil-
ity of the momentum state along the ath lattice direc-
tion at a point in the lattice is given by Boolean number
variable n, € [0,1]. In the quantum lattice gas algo-
rithm developed by Yepez [19, 20, 28], the occupancy
probability amplitude of the momentum state along the
ath lattice direction at a point is given by the quantum
state of a qubit |¢,), which is a superposition of logi-
and the logical “one” state

cal “zero” state |0) = é

1) = <(1)), at that point. The classical Boolean number

variable is recovered by taking the expectation value of
the singleton number operator, n, = (¢q|7|¢,) = 0 when
|ga) = |0) and ng = (ga|7|qs) = 0 when |g,) = |1), where
n= 8 (1) . However, as mentioned in the introduction,
in general |gq(x)) = a(x)|0) + S(z)|1) is a superposition
state, where the c-numbers are constrained by bit conser-
vation |a(x)|?+|B8(x)|?. Then, the real-valued occupancy
probability of the ath momentum state at a point z is
given by f,(2) = (ga(2)|itga(x)) = |B(x)]?, which is a
kinetic variable represented at the mesoscopic scale. Six
qubits for the six momentum states are assigned to each
point in the lattice, where each qubit at z is determined
by the occupancy probability by

|4a(2)) = Vfa(@)[1) + V1~ fa(2)]0). (4)

Because there are ) = 6 qubits per point, there are 26 =
64 dimensions in the local Hilbert space per point. Each
numbered state is represented by the incoming on-site
ket given by the tensor product of the six qubits

Q
[4(2)) = Q) l4a(2)). ()

The number states may be labelled by a 6-bit integer N €
[0,63], i.e. |N) = |nina...ng), where n, are Boolean
number variables. The local ket at point z is in general

the quantum state

e (3
)= S en@N = | ®)
A 7/}2(971(‘%)

where ¥y (z) is the c-number probability amplitude for
the numbered state |N), and the full quantum state is
formed as a tensor product over all spatial points of the
lattice, |¥(t)) = @, ciattice 1¥(2;1))). Defining an on-
site collision operator, U, the post collision ket [¢/(z)) is
given by

[¥/(2)) = Ul (x)), (7)

and the outgoing (post-collision) occupancy probability
distribution is given by

fal@) = (@)U U () = @' (2)ale' (@), (8)

where the multiple qubit number operator for the ath
qubit has the singleton number operator at the ath po-
sition, i.e. 7, = 12(@~D @ A, Each probability is then
streamed to its neighboring lattice site and the process
is repeated. In the quantum lattice gas algorithm, the
unitary evolution operator in (2) is decomposed into
the product of unitary stream and collision operators,
e~ /M = SO where the C = ®, U.

In measurement-based quantum lattice gas form, the
decomposition (3) can be written as a strongly-correlated
many-body quantum evolution equation

|U(21,..crTnyt+ 7)) :Sfé\ﬂ/(xl,...,mn;t», (9)

where S is a unitary streaming operator and C= X, U
is a tensor product of the local complex unitary collision
operator, analogous to the collision operator in the clas-
sical lattice gas. U causes entanglement of the outgoing
collision configurations at each point of the lattice. Char-
acteristic of a measurement-based quantum algorithm,
the local evolution (9) contains a projection operator, de-
noted here by f‘, and this operator collapses each entan-
gled cluster state that exists at every point of the system.
TI" can be implemented on a measurement-based quantum
computer by Von Neuman projective measurement of the
qubits in the system. Because of I, (9) represents dis-
sipative particle dynamics, which becomes equivalent to
(1) in the continuum limit. The stream operator, S, is
an orthogonal permutation matrix with components be-
ing either 0 or 1. It causes particles to move from one site
to the next and causes global shift the qubit occupations.
Yepez derived unitary collision operators that reproduced
the lattice Boltzmann equation, and thus the viscous
Navier-Stokes equations, at the mesoscale [19, 20, 28].
He showed that detailed balance is obeyed and that the
method is noiseless and unconditionally stable.

