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The isentropic expansion of an instantaneously and homogeneously heated foil is calculated using a
1D fluid model. The initial temperature and density are assumed to be in the vicinity of the critical
temperature and solid density, respectively. The fluid is assumed to satisfy the Van Der Waals
equation of state with an arbitrary number of degrees of freedom. Self-similar Riemann solutions
are found. With a larger number of degrees of freedom f , depending on the initial dimensionless
entropy s̃0, a richer family of foil expansion behaviors have been found. We calculate the domain in
parameter space where these behaviors occur. In total, eight types of rarefaction waves are found
and described.

I. INTRODUCTION

Warm Dense Matter (WDM) conditions are reached
when the density is approximately in the range of 0.1
to 10 times the solid density and the temperature ap-
proximately reaches 0.01 eV to 10 eV, although some
authors extend the WDM regime to temperature up to
50 eV[1, 2]. WDM conditions occur naturally and artifi-
cially, e.g. in the core of gaseous planets[3], during the
heating of a metal by a laser[3–5] or an ion beam[5–8],
or during the early stages of an inertial confined fusion
implosion[9].

This paper focuses on the hydrodynamical expansion
and transition of a material from a high temperature liq-
uid or solid state into a vapor state which, for some ma-
terials, is in the WDM regime. Emphasis is made on the
conditions around the critical point, above which there is
no distinction between the liquid and vapor phases. For
many materials such as refractory metals[10], the full va-
por/liquid phase boundary as a function of density and
temperature is poorly known.

Riemann[11] proved that, for any equation of state
(EOS) and if the motion is 1D, the flow of an instan-
taneously heated semi-infinite foil is self-similar, and an-
alytically derived the dynamics of the flow for the case
of an ideal gas (see also Refs. [12] and [13]). The present
paper uses Riemann’s solution for the specific case where
the matter behaves as a Van Der Waals (VDW) fluid.

Under certain conditions, the solution displays
plateaus of constant density during the phase transi-
tion from a single-phase to the two-phase regime. The
plateaus may have observational consequences. For ex-
ample, optical fringes in reflected laser light have been ob-
served in short pulse laser experiments on Si surfaces[14].
The optical fringes were later interpreted as density
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plateaus of the flow [6, 15–17]. Density plateaus of the
flow have also been observed semi-analytically and nu-
merically for particular choices of parameters of VDW
fluids in expansion[18]. By describing the expanding
matter as a polytropic fluid (i.e following the relation
p ∝ ρ(n+1)/n where p, ρ, n are respectively the fluid
pressure, mass density and the polytropic index), it was
also observed analytically and numerically that the flow
of the expanding matter consists of two domains: a thin
liquid shell moving with constant velocity and a thick
low-density layer of material in a two-phase state[19].
The solutions for two different polytropes were subse-
quently patched together and reproduced qualitatively
the features observed using a more detailed yet complex
equation of state for aluminum.

Other work has shown that a single measurement of
the density profile (as a function of distance) for an ex-
panding 1D material can be used to infer the pressure
as a function of density[20]. Previous work on hydrody-
namic waves in generalized VDW fluids in the vicinity of
the two-phase regime, but still above the critical point,
showed the possible presence of rarefaction shockwaves,
particularly for foils of finite thickness[12, 21–23].

The present paper treats simple-wave based solutions,
i.e. before the rarefaction waves from both sides of a
given thin foil meet. The more complex problem where
these two rarefaction waves meet at the center has been
treated analytically for an ideal gas[13]. Here, a 1D
fluid model with a generalized VDW EOS is employed
to find the types of rarefaction waves and their inher-
ent features in the dynamics of the foil expansion, both
semi-analytically (by numerically integrating a system of
ODEs) and numerically using the 1D planar Lagrangian
hydrodynamic code DISH[24]. In this paper, we catego-
rize the possible types of rarefaction waves in generalized
VDW fluids.
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II. GEOMETRY AND METHOD

The initial foil is modeled by a 1D semi-infinite slab of
material that initially extends from z = −∞ to z = 0,
and from −∞ to +∞ in the x and y directions. In spite of
being 1D planar, the model is nevertheless a good approx-
imation for higher dimensional geometries at early times,
since the out-flowing material would extend to distances
much smaller than the radius of the heating beam. For
later times, 2D and 3D solutions of the hydrodynamics
equations introduce new characteristic length scales, e.g.
curvature radius, making a self-similar solution impossi-
ble.

