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Plasmas with electromagnetic fields turbulent at sub-Larmor-scales are a feature of a wide variety of high-
energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phe-
nomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale
magnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The
radiation, carrying information on the statistical properties of the magnetic turbulence, is also intimately related
to the particle diffusive transport. We have investigated, both theoretically and numerically, the transport of non-
relativistic and trans-relativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic
turbulence, and its relation to the spectra of radiation simultaneously produced by these particles. Consequently,
the diffusive and radiative properties of plasmas turbulent on sub-Larmor scales may serve as a powerful tool to
diagnosis laboratory and astrophysical plasmas.

I. INTRODUCTION

High-amplitude sub-Larmor-scale electromagnetic turbu-
lence is a phenomenon largely associated with high-energy
density environments. Such turbulence is a common feature of
astrophysical and space plasmas, e.g., at high-Mach-number
collisionless shocks in weakly magnetized plasmas [1–3], up-
stream regions of quasi-parallel shocks [4, 5], sites of mag-
netic reconnection [6, 7] and others. Additionally, these sub-
Larmor-scale, or “small-scale”, fields play a critical role in
laboratory plasmas; especially in high-intensity laser plasmas
– as observed in facilities such as the National Ignition Facility
(NIF), OmegaEP, Hercules, Trident, and others [8–11]. Ex-
perimental and numerical studies of non-relativistic collision-
less shocks also show that they are mediated by small-scale
electromagnetic turbulence [12, 13]. Thus, studies of plas-
mas and turbulence in these environments are important for
the fusion energy sciences and the inertial confinement con-
cept [8, 11].

Small-scale electromagnetic turbulence can be of various
origin and thus have rather different properties, from being
purely magnetic (Weibel) turbulence [14–16], to various types
of electromagnetic turbulence (for example, whistler wave tur-
bulence or turbulence produced by filamentation/mixed mode
instability [17, 18]), to purely electrostatic Langmuir turbu-
lence [19, 20].

Despite substantial differences, these small-scale fields
share one thing in common: they vary on scales much smaller
than the characteristic curvature scale of the particles travers-
ing the field, i.e. the plasma inertial length (skin depth) which
are on the order of the particle Larmor radius. The particle tra-
jectory through these turbulent fields will, consequently, never
form a well-defined Larmor circle.

If the electromagnetic fields are random, which is usually
the case of turbulence because of the random phases of fluc-
tuations, the paths of the particles diffusively diverge due to
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pitch-angle diffusion. Radiation simultaneously produced by
these particles is neither cyclotron nor synchrotron (for non-
relativistic or relativistic particles, respectively) but, instead,
carries information about the spectrum of turbulent fluctua-
tions. Here we stress that we strictly consider the case of tur-
bulence in vanishing mean field plasma 〈B〉 = 0.

In our previous work, see Ref. [24], we found the rela-
tion between the transport of relativistic particles in isotropic
three-dimensional small-scale magnetic turbulence and the ra-
diation spectra simultaneously produced by these particles. In
particular, we found that the radiation spectrum agrees with
the small-angle jitter radiation prediction, in the small deflec-
tion angle regime [13, 21, 25–27]. Furthermore, we demon-
strated that the pitch-angle diffusion coefficient is directly re-
lated to, and can readily be deduced from, the spectra of the
emitted radiation. This inter-relation between radiative and
transport properties provides a unique way to remotely diag-
nose high-energy-density plasmas, both in laboratory experi-
ments and in astrophysical systems.

We extend our previous work to now consider non-
relativistic (v . 0.1c) and trans-relativistic (i.e. mildly rel-
ativistic: 0.1c . v . 0.5c) particles moving through
three-dimensional sub-Larmor-scale magnetic turbulence. We
demonstrate, once more via numerical and theoretical analy-
sis, that an analogous inter-relation holds in these regimes as
well, which naturally generalizes the relativistic small-angle
jitter radiation regime and the pitch-angle diffusion coeffi-
cient.

This trans-relativistic regime is applicable to laboratory
plasmas, particularly high-intensity laser plasmas – where
bulk plasma motion is below v . 0.5c. Multi-dimensional
relativistic Particle-In-Cell (PIC) simulations and laboratory
experiments have revealed that non-relativistic collisionless
shocks, mediated by Weibel-like instabilities, can occur in an
overcritical plasma via interaction with an ultraintense laser
pulse [10, 12]. In the laboratory setting, laser-produced super-
sonic counter-streaming plasmas have been observed to give
rise to self-organized electromagnetic fields [28]. Recently,
the formation of filamentary structures indicative of Weibel-
like magnetic fields, fully consistent with the shock model of-
fered by 3D PIC simulations and theoretical instability anal-
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ysis, has been directly observed in a scaled laboratory exper-
iment [29]. Consequently, given the role of trans-relativistic
particle motion in these environments, the study of the small-
scale electromagnetic turbulence may be aided by the diag-
nostic tool offered via this inter-relation between the transport
and radiative properties.

The rest of the paper is organized as follows. Section II
presents the analytic theory. Sections III and IV describe the
numerical techniques employed and the obtained simulation
results. Section V is the conclusions. All equations appear in
cgs units.

II. ANALYTIC THEORY

A. Pitch-angle diffusion

Consider a trans-relativistic electron moving (with velocity,
v) through a non-uniform, random, mean-free (i.e. 〈B〉 =
0), small-scale magnetic field (and assume that this mag-
netic “micro-turbulence” is statistically homogeneous and
isotropic). Because the Lorentz force on the electron is ran-
dom, it’s velocity and acceleration vectors vary stochastically,
leading to a random (diffusive) trajectory. We define the field
turbulence to be “small-scale” when the electron’s Larmor ra-
dius, rL = γβmec

2/e〈B2
⊥〉1/2 (where β = v/c is the di-

mensionless particle velocity, me is the electron mass, c is the
speed of light, e is the electric charge, 〈B2

⊥〉1/2 is the rms
component of the magnetic field perpendicular to the elec-
tron’s velocity vector, and γ is the electron’s Lorentz factor)
is greater than, or comparable to, the characteristic correlation
scale of the magnetic field, λB , i.e., rL & λB .

For small deflections, the deflection angle of the velocity
(with respect to the particle’s initial direction of motion) is
approximately the ratio of the change in the electron’s trans-
verse momentum to its initial transverse momentum. The for-
mer is ∼ FLτλ, where FL = (e/c)v ×B is the transverse
Lorentz force, and τλ is the transit time, which is the time
required to traverse the scale of the field’s inhomogeneity,
i.e., the field correlation length, λB . This is, τλ ∼ λB/v⊥
– where v⊥ is the the component of the velocity perpendic-
ular to the magnetic field. The change in the transverse mo-
mentum is thus, ∆p⊥ ∼ FLτλ ∼ e(B/c)λB . Given that
the particle’s total transverse momentum is p⊥ ∼ γmev⊥,
the deflection angle over the field correlation length will be
αλ ≈ ∆p⊥/p⊥ ∼ e(B/c)λB/γmev⊥. The subsequent de-
flection will be in a random direction, because the field is un-
correlated over scales greater than λB , hence the particle mo-
tion is diffusive. As for any diffusive process, the ensemble-
averaged squared deviation grows linearly with time. Hence,
for the pitch-angle deviation, we have

〈α2〉 = Dααt. (1)

The pitch-angle diffusion coefficient is, by definition, the ratio
of the square of the deflection angle in a coherent patch to the

transit time over this patch, that is

Dαα ∼ α2
λ

τλ
∼

(

e2

m2
ec

3

)

1

〈β2
⊥〉1/2

λB

γ2
〈B2〉, (2)

where a volume-averaged square magnetic field, 〈B2〉 and
perpendicular rms velocity, 〈β2

⊥〉1/2 have been substituted
for B2 and β⊥ ≡ v⊥/c. Note that the diffusion coefficient
depends on both statistical properties of the magnetic field,
namely its strength and the typical correlation scale.

Although the assumption that αλ ≪ 1 is valid in the ultra-
relativistic limit: β → 1 (see Ref. [24]), it is not evident that
it holds for trans-relativistic and non-relativistic velocities. As
we will demonstrate via numerical simulation, pitch-angle dif-
fusion will occur in accordance with Eq. (2), so long as the
magnetic turbulence is sub-Larmor-scale, i.e. rL & λB .