Yepez’s analytical result from Refs. [19, 20] is that the
effective equation of motion for flow field v and fluid



density p for a quantum lattice gas in D spatial dimen-
sions reduces to the following flow equation in the long-
wavelength, low-frequency, and subsonic limits:

8t(pvi) + @»Hij + .= 0, (10)

where the momentum flux density is

pl? 1 1
J i+ 9pvivs (D +2)r (“n 9 )Y (11)
and where the lattice cell size is ¢ = ¢7 for the unit speed
c. With sound speed ¢, = £/(7v/D), the pressure tensor
is a bilinear functional of the fluid flow

,02
Pij = pc? <1 - 902> diz, (12)

with the density-dependent factor

D 1-2d

d)y=———= 13
o) = 5os . (13
where the reduced density is d = p/B and B is the lat-
tice coordination number (i.e. B = 6 for the triangular
lattice). Finally, inserting (11) into (10), the momentum

equation for viscous flow is

A (pvi) + 0;(gpuivy) = (14)
—_9, 2. TN o090 & ...
81P+T]a v; + (C+ D) aza_]vj + )

with shear viscosity

pl? 1 1 1
== — (——-= 15
K TD+2<K,, 2)’ (15)

and bulk viscosity

_p? 2D-1 (1 1
e ppin () 0

where &, is the viscosity eigenvalue of the Jacobian ma-
trix with components J,, = 8Qa/8fb|feq‘,ﬂ_:d and where
the form of the collision operator €2, in the quantum lat-
tice gas model is explained below. With small Knudsen,
Strouhal, and Mach numbers, the momentum equation
(14) approximates the Navier-Stokes equation in (1) with
g(d) appearing in the convective and pressure terms in
(14).

If g(d) is positive definite but less than unity for some
particular value of d used in a flow simulation, then one
simply rescales velocity field v — gv to ensure that the
momentum flow equation is Galilean invariant. Further-
more, when modeling fluid flow with characteristic flow
speed U, the density-dependent factor g > 0 may be cho-
sen to be proportional to or less than the Mach number
(9(d) £ U/c = M) by choosing d 5 1/2 so that the pres-
sure P = pc? + O(M?) becomes effectively isotropic and
velocity independent, to within the level of approxima-
tion employed in the model. So like the lattice Boltzmann

equation method for compressible flow constrained to low
Mach number, the pressure term in the quantum lattice
gas also becomes proportional to the density.

We provide the following numerical demonstrations be-
low. We test the quantum lattice gas in its classical lat-
tice gas representation and then we test the quantum
lattice gas as a quantum algorithm that exploits local
entanglement. As part of both these tests, we carry out
numerical measurements reported below that include in-
compressible fluid simulations of viscous decay and the
Kelvin-Helmholtz shear instability.

A. Classical lattice gas as a special case

Two-body, three-body, four-body, and two-body with
a spectator particle collisions were incorporated into the
algorithm in order to lower the viscosity and increase the
Reynolds number of the simulations as much as possible.
An example of a two-body collision with even and odd
chirality is shown in Fig. 1(a). A three-body collision,
shown in Fig. 1(b), has only one possible outcome. A
four-body collision has two possible outcomes depending
on the chirality as is shown in Fig. 1(c). Finally, a two-
body collision with a spectator particle, an example of
which is shown in Fig. 3(d), has, as in the case of three-
body collisions, only one possible outcome.

By the correspondence principle, quantum mechanics
leads to classical mechanics by the Ehrenfest theorem.
The particle dynamics represented by a quantum lattice
gas is a superset of the particle dynamics represented by
a classical lattice gas. So it possible to use a quantum
lattice gas algorithm to represent a classical lattice gas,
albeit without the shot noise—and this correspondence
is a first test of our quantum method reported herein.

The classical (albeit unitary) collision matrix for three-
body and two-body with a spectator particle collisions is
an orthogonal O(2) matrix of the form

Frclassica 01
?)_lbodyl = (1 0) (17)

with no free parameters. Thus following (7), the collision
shown in Fig. 1(b) can be written as

(V7)o (02) (19)

where the two states are switched at each collision. The
collision matrix for two and four-body collisions is an
orthogonal O(3) operator of the form

“rclassical

2-body T ) (19)

—_ o O
OO =
O = O

and its transpose, where (19) and its transpose are ap-
plied at alternating time steps. Again, following (7), the
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FIG. 1: Examples of particle-particle collisions in a classical lattice
gas confined to a two-dimensional hexagonal lattice. The collisions
show particle momenta with incoming states (solid) transitioning
to outgoing states (dotted). All single particle momentum vectors
are unit magnitude and are along the hexagonal lattice directions.
The value within the ket is the number of the shown state out
of the possible 26 = 64 states in the Hilbert space as given by
(5). The other particle-particle collisions are obtained by cyclic
permutations of these.

collision shown in Fig. 1(a) can be written as

w/
/9 Frelassical )
V1s | = Ushody | Y18 | (20)

V36 P36

where the three states are permuted at each collision.