The foil at initial density ρ0 is assumed to have under-
gone uniform and instantaneous heating to temperature
T0. This is a valid assumption when the heating time is
much shorter than the hydrodynamic time - the time for
the rarefaction wave to reach the center of the foil - and
when the deposition is volumetric, as with X-ray or ion
beam heating.

A fluid description employing the VDW EOS is used
to describe the dynamics of the heated target. The VDW
EOS is a ”cubic” EOS (i.e. one in which the density ex-
pressed as a function of P and T is the solution of a cubic
equation in ρ), chosen in this paper for its mathematical
simplicity and its two-phase behavior. The VDW picture
for monoatomic fluids assumes (i) a hard-sphere represen-
tation of atoms in a fluid, (ii) a meaningful separation of
potential into a strong short-ranged repulsive part and a
weaker long-ranged attractive part, (iii) that the weaker
long-ranged attractive forces can be modeled as a mean
field, (iv) and that intermolecular hydrogen bonds, direc-
tional intermolecular covalent bonds and ionic forces are
negligible. In this paper, we employ a generalized ver-
sion (see e.g. Ref. [21]) that includes internal degrees of
freedom and enables richer physics of internal modes, e.g.
molecular rotations and vibrations can be included. The
simplifications adopted in items (i) through (iv) above re-
strict the applicability of the VDW EOS and may hinder
quantitative investigations of rarefaction waves using the
VDW EOS. However, the VDW picture has been success-
fully applied to interpret a wide range of condensed mat-
ter properties[25] and can be improved in order to quan-
titatively investigate a broader set of fluids for design
purposes[26]. In this paper, our intent is to give a con-
crete example of the variety of behaviors that can occur
for an equation of state that exhibits a liquid/vapor phase
change. The simplicity of the EOS allows us to identify
the boundaries in a dimensionless two-parameter space
for the eight classes of rarefaction waves identified in this
study. It is often useful to compare experimental data
with known (but idealized) solutions to the fluid equa-
tions. We also believe these similarity solutions could be
useful in benchmarking more complicated hydrodynamic
codes.

The Maxwell construction is also employed in order to
avoid the micro-instabilities that occur during a phase
transition. However, because it is an equilibrium the-

ory, the Maxwell construction cannot model droplets and
bubbles created in the two-phase regime. The numeri-
cally challenging problem of resolving droplets and bub-
bles in a simulation[27] could yield a more accurate de-
scription of the rarefaction waves.

III. HYDRODYNAMICS OF THE VAN DER
WAALS FLUID

A. Hydrodynamics

The continuity and momentum equations for a neutral
and non-viscous fluid in the absence of a mass source or
sink for the 1D Cartesian Eulerian fluid system[11–13]
are

∂ρ

∂t
+
∂ρv

∂z
= 0,

∂v

∂t
+ v

∂v

∂z
= −1

ρ

∂p

∂z
.

(1)

Here, ρ, p and v are respectively the fluid mass density,
pressure and velocity at time t and axial coordinate z.

Eq. (1) decouples by employing P = v + I and M =

v − I with I(ρ) =
∫ ρ
ρ0

cs(ρ
′)

ρ′ dρ′ and cs the sound speed

defined as cs
2(ρ) = ∂p/∂ρ|s. ρ0 is the density of the

uniformly heated fluid at the initial time t = 0. The
subscript s means that the derivative is taken at constant
entropy. The use of the self-similar variable ξ = z/t
eliminates an independent variable, and writing ′ as the
total derivative with respect to ξ, Eq. (1) simplifies to

(v + cs − ξ)P ′(ξ) = 0,

(v − cs − ξ)M ′(ξ) = 0
(2)

which yields,

(v − cs − ξ) = 0 and P ′(ξ) = 0 (3a)

or (v + cs − ξ) = 0 and M ′(ξ) = 0. (3b)

For a typical EOS (∂p/∂V 2|s > 0), the asymptotic so-
lutions of the system set conditions on the sound speed
and the fluid velocity. In the dense fluid, i.e. for ξ � 0,
the sound speed must be non zero and the fluid veloc-
ity equal to zero. In the vacuum side, i.e. for ξ � 0,
the sound speed must tend to zero and the fluid velocity
must be positive. Equivalently,

for ξ � 0, cs > 0 and v → 0,

and for ξ � 0, cs → 0 and v > 0.
(4)

Because Eq. (3b) does not fulfill the asymptotic con-
ditions of Eq. (4), Eq. (3a) is the valid solution and sets
the hydrodynamics equation