The average square magnetic field, 〈B2〉 is related to 〈B2
⊥〉

by a multiplicative factor. For isotropic magnetic turbulence,
〈B2

x〉 = 〈B2
y〉 = 〈B2

z 〉. Thus, 1
3 〈B2〉 = 〈B2

x〉. Alternatively,
B may be expressed as a linear combination of parallel and
perpendicular components. Given isotropy, 〈B2

⊥〉 = 〈B2
x〉 +

〈B2
y〉, so

〈B2
⊥〉 =

2

3
〈B2〉. (3)

Recognizing that v⊥B = vB⊥ allows the expression of the
rms perpendicular velocity as

〈β2
⊥〉1/2 =

√

2

3
β, (4)

Next, the correlation length, λB lacks a formal definition. It
is, nonetheless, commonplace in the literature – e.g. Ref. [30],
to define the two-point autocorrelation tensor,

Rij(r, t) ≡ 〈Bi(x, τ)Bj(x+ r, τ + t)〉x,τ , (5)

with the formally path and time dependent correlation length
tensor defined as

λij
B(r̂, t) ≡

ˆ ∞

0

Rij(r, t)

Rij(0, 0)
dr. (6)

Note that we make no distinction between co-variant and
contra-variant components; the usage of upper and lower in-
dices is only for convenience.

Since the component of the magnetic field perpendicular to
the particle trajectory alters the motion, we choose an integra-
tion path along v⊥ and only consider a transverse magnetic
field component. In accord with standard practice (see, for
example, Ref. [31]), we choose r = zẑ and i = j = x. Thus,
we define the magnetic field correlation length as

λB ≡ λxx
B (ẑ, t) =

ˆ ∞

0

Rxx(zẑ, t)

Rxx(0, 0)
dz. (7)

The correlation length has a convenient representation in
Fourier “k-space” and “Ω-space". Let Bk,Ω be the spatial and
temporal Fourier transform of the magnetic field, i.e.

Bk,Ω =

ˆ

B(x, t)e−i(k·x−Ωt) dxdt, (8)
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where k and Ω are the corresponding wave vector and fre-
quency, respectively. We may define a complementary spec-
tral correlation tensor Φij(k,Ω), such that

Rij(r, t) = (2π)−4

ˆ

Φij(k,Ω)e
ik·r−iΩt dkdΩ, (9)

Isotropy, homogeneity, time-independence, and ∇ ·B = 0 re-
quire that the spectral correlation tensor take the simple form
[30]

Φij(k,Ω) =
1

2V
|Bk|2

(

δij − k̂ik̂j

)

2πδ(Ω), (10)

where V is the volume of the space considered, k̂ is the unit
vector in the direction of the wave vector, and δij is the Kro-
necker delta. The normalization has been chosen such that
∑

Rii(0, 0) = 〈B2〉x,τ = 〈B2〉. Given Eq. (9) and Eq. (10),
the correlation length may be reformulated as

λB =

ˆ ∞

0

´

|Bk|2k−2(k2 − k2x)e
ikzz dk

´

|Bk|2k−2(k2 − k2x) dk
dz. (11)

By assuming isotropic turbulence, the magnetic field has az-
imuthal and polar symmetry in k-space, hence Bk is only a
function of |k| ≡ k. After the integration over z and all solid-
angles in Fourier space, Eq. (11) becomes

λB =
3π

8

´∞

0 k|Bk|2 dk
´∞

0 k2|Bk|2 dk
. (12)

It may be noted that λB ≈ k−1
B , where kB is the characteristic

(dominant) wave number of turbulence.
Thus, with Eqs. (2), (4), and (12), the pitch-angle diffusion

coefficient is

Dαα ≡ 3π

8

√

3

2

(

e2

m2
ec

3

)

´∞

0
k|Bk|2 dk

´∞

0 k2|Bk|2 dk
〈B2〉
γ2β

. (13)

To continue, we must specify a magnetic spectral distribution,
|Bk|2. As in our previous work (Ref. [24]), we assume the
isotropic three-dimensional magnetic turbulence has a static,
i.e. time-independent, power law turbulent spectrum:

{

|Bk|2 = Ck−µ, kmin ≤ k ≤ kmax

|Bk|2 = 0. otherwise (14)

Here the magnetic spectral index, µ is a real number, and

C ≡ 2π2V 〈B2〉
´ kmax

kmin
k−µ+2 dk

, (15)

is a normalization, such that

V −1

ˆ

B
2(x)dx = (2π)−3

ˆ

|Bk|2 dk. (16)

It should be noted that our principal results strictly apply
only to static turbulence. One should, in principle, consider
time-dependent fields as well. However, if the transit time of

a particle over a correlation length is shorter than the field vari-
ability time-scale, then the static field approximation is valid.
Additionally, plasma instabilities generally produce ran-

dom fields in a preferred direction, leading to anisotropic

turbulence. Nonetheless, isotropy may arise in an advance

stage of development. Magnetic turbulence of this kind is a
natural outcome of the non-linear Weibel-filamentation insta-
bility, which occurs at relativistic collisionless shocks and in
laser-produced plasmas [13, 21, 25].

B. The ultra-relativistic jitter theory

Now we consider the radiative properties of these sub-
Larmor-scale plasmas. First, the ultra-relativistic radiation
regime in sub-Larmor-scale magnetic turbulence is well un-
derstood. This regime is characterized by a single parameter,
the ratio of the deflection angle, αλ to the relativistic beaming
angle, ∆θ ∼ 1/γ. The ratio [21, 24, 25]

αλ

∆θ
∼ eB⊥λB

mec2
∼ 2π

e〈B2〉1/2
mec2kB

≡ δj (17)

is known as the jitter parameter. From this, we recover four
distinct radiation regimes. Firstly, if δj → ∞, the regime is
the classical synchrotron radiation regime; the particle orbits
are circular in the plane orthogonal to a perfectly homoge-
neous magnetic field. With δj > γ, the regime is very simi-
lar to synchrotron, but the particle’s guiding center is slowly
drifting, due to slight inhomogeneity in the magnetic field.
The produced spectrum is well represented by the synchrotron
spectrum, and it evolves slowly in time due to the particle dif-
fusion through regions of differing field strength. This regime
may be referred to as the diffusive synchrotron regime.

Thirdly, when 1 < δj < γ, the particle does not complete
its Larmor orbit because the B-field varies on a shorter scale.
In this case, an onlooking observer would see radiation from
only short intervals of the particle’s trajectory (i.e., whenever
the trajectory is near the line-of-sight), as in synchrotron, but
these intervals are randomly distributed. This is the case of
the large-angle jitter regime. The radiation is similar to syn-
chrotron radiation near the spectral peak and above, but differs
significantly from it at lower frequencies, see Ref. [21] for de-
tails.

Finally, If δj ≪ 1, a distant observer on the line-of-sight
will see the radiation along, virtually, the entire trajectory of
the particle (which will be approximately straight with small,
random, transverse deviations). This is known as small-angle
jitter radiation [13, 21, 25]. The resulting radiation markedly
differs from synchrotron radiation, although the total radiated
power of radiation, Ptot ≡ dW/dt, produced by a particle in
all these regimes, e.g., jitter and synchrotron, is identical:

Ptot =
2

3
r2ecγ

2〈B2
⊥〉, (18)

where re = e2/mec
2 is the classical electron radius.

For ultra-relativistic electrons, the radiation spectra are
wholly determined by δj and the magnetic spectral distri-
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bution. It has been shown [13, 21, 26, 27] that monoener-
getic relativistic electrons in the sub-Larmor-scale magnetic
turbulence given by Eq. (14) produce a flat angle-averaged
spectrum below the spectral break and a power-law spectrum
above the break, that is

P (ω) ∝







ω0, if ω < ωj ,
ω−µ+2, if ωj < ω < ωb,
0, if ωb < ω,

(19)

where the spectral break is

ωj = γ2kminc, (20)

which is called the jitter frequency. Similarly, the high-
frequency break is

ωb = γ2kmaxc. (21)

C. Non-relativistic jitter radiation

In contrast, radiation from non-relativistic particles is not
beamed along a narrow cone of opening angle, ∆θ. The
jitter parameter is, consequently, without meaning in the
non-relativistic radiation regime. Instead, the “dimensionless
scale” (or “gyro-number”), i.e. rLλ

−1
B , is the only meaningful

parameter:

rLλ
−1
B ∼ kBrL = kB

γmevc

e〈B2〉1/2 ≡ ρ, (22)

Given the magnetic spectral distribution exhibited by Eq. (14),
kB ∼ kmin, so

ρ = kminrL. (23)

As we shall see below, the radiation spectrum in this regime
markedly differs from the single-harmonic cyclotron spec-
trum. We call this radiation “pseudo-cyclotron” radiation or
“non-relativistic jitter” radiation.