A two-dimensional Bravais lattice with periodic
boundary conditions was constructed, with a collision
and stream operation performed sequentially at each lat-
tice site for each time step to update the probabilities
of the six momentum directions. Kinematic viscosities
of the simulated fluids were computed by simulating the
exponential decay of an initial sinusoidal velocity oscilla-
tion for the cases of a) two and three-body collisions, b)
two, three, and four-body collisions, and c) two, three,
four, and two-body with a spectator particle collisions.
Analytical expressions for the kinematic viscosity were
obtained using the mean field approximation by calcu-

lating the degenerate eigenvalues of the Jacobian of the
collision operator evaluated at equilibrium [29], where the
collision operator is given by

a:sz_fa— _na‘¢> (21)

For two and three-body collisions, the kinematic vis-
cosity as a function of the reduced density, d, is given
by

(W |UTna

1 1 99
S 12d(1—d)3 8 (22)
where 0 < d < 1 is the probability of occupancy of a
point when the system is under the condition of global
thermodynamic equilibrium. For two, three, and four-
body collisions the kinematic viscosity (that is manifestly
particle-hole symmetric) is given by

1 1

12d(1 — d)3 +12(1 — d)d® 8’ (23)

V=

and for two, three, four, and two-body with a spectator
particle collisions the kinematic viscosity is given by

1
V= —

1
3d(1—d)? +12d2(1 —d)2 + 3(1 —d)d® 8

(24)

The computed viscosities as a function of reduced den-
sity were found to match the values given by the classical
mean field approximation over the entire range of densi-
ties, shown in Fig. 2. So with the appropriate special
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FIG. 2: (Color online) Kinematic viscosity as a function of reduced
density, d. Dashed lines show the mean field approximation results.
Blue (dark) is two and three-body collisions, red (middle) is two,
three, and four-body collisions, and orange (light) is two, three,
four, and two-body with a spectator particle collisions.

case unitary collision operator, the quantum lattice gas
behaves as a classical lattice gas. However, since proba-
bility amplitudes of a qubit are used to encode particle
occupation, the shot-noise that is otherwise characteristic
(and a drawback) of the classical lattice gas is altogether
eliminated in the quantum lattice gas in this special limit.



The collision operators (17) and (19) do not induce any
quantum entanglement, so no projection operation is re-
quired prior to particle streaming. Thus, the operative
quantum algorithm in this special limit has the classic
form |U(t 4 7)) = e~ Hom/he=il'T/R|G (1)) = SC|W(t))
of a lattice gas model. This evolution is just the usual
stream-collide decomposition of (2).

B. Measurement-based quantum lattice gas

The classical lattice gas algorithm was converted into
a quantum lattice gas algorithm following the work of
Yepez. The collision matrix for three-body and two-body
with a spectator particle collisions is an SU(2) matrix of
the form

Uquantum —

eCcosn  e¥sing
3-body ( (25)

—e % siny e % cosn

with three free parameters: ¢, &, and . Following (7),
the collision shown in Fig. 3(b) can be written as

w/ Arquantum 1/)21
(1) = o (3 @
where the two states 121 and 145 are now entangled at
each collision.
The SU(3) collision matrix for two and four-body col-

lisions is obtained by combining the appropriate three
Gell-Mann matrices, (see appendix for the matrix repre-

sentation of \; for i =1,2,...,8), via
2 t i0(—Aa+X5—A
g _ (=323 e

with 0 as the single free parameter. The degenerate
eigenvalues of the Jacobian of the collision operator eval-
uated at equilibrium, i.e., the viscosity, are real only for a
value of § = 37/+/3, giving the \/SWAP unitary operator
of the form

Uquantum _

2-body (28)

[SHIVM TGN )

o100 N |
SN

The three parameters (¢,7n,£) are now available to vary
the viscosity. The outgoing entangled cluster states for
the four types of collisions are shown in Fig. 3. Again, fol-
lowing (7), the collision shown in Fig. 3(a) can be written
as

1][}6 Arquantum wg
Yis | = Ug—body Y1s | (29)
Vg V36

where the three states are entangled at each collision.
Kinematic viscosities were again computed by simulat-
ing the exponential decay of an initial sinusoidal velocity
oscillation and calculated analytically via the mean field
approximation as for (22)-(24) for the same three cases.