ξ(ρ) = −I(ρ)− cs(ρ). (5)

cs(ρ) depends on the thermodynamical properties of
the fluid expansion, henceforth modeled by the VDW
EOS.
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B. Equation of state: the generalized Van der
Waals model

The VDW EOS is described by the following equations,

p =
ρkT

Amamu(1− bρ)
− aρ2, (6a)

s =
k

Amamu
ln

(
Amamu

1− bρ
ρ

λf−30

λf

)
, (6b)

c2s =
∂p

∂ρ

∣∣∣∣
s

=
f + 2

f

kT

Amamu

1

(1− bρ)2
− 2aρ, (6c)

ε =
f

2

kT

Amamu
− aρ. (6d)

Here, p, ρ, T , s, cs and ε are respectively the pressure,
mass density, temperature, entropy, sound speed and the
energy density of the fluid. A is the mass number of the
atomic species of the fluid, k the Boltzmann constant,
mamu the atomic mass unit. λ = h/(2πAmamukT )1/2

is the de Broglie wavelength. h is the Planck constant.
λ0 is an arbitrary normalisation constant that has no
effect on the dynamics and will not appear in the sub-
sequent treatment of the rarefaction waves. a and b are
the VDW constants of the fluid whose derivations can be
found in the literature[28] and whose experimental values
can be found in reference tables[29] for a number of gases
and compounds, but, for many materials that have high
critical temperatures, the constants have not been mea-
sured or yield large measurement uncertainties[10]. In
Eq. (6) and throughout this paper, the VDW EOS has
been generalized to arbitrary numbers of degrees of free-
dom f ≥ 3 in order to account for more complex material
compounds. The standard VDW EOS for monatomic
molecules has a number of degrees of freedom f = 3.
In Eq. (6a), the first term in the right-hand side models
the strong short-ranged repulsive atomic forces while the
second term models the long-ranged attractive forces.

The critical pressure pc, density ρc and tempera-
ture Tc are defined at the inflection point ∂p/∂ρ|T =
∂2p/∂ρ2|T = 0 and yield

ρc =
1

3b
, pc =

1

27

a

b2
and

kTc
Amamu

=
8

27

a

b
. (7)

Furthermore, a characteristic sound speed c2s,0 = pc/ρc
and a characteristic energy density εc = ε(ρc, Tc) = (4f−
9)/27× a/b are defined based on the critical parameters.
Note c2s,0 is not the sound speed at the critical point,
rather a characteristic speed that we chose to simplify
the equations. The sound speed at the critical point is
2
√

3/f cs,0.
For generality, dimensionless quantities are henceforth

employed by scaling all dimensional quantities with the
critical or characteristic parameters above-mentioned.
In what follows, tilded quantities are the dimension-
less counterparts of dimensional quantities such that

ρ̃ = ρ/ρc, p̃ = p/pc, T̃ = T/Tc, c̃s(ρ̃) = cs(ρ)/cs,0 and
ε̃ = ε/εc.

From Eqs. (6) and (7), the dimensionless VDW equa-
tions yield

p̃ = 8
ρ̃T̃

3− ρ̃
− 3ρ̃2, (8a)

s̃ =
s− sc

k/(Amamu)
= ln

(
3− ρ̃

2ρ̃
T̃ f/2

)
, (8b)

c̃2s =
∂p̃

∂ρ̃

∣∣∣∣
s̃

=
f + 2

f

24T̃

(3− ρ̃)2
− 6ρ̃, (8c)

ε̃ =
4f

4f − 9
T̃ − 9

4f − 9
ρ̃. (8d)

Here, sc = s(ρc, Tc). There exists a regime of instability

where ∂p̃/∂ρ̃|s̃ < 0 for the isotherms T̃ < 1 since the den-
sity increases for a decreasing pressure which is unphysi-
cal for a fluid in equilibrium. Consequently, the Maxwell
Construction[30] is employed to represent an equilibrium
state in this unstable zone: the fluid is modeled as a
mixture of a liquid phase of density ρ̃l and pressure p̃l at
mass fraction xl and a gaseous phase of density ρ̃g and
pressure p̃g at mass fraction xg. The Maxwell Construc-
tion sets ρ̃l, ρ̃g, p̃l and p̃g by assuming equal pressure
p̃ and chemical potential µ̃ between the two phases, i.e.
p̃l(T̃ ) = p̃g(T̃ ) and µ̃l(T̃ ) = µ̃g(T̃ ). The latter condition

is equivalent to
∫ Ṽg

Ṽl
(p̃− p̃g) dṼ = 0. Here Ṽ = 1/ρ̃ is the

dimensionless specific volume.
The liquid and gas mass fraction xl and xg is defined

by

xl(ρ̃, T̃ ) =
ρ̃l(T̃ )

ρ̃

ρ̃− ρ̃g(T̃ )

ρ̃l(T̃ )− ρ̃g(T̃ )
,

xg(ρ̃, T̃ ) =
ρ̃g(T̃ )

ρ̃

ρ̃− ρ̃l(T̃ )

ρ̃g(T̃ )− ρ̃l(T̃ )
.