Regardless of the regime, the radiation spectrum (which is
the radiative spectral energy, dW per unit frequency, dω, and
per unit solid-angle, dη) seen by a distant observer is obtained
from the equation [32, 33]

d2W

dω dη
=

e2

4π2c

∣

∣

∣

∣

ˆ ∞

−∞

Ak(t)e
iωt dt

∣

∣

∣

∣

2

, (24)

where

Ak(t) ≡
n̂× [(n̂− β)× β̇]

(1− n̂ · β)2 e−ik·r(t). (25)

In this equation, r(t) is the particle’s position at the retarded
time t, k ≡ n̂ω/c is the wave vector which points along n̂

from r(t) to the observer and β̇ ≡ dβ/dt. Since the observer
is distant, n̂ is approximated as fixed in time to the origin of
the coordinate system. This fully relativistic equation is ob-
tained from the Liénard-Wiechart potentials. If v ≪ c, Eq.
(24) simplifies to

d2W

dω dη
=

e2

4π2c

∣

∣

∣

∣

ˆ ∞

−∞

n̂× (n̂× β̇)eiωt dt

∣

∣

∣

∣

2

, (26)

Next, integrating Eq. (26) over all solid-angles gives the
radiated energy per frequency

dW

dω
=

2e2

3πc3
|wω|2 , (27)

where wω is the Fourier component of the electron’s acceler-
ation with frequency, ω. Eq. (27), valid for v ≪ c, is known
as the dipole approximation [32]. This expression may also
be obtained from the Larmor formula, i.e.

Ptot =
2

3

e2

c3
|w|2, (28)

using the identity [32]:

1

2

ˆ ∞

−∞

|w(t)|2 dt = (2π)−1

ˆ ∞

0

|wω|2 dω. (29)

To proceed further, we use our previous assumption that
the particle deflection angle over a field correlation length is
small (i.e. αλ ≪ 1). This condition implies the validity of
the “perturbative” approach, whereby the particle trajectory is
approximated as a straight line. For a particle moving in a
magnetic field, |wω|2 is given by the Lorentz force. In this
limiting case of small deflections, we may write

|wω|2 =

(

eβ

me

)2

(δij − v̂iv̂j)B
i∗
ω Bj

ω, (30)

where Bω is the temporal variation of the magnetic field along
the trajectory of the electron, i.e.

Bω = (2π)−4

ˆ

eiωt dt

ˆ

Bk,Ωe
ik·r(t)−iΩt dkdΩ. (31)

Since the trajectory is approximately straight, r(t) ≈ r0+vt,
consequently

Bω = (2π)−4

ˆ

eik·r0Bk,Ω dkdΩ

ˆ

ei(ω+k·v−Ω)t dt, (32)

After the time integration, this becomes

Bω = (2π)−3

ˆ

δ(ω + k · v − Ω)eik·r0Bk,Ω dkdΩ. (33)

Now, since the magnetic turbulence is assumed to be homo-
geneous (at least over a time scale greater than the particle
transit time) the product of Bi∗

ω Bj
ω along a particular trajec-

tory starting at r0 is representative of the magnetic field as a
whole [21]. Thus, we may consider only the volume-average
of Bi∗

ω Bj
ω . Performing the integration leads to

〈

Bi∗
ω Bj

ω

〉

r0
= (2π)−3V −1

ˆ

δ(ω+k·v−Ω)Bi
k,ΩB

j∗
k,Ω dkdΩ.

(34)
The quantity, Bi∗

k,ΩB
j
k,Ω, is proportional to the Fourier im-

age of the two-point auto-correlation tensor – i.e. Eq. (10).
Thus, with Eqs. (27), (30), (34), and (10), the angle-averaged
radiation spectrum of a non-relativistic electron moving in
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static, statistically homogeneous and isotropic sub-Larmor-
scale magnetic turbulence is

dW

dω
=

(

Tr2eβ
2c

12π3V

)
ˆ

δ(ω+k ·v)
[

1 +
(

k̂ · v̂
)2

]

|Bk|2 dk,
(35)

where T is the duration of the observation, and where we have
used

δ(ω + k · v) =
ˆ

δ(ω + k · v − Ω)δ(Ω) dΩ. (36)

We see that the radiation spectrum is fully determined by the
magnetic spectral distribution, |Bk|2. It is instructive to con-
sider one of the simplest such distributions – the isotropic
spectrum of a magnetic field at a single scale, kB , i.e.

|Bk|2 = (2π)3V 〈B2〉δ(k − kB)

4πk2B
. (37)

Substitution of Eq. (37) into Eq. (35) produces the radiation
spectrum

dW

dω
=

{

T
3kB

r2eβ〈B2〉
(

1 + ω2

ω2

jn

)

, if ω ≤ ωjn

0, if ω > ωjn,
(38)

where ωjn = kBv. Given the magnetic spectral distribution of
Eq. (14), the corresponding non-relativistic jitter spectrum, is

dW

dω
∝







A+Dω2, if ω ≤ ωjn

Fω−µ+2 +Gω2 +K, if ≤ ωbn

0, if ω > ωbn,
(39)

where µ 6= 2 and

A ≡ v

2− µ

(

k−µ+2
max − k−µ+2

min

)

, (40)

D ≡ − 1

vµ

(

k−µ
max − k−µ

min

)

, (41)

F ≡ vµ

v

(

1

µ− 2
+

1

µ

)

, (42)

G ≡ − v

µ
k−µ

max, (43)

K ≡ v

2− µ
k−µ+2

max , (44)

with the jitter frequency given by the characteristic, and
largest, spatial scale

ωjn = kminv. (45)

Finally, the break frequency is indicated by the smallest spa-
tial scale, i.e. the maximum wave number

ωbn = kmaxv. (46)

Notice the structural similarity between the spectrum at fre-
quencies less than ωjn and the delta function spectrum in Eq.
(38).

Next, the total radiated power may be obtained by integrat-
ing Eq. (35) over all frequencies and dividing by the total
observation time, yielding

Ptot =
2

3
r2eβ

2c〈B2
⊥〉, (47)

where we have used Eq. (3). Compare this to the total power
radiated by a non-relativistic electron moving through a uni-
form magnetic field,

Ptot =
2

3
r2eβ

2cB2
⊥, (48)

which follows directly from Eq. (28). Evidently, the total
power of non-relativistic jitter radiation is identical to the to-
tal power of cyclotron radiation – with B2 → 〈B2〉; this is
exactly analogous to the relation between synchrotron and rel-
ativistic jitter radiation.

The radiation spectrum, generalized to any velocity,

may be obtained by a formal Lorentz transformation

to the electron rest frame. Consider a relativistic elec-

tron moving with velocity β in the (unprimed) laboratory

frame. By employing the Lorentz invariant phase space

volume, d3k/ω(k) – the radiation spectra between the two

frames can readily be related by the equality [33]

1

ω2

d2W

dωdη
=

1

ω′2

d2W ′

dω′dη′
. (49)

Thus, the angle-averaged laboratory radiation spectrum

is obtained by integration over all solid-angles (in the lab

frame) of the electron rest frame spectrum, i.e.

dW

dω
=

ˆ

ω2

ω′2

d2W ′

dω′dη′
dη. (50)

We consider, once more, that the electron moves along a

straight path, experiencing only small deviations in its tra-

jectory. Consequently, we consider a Lorentz boost of the

laboratory coordinates along the trajectory (z-axis). In

the electron’s rest frame, the field turbulence has both a

time-dependent magnetic and electric component. How-

ever, since the electron is at rest in this frame, only the

electric field contributes to the instantaneous particle ac-

celeration. Via Lorentz transformation of the laboratory

magnetic field, the co-moving electric field is simply

E
′(x′, t′) = γβ ×B(r), (51)

where r(t) = r0+vt. Since the electron is instantaneously

at rest in this frame, we may choose x
′ = 0; thus, t = γt′.

The corresponding equation of motion, for the electron, is

then

mew
′(t′) = eE′(0, t′) = eγβ ×B(r). (52)
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As before, the radiation spectrum in the rest frame is given

by the Dipole approximation, Eq. (26). Substitution of

these results into Eq. (50) leads to

dW

dω
=

e2

4π2γ2c3

ˆ |w′
ω′ |2 sin2Θ′

(1− βcosθ)2
d(cosθ) dφ, (53)

where Θ′ is the angle between the wave and acceleration

vectors in the electron rest frame, and we have used the

relativistic Doppler formula ω′ = γω(1−n̂·β). Next, given

the equivalent form of Eq. (52) to the lab frame equation

of motion, Eq. (30), the acceleration term is given by the

non-relativistic jitter spectrum with the substitution, ω′ →
ω′/γ = ω(1− βcosθ).