19) 19) |18) 136)

(a) a 2-body state |9) transitions to the entangled
cluster state —%|9> + %|18> + §|36)

(b) a 3-body state |21) transitions to the
entangled cluster state e?S cosn|21) + €% sin7|42)

1 s \-. 2 " ,:4
== 73 7& TRy A
’ A} AR}

27) 27y 145) 154)

(c) a 4-body state |27) transitions to the
entangled cluster state —%\27) + %\45) + %\54}

\ \ \ 4
—$<— > efcom L ------ +esing "
4
[13) |13) |22)
(d) state |13), 2-body with a spectator particle

(dashed line), transitions to entangled cluster
state e’C cosn|13) + € sin n|22)

FIG. 3: Examples of particle-particle collisions in a quantum gas
confined to a two-dimensional hexagonal lattice. The collisions
show particle momenta with incoming states (solid) transitioning
to outgoing states (dotted). All single particle momentum vectors
are unit magnitude and are along the hexagonal lattice directions.

The kinematic viscosity given by the mean field approx-
imation for two and three-body collisions is

1 1

YT 16d(1—d)P 8

(30)

For two, three, and four-body collisions the kinematic
viscosity (that is manifestly particle-hole symmetric) is
given by

1 1 (31)
v = - =
16d(1 — d)3 +16(1 — d)d® 8’

and for two, three, four, and two-body with a spectator
particle collisions the kinematic viscosity is given by

1 1
4d(1 —d)3 +1242(1 — d)2 + 4(1 — d)d® 8"

UV =

(32)

Because of the quantum superposition of states none
of the kinematic viscosities are dependent on the three
SU(2) parameters in (25), which in this case were n = J
and ¢ = £ = 0. It is shown in Fig. 4 that for all three cases
the minimum viscosity as a function of reduced density
computed in the quantum lattice gas algorithm was lower



than that computed in the classical lattice gas algorithm
due to the entangled output states in the quantum lattice
gas following each collide step. The viscosities computed
with the quantum lattice gas algorithm also agreed with
those given by the mean field approximation.
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FIG. 4: (Color online) Kinematic viscosity as a function of reduced
density, d. Lines show the mean field approximation results, dashed
for classical lattice gas and solid for quantum lattice gas. Blue (top
pair) is two and three-body collisions, red (middle pair) is two,
three, and four-body collisions, and orange (bottom pair) is two,
three, four, and two-body with a spectator particle collisions.

The quantum lattice gas algorithm was then modified
to simulate a shear flow and the resulting development
of Kelvin-Helmholtz instabilities. The computational do-
main consisted of 16384 x 8192 Bravais lattice sites for a
total of 1.34 x 108 points with the initial flows in the long
dimension and periodic boundary conditions on all sides.
A strip of 1024 lattice sites in the middle of the domain
was initialized with a velocity of 0.28 while the domains
on each side of this strip were initialized with a velocity
of 0.04 in the opposite direction for an initial total system
momentum of zero. The value of the reduced density, d,
was 0.17. Random noise with an amplitude of 5% was
added to the initial velocities. As for the classical lattice
gas, a collision and stream operation were performed se-
quentially at each lattice site for each time step to update
the probabilities of the six momentum directions.

The algorithm was parallelized using MPI and was run
using from 256 to 4096 processor cores, achieving a max-
imum site update rate on 4096 cores of 2.43 x 10? lattice
sites per second and a wall clock run time of approxi-
mately 90 minutes to complete 100,000 time steps. The
wall clock run time scaled approximately with the in-
verse of the number of cores up to 2048 cores. At 4096
cores the communication required for the outputting of
the plot and continuation files began to consume a sig-
nificant amount of the total run time. Memory require-
ments are low as, in theory, only six values are stored
for each lattice point and each processor only needs the
values for its lattice points and those on two of its bound-
aries. Although the algorithm was optimized for speed,

the processors were shown to be able to handle at least
524,288 lattice nodes each, enabling a future expansion
of the algorithm to three dimensions.