(9)

The emphasis in this paper is on the isentropic evolu-
tion of the VDW fluid, i.e s̃(ρ̃, T̃ ) = s̃0 is constant where
s̃0 is the initial dimensionless entropy of the fluid. This
hypothesis eliminates one of the two independent param-
eters in Eq. (9) and yields

xl(T̃ ) = ln

(
3− ρ̃0
3− ρ̃g

ρ̃g
ρ̃0

( T̃0
T̃g

)f/2)/
ln

(
3− ρ̃l
3− ρ̃g

ρ̃g
ρ̃l

)
,

xg(T̃ ) = ln

(
3− ρ̃0
3− ρ̃l

ρ̃l
ρ̃0

( T̃0
T̃l

)f/2)/
ln

(
3− ρ̃g
3− ρ̃l

ρ̃l
ρ̃g

)
.

(10)
The density in the two-phase regime may be expressed
as a function of temperature only:

ρ̃(T̃ ) =
ρ̃l(T̃ )ρ̃g(T̃ )

xg(T̃ )ρ̃l(T̃ ) + xl(T̃ )ρ̃g(T̃ )
. (11)

To complete the calculation of the self-similar evolu-
tion, we need to calculate the sound speed in the two-
phase regime. Since the pressure may be written as a
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FIG. 1. (Color online) Diagram determining which type of
rarefaction waves to encounter depending on initial entropy
s̃0 and number of degrees of freedom f .

function of the temperature only p̃(T̃ ) = p̃(ρ̃l(T̃ ), T̃ ) =

p̃(ρ̃g(T̃ ), T̃ ), the sound speed may be calculated, c̃2s =
∂p̃(s̃,ρ̃)
∂ρ̃

∣∣
s̃

= dp̃(T̃ )/dT̃

dρ̃(T̃ )/dT̃
so that Ĩ(ρ̃) is the sum of the contri-

bution before entering the two-phase regime plus the con-

tribution in the two-phase regime: Ĩ(ρ̃) =
∫ ρ̃b
ρ̃0

c̃s(ρ̃)
ρ̃ dρ̃ +∫ ρ̃(T̃ )

ρ̃b(T̃b)

c̃s(ρ̃)
ρ̃

dρ̃

dT̃
dT̃ .

It can be shown[12] that a shockwave is possible when

d2ρ̃/dṼ 2|s̃ < 0 and their existence has been numerically
predicted for a foil of finite thickness modeled as a single
phase VDW fluid (subsequently referred to as Case 1
and Case 2 in Fig. 2) in the complex wave regime[21],
i.e. when the rarefaction waves from the ends of the foil
meet.

Eight types of rarefaction waves that depend exclu-
sively on the initial entropy and the number of degrees
of freedom, as shown in Fig. 1, are found from the isen-
tropic trajectory of the VDW fluid in the (ρ̃,T̃ ) diagram
and are plotted as a blue full line in the eight upper sub-
plots of the (ρ̃,T̃ ) diagrams in Figs. 2, 3 and 4. Also
depicted in the upper subplots of Figs. 2, 3 and 4 are the
Maxwell-constructed binodal between the single phase
regime and two-phase regime in red dashed line and the
shockwave boundary in red dotted line. Note that even
though the shockwave boundary in red dotted line is valid
only in the single-phase regime, it has been included in
all the diagrams even when it is not valid in order to
see the proximity of the shock regime to the single-phase
regime. For f > 34, shockwaves can be observed for

some isentropes[23] since part of the shockwave bound-
ary is above the Maxwell-constructed binodal.

As expected, these isentropic trajectories in the (ρ̃,T̃ )
diagram yield different shapes of density and pressure
profiles in the next section.

C. Dimensionless solutions

The hydrodynamic equation (5) is scaled by cs,0 and
yields

ξ̃(ρ̃) = −Ĩ(ρ̃)− c̃s(ρ̃), (12)

which completes the set of dimensionless equations.
Here, ξ̃(ρ̃) = ξ(ρ)/cs,0, Ĩ(ρ̃) = I(ρ)/cs,0 and c̃s(ρ̃) =
cs(ρ)/cs,0.