The final task is to perform the integration. However,

the angle Θ′ must first be related to the laboratory θ and

φ coordinates – which are derived from the angle between

the wave vector and the velocity, and the azimuthal angle

with respect to the boost axis, respectively. With a trans-

verse acceleration, these angles are related by [34]

sin2Θ′ = 1− sin2θcos2φ

γ2(1− βcosθ)2
, (54)

with φ′ = φ. Thus, the angle-averaged (velocity-

independent) jitter spectrum is given by the following in-

tegration of the non-relativistic jitter spectrum

dW

dω
=

3

8γ2

ˆ 1

−1

dx

[

1

(1 − βx)2
+

(x− β)2

(1 − βx)4

]

I(ω0), (55)

where I(ω0) is the non-relativistic jitter spectrum, e.g. Eq.

(35), evaluated at ω0 ≡ ω(1− βx). This result leads to the

traditional, ultra-relativistic, jitter spectrum in the limit of

β → 1 (or, equivalently, γ → ∞). In the trans-relativistic

regime, the characteristic frequencies, Eqs. (20) and (21),

generalize to

ωjn ≡ γ2kminv, (56)

and

ωbn ≡ γ2kmaxv, (57)

which are the (trans-relativistic) jitter and break frequen-

cies, respectively. It is noteworthy that ωbn is not a proper

break frequency in the mildly relativistic regime. The

spectrum quickly falls to zero following ωbn; however, the

drop is not instantaneous (as it is in the ultra-relativistic

limit). In the trans-relativistic regime, γ ≃ 1, of course. With
this in mind, and for the sake of convenience, we retain the
n subscript for both the trans-relativistic and non-relativistic
expressions.

From Eqs. (39), (55), and (13), we see that an inter-
relation between the diffusive and radiative properties of
trans-relativistic/non-relativistic plasmas with sub-Larmor-
scale magnetic turbulence exists. Furthermore, this inter-
relation owes its existence to the statistical properties of the
magnetic turbulence (e.g. 〈B2〉 and λB). We note, however,

that our radiation treament assumes small deflections; an

assumption that allowed the use of the, so called, pertur-

bation theory. Recent work (see Ref. [35]) has consid-

ered a formal treatment of the perturbation theory that

exclusively requires that the deflection angle over a cor-

relation length is small, i.e. αλ ≪ 1. Due to continued

diffusive scatterings of the electron, its path will eventu-

ally deviate strongly from its initial trajectory. The tra-

ditional perturbative approach, regardless, remains valid

so long as the trajectory remains approximately straight

over the radiation formation length, at least for the con-

sidered domain of frequencies (i.e. lower frequencies will,

inevitably, require a non-perturbative treatment). In the

non-relativistic limit, the formation length is ∼ k−1. This

must be less than, or comparable to, the magnetic corre-

lation length λB . With the characteristic frequency ωjn,

this length is ∼ λB/β. Consequently, as long as the par-

ticle velocity is not arbitrary small, the perturbative ap-

proach will be valid; if αλ is, indeed, small. By way of

numerical simulation, we will demonstrate that this con-

dition holds as long as ρ > 1 (i.e. the turbulence is sub-

Larmor in scale).

Finally, our results do not consider the dispersive ef-

fect of the surrounding plasma. An account of dispersion

will modify the radiation spectrum by a multiplication of

Eq. (27) by the square root of the frequency-dependent

scalar permittivity, ǫ(ω). The scalar dielectric permittiv-

ity at high frequencies is [33, 34]

ǫ(ω) = 1−
ω2

pe

ω2
, (58)

where ωpe is the plasma frequency. Eq. (58) holds formally

for ω2 ≫ ω2
pe in any dielectric medium; although it holds

for cold, non-magnetized, isotropic plasmas for a wide do-

main of frequencies – including ω < ωpe [34]. In a mag-

netized plasma, additional terms including the ambient

“mean” magnetic field appear in the permittivity tensor.

As previously mentioned, the Weibel-like magnetic turbu-

lence can occur in a non-magnetized environment, thus we

ignore any “mean” field here. Hence, we will consider an

extension of Eq. (58) to low frequencies (ω ∼ ωpe).

The plasma dispersion effect is only important for fre-

quencies ω ≪ γωpe – below which, suppression of relativis-

tic beaming (due to the Razin effect) occurs [33, 34]. Elec-

tron driven Weibel-like turbulence occurs on a very small-

scale, with λB ∼ de (where de ≡ c/ωpe is the electron

skin depth) [16, 27]. Consequently, in the ultra-relativistic

regime, the jitter frequency is many orders of magnitude

larger than the plasma frequency – by a factor ∼ γ2. How-

ever, in the non-relativistic and trans-relativistic regimes,

dispersion can play a considerable role. This will espe-

cially be so for β ≪ 1. In this case, a considerable portion

of the radiation spectrum may fall below ωpe, and thus be

unobservable. For simplicity and convenience, we have ig-

nored the plasma dispersion in our numerical simulations.

However, we consider a few cases with plasma dispersion

intact, both numerically and theoretically, in Appendix D.
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III. NUMERICAL MODEL

Using the method from our previous work (see Ref. [24]),
here we explore the inter-relation between the diffusive and
radiative properties of these plasmas, and thereby test our the-
oretical predictions. As before, this was done via simula-
tions of particle dynamics in sub-Larmor-scale magnetic tur-
bulence. In our simulations, only first-principles were used.
Non-relativistic and trans-relativistic electrons are test parti-
cles moving in preset magnetic fields defined over a 3D simu-
lation box, with periodic boundary conditions in all directions.
The particles do not interact with each other, as in collision-
less plasmas, nor do they induce any fields. Additionally, any
radiative energy losses are neglected. An individual electron’s
motion is, consequently, determined only by the Lorentz force
equation given by:

dβ

dt
= − 1

γ
(β ×ΩB) , (59)

where ΩB ≡ eB/mec. For simplicity, we define our simula-
tion magnetic field as B ≡ ΩB . In this manner, our arbitrary
simulation units are always related to a physical magnetic field
via the definition of ΩB . Notice that the purely magnetic
Lorentz force conserves particle energy; hence, the velocity
vector varies in direction but has a constant magnitude.

The simulation can be divided into two principle stages
(see Ref [36] for a detailed description of the numerical im-
plementation). First, the turbulent magnetic field is created
using a predetermined spectral distribution in Fourier space.
This field is generated on a cubic lattice that is then interpo-
lated, so as to represent a “continuous" field. The interpo-
lation implements divergenceless matrix-valued radial basis
functions (see Ref. [37], for a discussion). This interpola-
tion method starts with a radial function – in our case, one of
the simplest, φ(r) = e−ǫr2 (where ǫ is a scaling factor, and
r2 = x2 + y2 + z2). Then, a set of divergence-free matrix-
valued radial basis functions is obtained from the transforma-
tion [37]:

Φ(r) = (∇∇T − I3×3∇2)φ(r), (60)

where ∇∇T is the second-order, 3× 3-matrix differential op-
erator and I3×3 is the 3× 3 identity matrix.

These interpolants are then applied to the interior of each
lattice “cell” (the significance of the interpolant’s divergence
is explored in Appendix B). The second stage in our model
involves the numerical solution of the equation of motion for
each particle, i.e. Eq. (59). From the solution, 〈α2〉 and the
radiation spectra are obtained. We first turn our attention to
the generation of the magnetic field.

As discussed previously (see Ref. [24]), generation of
the magnetic field distribution is more convenient in Fourier
space. There are two principal reasons for this.

Firstly, it is an easier task to specify a particular spectral
distribution in Fourier space directly, rather than attempting
to approximate the corresponding field in real space. Sec-
ondly, any physically realizable field should satisfy Maxwell’s
equations, thus its divergence must be zero. This divergence-
less condition is more readily met in Fourier space, because

Gauss’ law, ∇ · B = 0, is an algebraic equation there;
k · Bk = 0, for each Fourier component. Although our code
can handle a wide variety of magnetic spectral distributions,
we limit our study to isotropic magnetic turbulence, described
in Eq. (14) – leaving more sophisticated models for the future.

After the magnetic field is generated, the next step is the nu-
merical solution of the equation of motion, Eq. (59). This was
done via a fixed step 4th-order Runge-Kutta-Nyström method.
With all the particle positions, velocities, and accelerations
calculated, the radiation spectrum is obtained from Eq. (24).

Next, the total radiation spectrum is obtained by “sum-
ming” over the spectra of the individual particles. There are
two, usually equivalent, methods for doing the summation.
First, one can add the spectra coherently by summing over
each particle’s Ak, and then performing a single integration
via Eq. (24). This is a more physical method. In the second
method we add the spectra incoherently (i.e., by integrating
each particle’s Ak separately, and then summing the results
of each integration). As discussed in Ref. [38], both methods
will result in the same spectra, since the wave phases are un-
correlated. However, an incoherent sum will produce spectra
that are less noiser, for a given number of simulation parti-
cles, than the coherently summed spectra. Hence we use the
incoherent approach in our study.