Fig. 5(b) shows a contour plot of the initial vorticity,
showing the shear layer with opposite vorticity on each
side of the center upward flow. By 100,000 time steps,
shown in Fig. 5(c), it can be seen that an instability
is starting to develop in the shear layer. This instability
then rapidly grows, and as shown in Fig. 5(d), by 150,000
time steps separate vortices are beginning to break off.
The breakup of the shear layer completes around 200,000
time steps, shown in Fig. 5(e). Figs. 5(f) and 5(g) show
the vortices at 400,000 and 700,000 time steps respec-
tively, where merging and dissipation of the vortices have
occurred. From this point on the vortices dissipate, with
the last one dropping below the contour color level at
approximately 1,119,000 time steps.

IIT. CONCLUSION

A quantum lattice gas model of Navier-Stokes fluid dy-
namics (i.e. incompressible flow limit) in 241 dimensions
was tested as a candidate computational fluid dynamics
algorithm. The quantum algorithm was parallelized us-
ing MPI to increase the domain size and therefore the
Reynolds number, reduce the run time, and take ad-
vantage of the computational resources available at the
MHPCC. Four types of collisions were incorporated: two
particle, three particle, four particle, and two particle
with a spectator particle. The quantum lattice gas model
can incorporate unitary collision operators that induce
classical particle-particle collisions or quantum mechan-
ical particle-particle collisions, the latter producing lo-
cally entangled states. Numerical simulations were con-
ducted for both classical and quantum collisions, and in
the former case the fluid dynamics in a classical lattice
gas is reproduced. Even though the computational effort
for the quantum lattice algorithm is similar to that for
a classical lattice gas, the case of quantum collisions is
important because of its potential to reduce the shear
viscosity compared to the classical lattice gas when in-
corporating the same collision types in the modeled fluid
and thus achieve a high level of convective nonlinearity
in the flow. The quantum lattice algorithm is reversible
and noiseless, and provides an algorithm that can be im-
plemented on measurement-based quantum computers as
they become available.

Calculation of the fluid viscosity was conducted by sim-
ulating the decay of an initial sinusoidal flow profile. Due
to the local quantum entanglement of states in a quantum
lattice gas, the minimum fluid viscosities for the quan-
tum lattice gas algorithm were lower than those obtained
by a classical lattice gas algorithm, and the viscosities
matched analytical values given by the mean field approx-
imation. A shear layer producing a Kelvin-Helmholtz
instability was then simulated on a 16K x 8K lattice
with the quantum lattice gas algorithm. Instability of
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FIG. 5: (Color online) Contour plot of vorticity at initialization. Center flow is upward at a velocity of 0.28, and outer flow is downward
at a velocity of 0.04 with a background density of d = 0.17. Start of the KH instability occurs around 100,000 time steps. By 150,000
time steps, the KH instability causes the breakup of the shear layer into separate vortex pairs. By 400,000 time steps, dissipation begins
to dominate the flow. By 700,000 time steps merging of the vortices has started.

the shear layer resulting in the breakup of the shear layer
into separate vortices that then merge and dissipate was
observed. The numerical behavior of the quantum lattice
gas model precisely matched the theoretically predicted
behavior in test cases.

IV. ACKNOWLEDGEMENTS

This research was supported by grants from the Air
Force Office of Scientific Research, the National Research
Council, and the DoD High Performance Computing
Modernization Program. Supercomputer resources were
provided for the Air Force Research Laboratory’s Maui
High Performance Computing Center.



[1] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang,
Spectral Methods in Fluid Dynamics (Springer-Verlag,
New York, 1988).

[2] P. Schlatter and R. Orli, Journal of Fluid
Mechanics 659, 116 (2010), ISSN 1469-7645,
URL http://journals.cambridge.org/article_
50022112010003113.

[3] S. Pirozzoli and M. Bernardini, Physics of Flu-
ids  (1994-present) 25, 021704 (2013), URL
http://scitation.aip.org/content/aip/journal/
pof2/25/2/10.1063/1.4792164.

[4] I. Bermejo-Moreno, J. Bodart, J. Larsson, B. Bar-
ney, J. Nichols, and S. Jones, in Proceedings of the
International Conference on High Performance Com-
puting, Networking, Storage and Analysis (ACM, New
York, NY, USA, 2013), SC ’13, pp. 62:1-62:10, ISBN
978-1-4503-2378-9, URL http://doi.acm.org/10.1145/
2503210.2503265.