This analysis is applicable to any VDW fluid as the
solutions can be scaled back to dimensional quantities
using the appropriate A, a and b that characterize a given
chemical element.

In the following, we denote the variables with sub-
script “b” their values at binodal. While ∂p̃/∂ρ̃|T̃ no
longer reaches negative values due to the Maxwell con-
struction, it is no longer a smooth function of ρ̃ at ρ̃ = ρ̃b
as ∂p̃/∂ρ̃|T̃ (ρ̃+b ) 6= ∂p̃/∂ρ̃|T̃ (ρ̃−b ), which leads to the dis-
continuity of the sound speed at ρ̃ = ρ̃b. From Eq.(12), a

discontinuity in ξ̃ is therefore expected each time an isen-
tropic trajectory crosses the Maxwell-constructed bin-
odal in the (p̃,ρ̃) diagram.

This set of dimensionless equations is semi-analytically
solved using Mathematica[31] and compared against the
1D planar Lagrangian hydrodynamic code DISH[24].

The density ρ̃ and pressure p̃ profiles as a function of
the self-similar variable ξ̃ of each of the eight types of
rarefaction waves under investigation are represented in
the central and lower part of the Figs. 2, 3 and 4. As
the density and pressure profiles computed numerically
by the DISH code also displayed a self-similar expan-
sion, they are also plotted in dimensionless variables as
a function of the self-similar variable. In each of those
cases, the numerical simulations showed that the entropy
is conserved.

In cases 1, 3 and 6 the semi-analytic similarity solu-
tion and the hydrodynamic code DISH agree well. The
plateau region in density, temperature, pressure and ve-
locity that occurs in the transition to the two-phase
regime (in cases 3 and 6) is faithfully reproduced in DISH
as well as in the semi-analytic similarity solution.

In cases 2, 4, 5, 7 and 8, the fluid follows a trajectory
such that ∂2p̃/∂Ṽ 2|s̃ is less than zero for a part of the

fluid’s trajectory in the (ρ̃,T̃ ) diagram (where Ṽ ≡ 1/ρ̃).
As indicated in Refs. [12, 21], this implies an unstable
region where shocks may form. A simple integration of
the semi-analytic solution yields a double valued (un-
physical) density distribution (see Figs. 2, 3 and 4). The
DISH code yields a sharp density gradient in this unsta-
ble region (shown in purple), although it is well resolved
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FIG. 2. (Color online) The rarefaction waves of a) case 1 and b) case 2. Each of the subfigures contains three plots. In the
(i) subfigures of each cases are represented in full blue line the isentropic trajectory of the rarefaction wave, in dashed red
line the Maxwell-constructed binodal between single- and -two phase regime and in dotted line the unstable boundary in the
single-phase regime. In the (ii) and (iii) subfigures of each cases are represented in blue line the semi-analytical solution, and
in purple line the numerical solution of the density and pressure profiles. Zones of interest of the rarefaction waves are zoomed.

(see Fig. 5) and does not have a discontinuity in the pres-
sure and so is technically not a shock. The asymptotic
density, temperature, and pressure before and after the
unstable region (where ∂2p̃/∂Ṽ 2|s̃ < 0) are nearly iden-
tical in the semi-analytic solution and in DISH. The so-
lution in the unstable region indicates a strong density
and pressure gradient, followed by a more conventional
rarefaction wave.

• Case 1: f = 20, T̃0 = 2, ρ̃0 = 2.7.
The fluid stays in one phase continuously vary-
ing from high density fluid to a gas. The rarefac-

tion wave does not display any plateau or unstable
features. There is a good agreement between the
semi-analytical solution and the numerical solution
(DISH).

• Case 2 f = 100, T̃0 = 1.07, ρ̃0 = 2.7.
The fluid stays in one phase continuously varying
from high density fluid to a gas. Because f > 34,
as previously mentioned, the shockwave boundary
is above the Maxwell-constructed binodal in the
(p̃,ρ̃) diagram. The studied case crosses the shock
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FIG. 3. (Color online) The rarefaction waves of a) case 3, b) case 4 and c) case 5 are displayed. See annotations of Fig. 2 for
details.

boundary. A self-similar pressure gradient forms
in the numerical simulation and non-physical ”z”-
shaped density and pressure profiles occur in the
semi-analytical solution. The semi-analytical and
numerical models not do agree, as the same ana-
lytical model evidently does not model well the un-
stable region, well-resolved numerically as shown in
Fig. 5.