IV. NUMERICAL RESULTS

In Section II we made a number of theoretical predictions
concerning the transport and radiation properties of plasmas
with small-scale turbulent magnetic fields. Additionally, we
anticipated that an inter-connection between the transport and
radiative properties of non-relativistic/trans-relativistic parti-
cles moving through sub-Larmor-scale magnetic turbulence
exists, as it does for ultra-relativistic particles [24]. Here we
check our predictions, and further explore the radiation spec-
tra.

First of all, we explore how the pitch-angle diffusion coeffi-
cient depends on various parameters, cf. Eq. (13), namely the
particle’s velocity, β, the magnetic field strength, 〈B2〉, the
field correlation scale, λB , and the “gyro-number”, ρ.

To start, we tested our fundamental assumption that the
particle velocity vector only varies slightly over a correlation
length, λB . This is the key assumption that underlies our the-
oretical predictions for pitch-angle diffusion and the radiation
spectra. If this assumption were to not hold (i.e. if αλ ≪ 1)
then pitch-angle diffusion would break down, and the plot of
〈α2〉 vs time will deviate from linear behavior. In Figure 1,
〈α2〉 is plotted as a function of time for seven different cases.
In each run, 〈B2〉, kmin, and Np (number of simulation parti-
cles) are fixed to the values of 0.01, 4π/5 (both in arbitrary
simulation units), and 2000, respectively. The particles are
monoenergetic, and are isotropically distributed in their ini-
tial velocities. Each case differs in particle velocities; which
range from 1

512c to 1
8 c. As can be seen, the curves begin as

straight lines that increase with slope as β decreases. Even-
tually, the linear behavior breaks down as β decreases. A de-
crease in ρ occurs concurrently, in accordance with Eq. (22).
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Figure 1. (Color online) Average square pitch-angle vs. time (in sim-
ulation units). Relevant parameters are Np = 2000, kmin = 4π/5,
kmax = 8π, 〈B2〉1/2 = 0.01, and µ = 3. The particle velocities in
each case range from 1

8
c to 1

512
c (by multiples of two). The curves

appear with increasing average slope as β decreases. As β decreases,
eventually ρ ∼ 1 (at β = c

128
, i.e. the fifth most sloped, “green” line

), after which the deflection angle becomes large, and pitch-angle
diffusion breaks down.
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Figure 2. (Color online) Average square pitch-angle vs. time (in
simulation units). Relevant parameters are Np = 2000, kmin = π,
kmax = 8π, and µ = 3. 〈B2〉1/2 ranges from 5× 10−4 to 0.032, by
multiples of two. The particle velocities range (in the opposite order)
from 1

256
c to 1

4
c. These two parameters, 〈B2〉 and β, vary in such a

way as to keep ρ = 24.5. The curves appear with increasing slope as
β decreases. Clearly, the linear form of the curves is retained in all
seven cases.

As expected, the breakdown in linear behavior, and hence dif-
fusion, occurs when ρ ∼ 1. Later, we did the same experi-
ment, only this time we varied 〈B2〉 in such a way as to keep
ρ constant (ρ = 24.5). In this way, each case is securely in
the small-scale regime. In Figure 2, we see that the linear be-
havior of 〈α2〉 vs time is preserved for all velocities, as antici-
pated. Consequently, our assumption of a small αλ is valid, as
long as ρ > 1. With the existence of pitch-angle diffusion es-
tablished, we then proceeded to compare the slope of 〈α2〉 vs
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Figure 3. (Color online) Pitch-angle diffusion coefficient, Dαα vs
the logarithm (base 2) of the inverse normalized particle velocity,
log2(β

−1). The (blue) empty “squares” indicate the Dαα obtained
directly from simulation (as the slope of 〈α2〉 vs. time), while the
(red) filled “triangles" are the analytical, given by Eq. (13), pitch-
angle diffusion coefficients. Simulation parameters are identical to
those used in Figure 2.

time (the numerical pitch-angle diffusion coefficient) to Eq.
(13). In Figure 3, the numerically obtained diffusion coeffi-
cients from Figure 2 are compared to the analytical result of
Eq. (13). In each, the theoretical and numerical results differ
only by a small factor of O(1).

Next, we tested the correlation length dependence, i.e.
whether or not the numerical simulations agree with Eq. (11).
With kmin = π and kmax = 8π, we varied the magnetic spec-
tral index, µ from 2 to 5. This is plotted in Figure 4, where the
numerical diffusion coefficient closely matches the analytical
result.

In Figure 5, the numerical diffusion coefficient is plotted
against the analytical coefficient for the same range of µ val-
ues, but now the kmin, kmax, and β values differ among the
three (with ρ fixed to 24.5). Included are the results of Figure
4. All three cases give a nearly linear relationship between
the numerical and analytical coefficients, with slopes approx-
imately equal to unity. Another concern worth addressing is
the dependence of the numerical diffusion coefficient on the
total number of simulation particles. In Figure 6, a test case
was repeated with an increasing number of simulation par-
ticles. The number of particles was increased from 500 to
64000, by factors of 2. There is little variation to be seen in
the numerical result, as the number of particles is increased.
Next, we explored the trans-relativistic jitter radiation regime
by calculating the radiation spectra, using Eq. (24), with vari-
able simulation parameters. We aimed to test the radiation
spectra’s dependence upon the key turbulent parameters: kmin,
kmax, 〈B2〉, and µ, as well as the particle velocity, v. To start,
we considered the kmin dependence. In Figure 7, we have plot-
ted spectra for an initially isotropically distributed, monoener-
getic, ensemble of trans-relativistic electrons (v = 0.5c) mov-
ing through sub-Larmor-scale magnetic turbulence with three
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Figure 4. (Color online) Pitch-angle diffusion coefficient, Dαα vs the
magnetic spectral index, µ. The (blue) empty “squares” indicate the
Dαα obtained directly from simulation, while the (red) filled “trian-
gles" are the analytical, given by Eq. (13), pitch-angle diffusion coef-
ficients. Relevant parameters are Np = 2000, kmin = π, kmax = 8π,
〈B2〉1/2 = 0.064 , β = 0.5, and ρ = 24.5. The magnetic spectral
indexes are 2, 3, 4, and 5. Notice that the numerical results have
nearly the same functional dependence on µ as the analytical trian-
gles, as given by Eq. 13.

different values of kmin. The key parameters are: ρ = 18.1,
36.3, and 72.6, with kmin = π/5, 2π/5, and 4π/5, respec-
tively (see Table I for a complete listing of simulation param-
eters used in every figure). The spectra of Figure 7, at least
superficially, resemble our theoretical prediction; cf. Eq. (39).
We have normalized the dW/dω and ω axes by λB and kmin,
respectively. As expected, the frequency of the spectral peak
scales by kmin. The precise scaling of the peak frequency is
revealed in Figure 8. In this figure, we have varied the particle
velocities, keeping all other parameters fixed. Three veloci-
ties appear: v = 0.125c, 0.25c, and 0.5c. Clearly, the overall
shape of the spectra is not strongly dependent upon the par-
ticle velocities. We have identified the proper scaling on the
horizontal axis. With this result, and Figure 7, we may con-
clude that the frequency of the peak of the radiation spectrum
is ω ∼ γ2kminv = ωjn. This is jitter frequency given in Eq.
(39).