[6] J. Koplik and J. R. Banavar, Annual Re-
view of Fluid Mechanics 27, 257 (1995),
http://dx.doi.org/10.1146 /annurev.fl.27.010195.001353,
URL http://dx.doi.org/10.1146/annurev.£1.27.
010195.001353.

[6] K. F. Ludwig and M. Micci, Atomization and Sprays 21,
275 (2011), ISSN 1044-5110.

[7] U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev.
Lett. 56, 1505 (1986), URL http://link.aps.org/doi/
10.1103/PhysRevLett.56.1505.

[8] U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand,
Y. Pomeau, and J.-P. Rivet, Complex Systems 1, 649
(1987).

[9] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev.
94, 511 (1954).

[10] E. P. Gross and E. A. Jackson, Physics of Fluids 2, 432
(1959), URL http://link.aip.org/link/?PFL/2/432/
1.

[11] S. Succi, The Lattice Boltzmann Equation for Fluid Dy-
namics and Beyond (Clarendon Press, Oxford, 2001).

[12] S. S. R. Benzia and M. Vergassola, Physics Reports 222,
145 (1992).

[13] Y. Qian, D. d’Humiéres, and P. Lallemand, Europhysics
Letters 17, 479 (1992).

[14] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. Mont-
gomery, Physics of Fluids 6, 1285 (1994).

[15] I. V. Karlin, A. Ferrante, and H. C. Ottinger, Euro-
physics Letters 47, 182 (1999).

[16] B. M. Boghosian, J. Yepez, P. V. Coveney,
and A. Wager, Proceedings of the Royal Soci-
ety of London. Series A: Mathematical, Physical
and Engineering Sciences 457, 717 (2001), URL
http://rspa.royalsocietypublishing.org/content/
457/2007/717 . abstract.

[17] G. Vahala, B. Keating, M. Soe, J. Yepez, L. Vahala,

and S. Ziegeler, The European Physical Journal Spe-
cial Topics 171, 167 (2009), ISSN 1951-6355, URL http:
//dx.doi.org/10.1140/epjst/e2009-01025-7.

[18] J. Yepez, Physical Review A 74, 042322 (2006).

[19] J. Yepez, in Quantum Computing and Quantum Commu-
nications: 1st NASA International Conference on Quan-
tum Computing and Quantum Communications, edited
by C. P. Williams, Lecture Notes in Computer Science
(Springer-Verlag, 1999), pp. 34-60.

[20] J. Yepez, Technical Report AFRL-VS-HA-TR-2006-
1143, Air Force Research Laboratory, AFRL/RV
Hanscom AFB, MA 01731 (2007), DTIC ADA474659.

[21] G. Vahala, L. Vahala, and J. Yepez, Physics Letters A
310, 187 (2003).

[22] G. Vahala, L. Vahala, and J. Yepez, Philosophical Trans-
actions of the Royal Society 362, 1677 (2004).

[23] J. Yepez, G. Vahala, and L. Vahala, Quantum Informa-
tion Processing 4, 457 (2005).

[24] J. Yepez, G. Vahala, L. Vahala, and M. Soe, Physical
Review Letters 103, 084501 (pages 4) (2009), URL http:
//link.aps.org/abstract/PRL/v103/e084501.

[25] J. Yepez, G. Vahala, L. Vahala, and M. Soe (SPIE, 2010),
vol. 7702, p. 770209, URL http://link.aip.org/link/
?PSI/7702/770209/1.

[26] G. Vahala, M. Soe, B. Zhang, J. Yepez, L. Vahala,
J. Carter, and S. Ziegeler, Proceedings of the 2011 SC
- International Conference for High Performance Com-
puting, Networking, Storage and Analysis (2011).

[27] M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory (Westview Press, 1995).

[28] J. Yepez, Phys. Rev. E 63, 046702 (2001), URL http:
//link.aps.org/doi/10.1103/PhysRevE.63.046702.

[29] J. Yepez, USAF Technical Report, PL-TR-96-2122(1),
ERP, No. 1200 (1995).

APPENDIX

The matrix representation of the eight SU(2) Gell-
Mann generators that we use above are
1 0 0
0 -10]),
00 0

010 0 —i 0
)\1<1 o)7 )\2(1‘ 0 o>, A3
000 0 0 0
0 10 0
i>7 )\8:1(01 0).
i 0 3\0 0 -2

1
0
0
00 1 —i
M=(000], A= o,
100 0
0
0
1

VS
s o0
.00 O OO