• Case 3: f = 3, T̃0 = 1, ρ̃0 = 2.7.
The fluid starts as a single-phase fluid, enters the
two-phase regime as a liquid and stays as a two-
phase fluid. A single density plateau whose length
is a function of s̃ and f is observed. There is a good
agreement between the semi-analytical solution and

the numerical solution.

• Case 4: f = 30, T̃0 = 1, ρ̃0 = 2.7.
The fluid starts as a single-phase fluid, enters the
two-phase regime as a liquid and leaves the two-
phase regime to revert to a single phase that is
gaseous. The rarefaction wave yields one plateau
and a kink. The kink that can be observed in the
semi-analytical solution is simulated as a steep self-
similar profile in the well-resolved numerical simu-
lations (see Fig. 5), not modeled in our analytical
model.

• Case 5: f = 100, T̃0 = 1.03, ρ̃0 = 2.7.
The fluid starts as a single-phase fluid, becomes
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FIG. 4. (Color online) The rarefaction waves of a) case 6, b) case 7 and c) case 8 are displayed. See annotations of Fig. 2 for
details.

a liquid, enters the two-phase regime and then
quickly leaves the two-phase regime to revert as a
single gaseous phase in the shockwave regime. This
case is similar to case 4 with features from case 2.

• Case 6: f = 3, T̃0 = 10, ρ̃0 = 2.7.
The fluid starts as a single-phase fluid, enters the
two-phase regime as a gas and stays as a two-phase
fluid. Similar to case 3, a single density plateau
whose length is a function of s̃ and f is observed.
The length of the plateau is smaller than case 3 and
the shape of the rarefaction wave is more similar
to case 1. There is a good agreement between the
semi-analytical solution and the numerical solution.
Here, the bump in the purple numerical profiles is

due to numerical artifacts as the steep gradient is
difficult to resolve in the our hydrodynamic code.
This case has similar features to case 3.

• Case 7: f = 20, T̃0 = 1.35, ρ̃0 = 2.7.
The fluid starts as a single-phase fluid, enters the
two-phase regime as a gas and quickly leaves the
two-phase regime to revert to a single gaseous
phase. This case has similar features to case 4.

• Case 8: f = 50, T̃0 = 1.125, ρ̃0 = 2.7.
The fluid starts as a single-phase fluid, becomes a
gas, enters the two-phase regime and then quickly
leaves the two-phase regime to revert as a single
gaseous phase in the shockwave regime. This case
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FIG. 5. (Color online) The numerically computed temporal evolution of the density profiles (in purple lines) of shows that the
kinks of the semi-analytical solutions (in blue lines) are well resolved, and the evolution remains self-similar. The purple line is
the interpolation of the numerical solution over time ranging from t1 to t3. The purple dots represent the numerical solution
at a given time t1, t2 and t3. a) Case 2 (ρ̃0 = 2.7, T̃0 = 1.07, f = 100). b) Case 4 (ρ̃0 = 2.7, T̃0 = 1, f = 30). The subfigures
(i), (ii) and (iii) represents different snapshots at different time, as denoted on the figures.

has similar features to case 5.

IV. DISCUSSIONS

The 1D planar isentropic hydrodynamic model of a
generalized Van Der Waals fluid homogeneously and in-
stantaneously heated to temperatures of order the critical
point predicts the presence of eight types of rarefaction
waves depending on the number of degrees of freedom f ,
the initial density ρ0 and temperature T0 in the simple
wave regime.

Our work shows that for certain values of f and s̃0 in
the simple wave regime, the fluid can go through a region
of instability (∂2p̃/∂Ṽ 2|s̃ < 0), in which a strong pressure
gradient (possibly a shock) forms. This is not in disagree-
ment with Ref. [21] which found that shocks formed in
the non-simple wave regime, after the rarefaction waves
collided in the middle of the foil. Interestingly, the nu-
merical solutions in the unstable regime appear to be
self-similar as seen from overlaying density and pressure

profiles from different times. Nevertheless, the numerical
solutions do not show the formation of a shock wave. We
have not resolved this discrepancy and can only conclude
that a steep density gradient (if not a shock) forms in the
unstable regime.

This work should be useful in interpreting and catego-
rizing the types of behavior observed when experiments
are carried out that produce warm dense matter condi-
tions by volumetrically heating thin foils, and using the
subsequent dynamic behavior to infer properties of the
matter.
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