Next, we tested the µ dependence. In Figure 9, µ = 4, 5.
For each spectrum, v = 0.125c, and the total simulation time
was Tg, where Tg = e〈B2〉1/2/γmec is the gyroperiod. The
numerical and analytical spectra show close agreement for fre-
quencies less than the break frequency, ω ∼ γ2kmaxv. In Fig-
ure 10, we have plotted two spectra that differ in their kmax

values (all other parameters kept fixed). The kmax values em-
ployed differ by a factor of 2. We see that, roughly, the spectra
approach zero near ω ∼ γ2kmaxv. The proceeding power law
“tail” feature is a numerical artifact that arises from a steep
drop to zero power (this fact is more readily apparent in a
linear plot – see Appendix A). Next, we examined the ap-
parent structure in the radiation spectra for ω < ωjn. This is
most clearly seen in Figure 8, where it appears as a distinctive
“bump”. According to Eq. (39), this bump-like feature has
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Figure 5. (Color online) Numerical pitch-angle diffusion coefficient
vs the analytical pitch-angle diffusion coefficient, for three differ-
ent cases. In each case, the magnetic spectral index has been var-
ied from 2 to 5, by intervals of unity. Relevant parameters are
kmin = π/2 (red) “circles” and (blue) “triangles”, π (green) “di-
amonds”, kmax = 5.12π (red) “circles”; kmax = 8π (green) “di-
amonds” and (blue) “triangles”; 〈B2〉1/2 = 0.016 (red) “circles”,
0.032 (blue) “triangles”; 0.064 (green) “diamonds”; β = 0.25 (red)
“circles”, 0.5 (blue) “triangles” and (green) “diamonds”. In each
case, a line of best fit is applied. The slopes are 0.979 (circles),
0.972 (diamonds), and 1.06 (triangles)

# ρ ∆t β µ kmin kmax

√

〈B2〉 Np Tg

7 18.1 0.005 0.5 3 π/5 10.24π 0.02 2000 1

7 36.3 0.005 0.5 3 2π/5 10.24π 0.02 2000 1

7 72.6 0.005 0.5 3 4π/5 10.24π 0.02 2000 1

8 15.8 0.050 0.125 3 4π/5 10.24π 0.02 1000 10

8 32.4 0.050 0.25 3 4π/5 10.24π 0.02 1000 10

8 72.6 0.050 0.5 3 4π/5 10.24π 0.02 1000 10

9 6.18 0.005 0.125 4 π 8π 0.064 8000 1

9 6.18 0.005 0.125 5 π 8π 0.064 8000 1

10 6.34 0.005 0.25 5 π/2 4π 0.064 2000 1

10 6.34 0.005 0.25 5 π/2 8π 0.064 2000 1

11 12.4 0.05 0.125 100 π 8π 0.032 8000 10

12 7.9 0.05 0.125 4 2π/5 8π 0.02 4000 10

15 6.2 0.005 0.125 5 π 8π 0.064 5000 1

17 14.2 0.00125 0.5 4 8π 400π 1.024 1000 10

18 14.2 0.00125 0.5 4 8π 400π 1.024 1000 10

Table I. Table of parameters used for the radiation spectra figures.
Here, and elsewhere, ∆t is the simulation time step, the simula-
tion time is denoted in multiples of the “gyroperiod” (i.e. Tg =
2πγmec/e〈B

2〉1/2), and Np is the total number of simulation parti-
cles.

a functional form of A + Dω2. To assure that this form is
correctly identified, we considered a large magnetic spectral
index of µ = 100 with β = 0.125c. Such a large µ makes
the feature more prominent, helping to magnify it. As can be
seen, the curve that best fits the bump-like feature at ω < ωjn

is given by a function of the form A+Dω2.
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Figure 6. (Color online) Pitch-angle diffusion coefficient, Dαα vs the
total number of simulation particles, Np. The “blue squares” indicate
the Dαα obtained directly from simulation, while the red dotted line
is the analytical result, given by Eq. (13). Relevant parameters are
kmin = π/2, kmax = 8π, 〈B2〉1/2 = 0.032 , β = 0.5, and ρ =
24.5. There appears to be no strong dependence of the numerical
pitch-angle diffusion coefficient upon the total number of simulation
particles; nevertheless, there appears to be some convergence to the
analytical result.
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Figure 7. (Color online) Radiation spectra given variable kmin,
with all other parameters fixed. The number of simulation par-
ticles, Np, is 2000, and v = 0.5c in each case. In each trial,
the particles moved for a total simulation time of T = Tg , where
Tg ≡ 2πγmec/e〈B

2〉1/2 is the “gyroperiod”. Here, the axes are in
arbitrary, simulation units. We see that the frequency scales as kmin

and dW/dω scales as λB .

One may consider the magnetic correlation tensor and its
relation to the shape of the radiation spectra. Anisotropic
turbulence will alter the shape, but so will a change to the
topology of the magnetic field. Motivated by pure curiosity,
we consider turbulence that is generated by a distribution of
magnetic monopoles. This will result in a magnetic field that
is curl-free, but has a divergence given by Gauss’s Law for
monopoles. This topological change will alter the correlation
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Figure 8. (Color online) Radiation spectra given variable v. In each
trial, 1000 particles move for a total simulation time of T = 10Tg ,
where Tg ≡ 2πγmec/e〈B

2〉1/2 is the “gyroperiod”. We see that the
overall shape of the spectra is not appreciably altered with decreasing
v. The spectra are normalized by Tγ2v, vertically. Given Figure 7,
we may conclude that the peak frequency of these spectra is ω ∼
γ2kminv – cf. Eq. (56).

0.1 1.0 10.0 100.0
Normalized frequency ω/ωjn

10-8

10-7

10-6

10-5

10-4

Sp
ec

tr
al

 e
ne

rg
y 

dW
/dω

 (
ar

b.
 u

ni
ts

)

|Bk|
2 = k-µ, µ = 4, dashed

|Bk|
2 = k-µ, µ = 3, solid

Figure 9. (Color online) Radiation spectra given two different val-
ues of the magnetic spectral index: µ = 5 (red) “thick" line and
µ = 4 (blue) “thin" line. Included are the analytical solutions given
by Eq. (39). Note that the µ = 5 solution has been multiplied by
an overall factor of two for easier visualization. For frequencies near
ω ∼ γ2kminv, the numerical spectra agree decently with the analyt-
ical results. However, for frequencies near the break, ω ∼ γ2kmaxv,
there is considerable deviation between the predicted and numerical
spectra – for both values of the magnetic spectral index. The origin
of this discrepancy is explored in Appendix B.

tensor for isotropic and homogeneous turbulence to [39]

Bi∗
k Bj

k
= |Bk|2 k̂ik̂j , (61)

which is the form required for an irrotational vector field. Sub-
stitution of this correlation tensor into Eq. (27) will give a
slightly different radiation spectrum for the magnetic spec-
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Figure 10. (Color online) Radiation spectra with differing kmax.
Some other relevant parameters are v = 0.25c, ρ = 6.34, Np =
2000, and µ = 5 (for a complete listing, see Table I). The two
spectra differ by a factor of 2 in kmax, with kmin the same between
them. Roughly, the spectra transition to the “tail” feature near
ω ∼ γ2kmaxv = ωbn.
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Figure 11. (Color online) Radiation spectrum with µ = 100 (β =
0.125c). Evidently, the spectral feature presented directly prior to
ωjn has a functional form given by A +Dω2 (dashed line). This is
consistent with Eq. (39).

trum in Eq. (14). The principal change will be to the quadratic
prefactorA+Dω2. The “monopolar” field will result in a sign
change to D. In Figure 12, this difference is clearly indicated.
Notice the apparent lack of the quadratic peak feature at ωjn.

The altered correlation tensor will affect the particle diffu-
sion coefficient as well. In fact, as can be seen in Figure (13),
the pitch-angle diffusion coefficient of particles moving in the
monopolar field is twice as large as the divergenceless field
equivalent. This follows from the fact that

λ
monopole
B = 2λdiv. free

B , (62)

which results from substitution of Eq. (61) into Eq. (7).
It is a noteworthy observation that the preceding results are
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Figure 12. (Color online) Radiation spectrum of non-relativistic elec-
trons moving through small-scale magnetic turbulence generated by
a distribution of magnetic monopoles (“thick”, blue), superimposed
with the radiation spectrum given a magnetic spectrum (“thin”, red)
produced by standard means (i.e. Ampere’s Law). For each run,
µ = 4 and β = 0.125c. Each curve is accompanied by its corre-
sponding analytical solutions (“dashed”, black). The spectral shape
for frequencies less than ωjn is A + Dω2 and A − Dω2 for the
“divergenceless” field and “monopolar” field, respectively.
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Figure 13. (Color online) Average square pitch-angle growth as a
function of time for non-relativistic electrons moving through small-
scale magnetic turbulence generated by a distribution of magnetic
monopoles “dashed” (blue), superimposed with the otherwise equiv-
alent curve “solid” (red) produced by standard means (i.e. Ampere’s
Law). For each run, µ = 6, Np = 15420, 〈B2〉1/2 = 0.032,
kmin = π, kmax = 8π, and β = 0.125c. Note that the slope of
the “monopolar” curve is very nearly twice the slope of the standard
curve – in accordance with Eq. (62).

identical, up to overall multiplicative factors, to the radia-
tion spectra and pitch-angle diffusion coefficient for the more
physically plausible situation of a trans-relativistic monopole
moving through “small-scale” electrostatic turbulence, such
as Langmuir turbulence.
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V. CONCLUSIONS

In this paper we explored non-relativistic and trans-
relativistic particle transport (diffusion) and radiation produc-
tion in small-scale electromagnetic turbulence. Principally,
we demonstrated that in the regime of small deflections, i.e.
when the particle’s deflection angle over a correlation length
is small αλ ≪ 1, the pitch-angle diffusion coefficient and
the simultaneously produced radiation spectrum are wholly
determined by the particle velocity and the statistical/spectral
properties of the magnetic turbulence; which is a result most
transparently offered by Eqs. (12) and (35). Additonally, we
showed that the condition of a small deflection angle is satis-
fied if ρ > 1, i.e. if the magnetic turbulence is small-scale.

These results generalize the ultra-relativistic regime first
discussed in Ref. [24]. In fact, the pitch-angle diffusion co-
efficient remains unchanged, in both the non-relativistic and
relativistic regimes. Significantly, just as small-angle jitter
radiation strongly differs from synchrotron radiation, so too
does the analogous non-relativistic jitter radiation distinguish
itself from cyclotron radiation. Given the isotropic 3D power
law magnetic spectral distribution from Eq. (14), the resulting
trans-and non-relativistic radiation spectrum is a piece-wise
function of a quadratic equation in frequency,ω up to the char-
acteristic (jitter) frequency, ωjn = γ2kminv, after which it is
the sum of a power law and a quadratic term up to the break
frequency, ωbn = γ2kmaxv, where it then quickly approaches
zero – see Eq. (39). We have, further, confirmed our theoreti-
cal results via first-principle numerical simulations.

Lastly, we have considered the change in the radiative
and transport properties of trans-relativistic particles moving
through magnetic turbulence due to a topological change in
the field. Namely, we supposed the generation of sub-Larmor-
scale magnetic turbulence from a distribution of magnetic
monopoles. We showed that the radiation spectra and pitch-
angle diffusion coefficient are modified; i.e. the pitch-angle
diffusion coefficient doubles in magnitude, à la Eq. (62), and
the shape of the radiation spectrum is dramatically altered for
frequencies less than the jitter frequency, ωjn. These results,
furthermore, generalize to the case of a magnetic monopole
moving through “small-scale" electrostatic turbulence.

Finally, the applicability of our model will depend heav-

ily upon the plasma environment. The turbulence dissipa-

tion time-scale, growth rate, time-evolution, and spatial-

scale are important considerations. We have highlighted

the Weibel-like turbulence, in particular, because of its fa-

vorable properties. As stated previously, the Weibel insta-

bility can produce strong, small-scale, magnetic fields in

an non-magnetized plasma. Furthermore, the instability is

aperiodic (i.e. real frequency Ωr ∼ 0), and thus allows for

the static field treatment. More precisely, the growth rate

γ ≫ Ωr. Typically, the growth rate is governed by a char-

acteristic plasma frequency. Lastly, the magnetic fluctua-

tions are long-lived in the case of the Weibel-filamentation

instability, dying out only when the driving free energy

(provided by the kinetic energy of streaming particle fil-

aments) of the system is converted by particle isotropiza-

tion (i.e. the depletion of the anisotropy in the streaming

particle distribution function). In short, the generated

fields are approximately stationary on a time-scale which

exceeds the growth/stabilization rate times [40]. Conse-

quently, there appears to be adequate time for radiation

production in the jitter regime, given by our prescription,

in these “quasi-static” Weibel magnetic fields.

Via subsequent non-linear evolution, the electron-

generated Weibel magnetic fields may grow to larger

spatial-scales – including the ion skin-depth. Addition-

ally, the Weibel fields may “seed” the growth of further

MHD turbulence via a process of inverse-cascade – once

more, residing at larger spatial-scales. Thus, in the non-

relativistic regime, the jitter radiation spectrum may be

effectively screened out when the turbulent magnetic fields

predominantly exist at scales much larger than the elec-

tron skin-depth. Consequently, non-relativistic jitter ra-

diation, as a diagnostic of Weibel turbulence, may have

a limited applicability. However, kinetic instabilities in

magnetized plasma can produce turbulent magnetic spec-

tra at the appropriate length scales as well. One such

scenario may be provided by a turbulent magnetic field

generated in a cold, magnetized, background plasma. We

then imagine the existence of a “hot” population of sub-

Larmor-scale electrons that will serve as our test particles.

To this end, anisotropic whistler turbulence may provide

a promising candidate. In fact, the (low beta) collisionless

Whistler spectrum (perpendicular to the mean magnetic

field) may be rather broadband – a (stationary) piece-wise

set of power-laws extending to scales much smaller than

the electron skin-depth [41]. Naturally, our model re-

quires modification to suit a magnetized plasma – the case

to be considered elsewhere.

To conclude, the obtained results, coupled with our pre-
vious work, reveal strong inter-relation of transport and ra-
diative properties of plasmas turbulent at sub-Larmor scales
– whether they be relativistic or non-relativistic. We have
demonstrated how spectral information can be a powerful tool
to diagnose magnetic micro-turbulence in laboratory and as-
trophysical plasmas.
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Appendix A: The spectral tail

As can be seen in Figure 7 and Figure 10, there is additional
structure to the radiation spectra beyond the break frequency,
∼ γ2kmaxv. This feature is, in fact, a numerical artifact that is
magnified by the use of a log-log plot. Here we have plotted
Figure 7 on a linear scale, and have normalized the frequency
axis by the spectral break frequency ωbn = γ2kmaxv.
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Figure 14. (Color online) Radiation spectra of Figure 7, with linear
abscissa. We see that the power spectrum quickly approaches zero
around the “break” frequency, γ2kmaxv – in accord with Eq. (39).
This numerical approach to zero, since it is not instantaneous, ap-
pears readily in a log-log plot which magnifies features on an orders
of magnitude scale.

Appendix B: Interpolation of the magnetic field

One might consider the importance of using a divergence-
less set of interpolants for the magnetic field. In Figure 15, we
show a spectrum obtained via the divergenceless radial-basis
interpolants of Eq. (60) with a spectrum obtained using a sim-
ple, non-divergenceless, trilinear interpolation of the magnetic
field. For small frequencies, there is little disagreement be-
tween the two spectra. However, as the curves approach the
break frequency ωbn = γ2kmaxv, considerable deviation be-
tween the trilinear and radial basis interpolants occurs. In our
previous work on the relativistic small-angle jitter regime (see
Ref. [24]), little deviation in these spectra was observed in our
test runs. One possible explanation is that, since the particle
velocities were ∼ c, the total distance traveled by a particle
in one time step was ∆x ∼ c∆t. The spacing between lattice
points is, typically, within an order of c∆t. In this case, the in-
terpolant should not play an important role in determining the
particle trajectories. If, however, v is much less than c, then
the difference may be significant. In Figure 15, v = 0.125c,
thus ∆x ∼ 0.125c∆t (an order of magnitude smaller). In this
case, frequencies in the radiation spectrum at scales compa-
rable to the grid resolution (i.e. large k’s) will suffer the most
from this deviation.
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Figure 15. Radiation spectra given two different interpolations of
the magnetic field and a “continuous” field. Relevant parameters
are v = 0.125c, ρ = 24.7, Np = 2000 (for a complete listing,
see Table I). The number of wave modes employed to produce the
“continuous” magnetic field was Nm = 10000. For small frequen-
cies, there is little deviation between the spectra. It is only near the
“break” frequency (i.e. ωbn = γ2kmaxv) that the three differ consid-
erably. Both of the interpolation derived spectra largely deviate from
the analytical solution at the high frequency end; however, the “con-
tinuous” field derived spectrum differs noticeably only at the outer-
most frequencies. Whether or not this deviation is solely to blame on
the quality of the interpolant or the discrete nature of lattice derived
field, has let to be determined. At any rate, both interpolants fail to
preserve the slope of the spectra up to ωbn, and there is considerable
difference between the divergence-free and trilinear cases.

Another question worth addressing is the influence of the
discrete implementation of the magnetic field on the spectral
shape. Recall that the random magnetic field is initially gen-
erated on a lattice in k-space, after which it is subsequently
transformed by FFT to real space. The interpolation is then
applied on the lattice of points. Due to memory limitations,
the lattice dimensions are limited to ∼ 5003; this can be a
very severe limitation on the spatial resolution of the magnetic
field.

An alternative generation of the magnetic field – which is
grid-less and, therefore, not requiring interpolation – employs
a large sum of sinusoidal wave modes which are evaluated at
each time step (as needed). Thus, the magnetic field is effec-
tively “continuous” in this representation. Each wave mode
is constructed with a random phase and random polarization
vector (which is constrained to the plane perpendicular to k;
thus satisfying Gauss’s law). The polarization vector may be
generated by a variety of methods, but we have chosen the
implementation described by Ref. [42]. This representation
of the polarization vectors is designed specifically to simul-
taneously satisfy the required properties of isotropic, homo-
geneous, and divergence-free magnetic turbulence. Addition-
ally, the wave numbers, ranging from kmin to kmax, are loga-
rithmically spaced.

In Figure 15, we also included a radiation spectrum ob-
tained by electrons moving in the “continuous” magnetic field
(with, otherwise, identical properties). Evidently, the “con-
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tinuous” field derived spectrum closely matches the analytical
solution, Eq. (39) – preserving the high-frequency end better
than the interpolation derived spectra.

Appendix C: Comment on pitch-angle diffusion in the

ultra-relativistic regime

We wish to address an error in our previous paper on rel-
ativistic pitch-angle diffusion in sub-Larmor-scale magnetic
turbulence, Ref. [24]. The paper contains a table for a plot
(Figure 7) of the diffusion coefficient vs the corresponding
radiation spectral peak, for relativistic particles moving
through a small-scale magnetic field. The magnetic field has
identical properties to those employed in this paper. The table
contains some errors, which we address here by providing a
corrected table (see Table II).

# δj ∆t γ µ kmin kmax 〈B2〉1/2 Np

1 0.63 0.0100 8 3 1.0 16.1 0.100 2000

2 0.47 0.0100 7 3 0.6 16.1 0.047 500

3 0.12 0.0025 5 3 0.6 32.2 0.047 4000

4 0.47 0.0100 3 3 0.6 16.1 0.047 500

5 0.94 0.0100 5 3 0.3 16.1 0.047 500

Table II. Corrected table of parameters used in Figure 7 of ref. [24],
and Figure (16). The correction is as follows: #2 → #1, #3 →
#2, and #1 → #3; in what was previously #1, kmin has been
changed from 1.3 to 0.6 and 〈B2〉1/2 has been changed from 0.024
to 0.047.

Additionally, we have opted to reproduce Figure 7 from
Ref. [24], to recalculate the analytical pitch-angle diffusion
coefficient. In our previous paper, we used Eq. (2), as we
have here, but with cruder approximations for λB and 〈β2

⊥〉1/2
– namely, 〈β2

⊥〉1/2 ≈ 1 and λB ≈ k−1
min.
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Figure 16. (Color online) Modified figure of Dαα vs the frequency
of ωj = γ2kminc, from Ref. [24]. Once more, the (blue) empty
“squares" indicate the Dαα obtained directly from simulation while
the (red) filled “triangles" are the analytical Dαα, given by Eq. (13).
The analytical solution from Ref. [24] appears as (green) filled “cir-
cles”. Notice that the redefined analytical Dαα’s (red) empty “trian-
gles” eliminate the wider variance seen in the cruder approximation
(green) filled “circles".

Now, the refined definition for Dαα, Eq. (13), eliminates
the wider variance between the theoretical and numerical re-
sults (see Figure 16). There continues to exist a small differ-
ence between the analytical and numerical pitch-angle diffu-
sion coefficients, but this variation is relatively small in each
case; despite the variability in the simulation parameters em-
ployed.

Appendix D: The effect of plasma dispersion on the radiation

spectra

As mentioned in Section II, inclusion of plasma dispersion
changes the non-relativistic radiation spectrum to

d2W

dω dη
=

e2

4π2c3

√

ǫ(ω) |wω|2 sin2Θ, (D1)

where ǫ(ω) = 1 − ω2
pe/ω

2, is the plasma scalar permittivity.
Since this amounts to a multiplicative factor, the jitter spec-
trum Eq. (39) will be modified simply by an extra frequency-
dependent coefficient. The effect will, however, further com-
plicate the relativistic regime. Fortunately, a Lorentz trans-
formation can be applied, once more, to obtain the relativistic
spectrum.

Consider a relativistic electron moving with velocity β
in the (unprimed) plasma rest frame. In this frame, the
plasma frequency is ωpe; additionally, the index of refraction
is n ≡ √

ǫ. Conversely, the electron rest frame will be the
site of a plasma in motion, with velocity −β. In this frame,
ω′

pe = ωpe/
√
γ. In a plasma medium, the radiation spectra are

connected by the generalized relation

1

nω2

d2W

dωdη
=

1

n′ω′2

d2W ′

dω′dη′
, (D2)



15

where n′ is the index of refraction in the electron rest frame.
Via Lorentz transformation, n′ is [43]

n′2 − 1 = (ω/ω′)2(n2 − 1), (D3)

from which one may obtain the generalization of the relativis-
tic Doppler effect

ω′ = γω(1−N · β), (D4)

where N ≡ nn̂. Using the reverse transformation, i.e.
prime ↔ unprimed and β → −β, the angle cosines are re-
lated by

cosθ′ =
ncosθ − β

n′(1− nβcosθ)
. (D5)

Using these results, along with Eqs. (54) and (55), the disper-
sion corrected relativistic jitter spectrum becomes

dW

dω
=

3n

8γ2

ˆ 1

−1

dx

[

1

(1 − nβx)2
+

(nx− β)2

n′2(1− nβx)4

]

I(ω0),

(D6)
with ω0 ≡ ω(1− nβx) and

n′ =

√

n2 − 1 + γ2(1− nβx)2

γ(1− nβx)
. (D7)

Next, the numerical spectrum is obtained from the general-
izations of Eqs. (24) and (25)

d2W

dω dη
=

√

ǫ(ω)
e2

4π2c

∣

∣

∣

∣

ˆ ∞

−∞

Ak(t)e
iωt dt

∣

∣

∣

∣

2

, (D8)

where

Ak(t) ≡
n̂× [(n̂− β)× β̇]

(1−
√

ǫ(ω)n̂ · β)2
e−i

√
ǫ(ω)k·r(t). (D9)

In Figure 17, we consider a β = 0.5 electron moving
through a plasma medium with a plasma frequency ωpe =
kminc/10. The plot includes the equivalent dispersion-free jit-
ter spectrum, along with the analytical spectrum, from Eq.
(D6), and a spectrum obtained numerically. The numerical
spectrum was produced given magnetic turbulence prescribed
by the model described in Appendix B. Since the wave num-
ber becomes imaginary when ω < ωpe, we have set a cut-off
for frequencies below the plasma frequency. From the plot, we
see that the spectrum differs largely from the dispersion-free
equivalent for frequencies near ωpe. However, as anticipated,
the high-frequency end is largely unaffected.
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Figure 17. (Color online) Numerical radiation spectrum given a
β = 0.5 electron moving through sub-Larmor-scale magnetic tur-
bulence in a dispersive plasma (“thick”, blue), superimposed with
the analytical spectrum from Eq. (D6) (“dashed”, red) and the
“dispersion-free” spectrum (“long-short dash”, black). For these
runs, µ = 4, ρ = 14.2, and ωpe = kminc/10 (see Table I for a
complete listing of simulation parameters). All spectra are normal-
ized to their respective maximum values. As can be readily seen, the
high-frequency end remains largely unchanged by the inclusion of
plasma dispersion.
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Figure 18. (Color online) Radiation spectra, identical to Figure 17,
with the exception that ωpe = kminc. With ωpe ∼ ωjn, the dispersion
plays a more prominent role. Nonetheless, the overall shape of the
spectrum is unaffected.

However, as can be seen in Figure 18, the spectrum is al-
tered in a more dramatic way when ωpe = kminc. The low-
frequency end remains distinctly concave, but now the high-
frequency end is shifted to the right. The overall shape of the
spectrum, nevertheless, remains the same.
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Figure 19. (Color online) Dispersion adjusted analytical radiation
spectrum for a γ = 50 electron. Relevant parameters are ρ = 153.4
and µ = 5. Two power laws appear. The ω2 (“long-three-dash”,
red) power law, which extends up to ω ∼ γωpe, is a consequence
of the Razin effect. Additionally, we have included ω−µ+2 (“long-
two-dash” blue) on the right. As expected from Eq. (19), the high-
frequency end is a power law, with a very steep drop beyond ωbn ≈
ωb.

As a final test of Eq. (D6), we consider an extreme relativis-
tic case, γ = 50. The ultra-relativistic jitter spectrum, with
plasma dispersion included, contains an additional ω2 asymp-
tote at low-frequencies (a hint of this was seen in the previous,
trans-relativistic, plots). In Figure 19, we see the emergence
of this low-frequency asymptote. Additionally, we see that
the jitter spectrum falls off dramatically for frequencies be-
yond ωjn = γ2kmaxv ≈ γ2kmaxc – hence, the correspondence
to the ultra-relativistic hard cut-off at ωb, from Eq. (19), is
made apparent.
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