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Using high-resolution particle tracking velocimetry and filter-space techniques, we study the links
between the scale-to-scale transfer of energy and enstrophy and instantaneously rotational and
straining regions, as determined by the classic Okubo–Weiss parameter, in a quasi-two-dimensional
laboratory flow. Although the Okubo–Weiss parameter has shortcomings, we find that, when suit-
ably conditioned, it is surprisingly a good predictor for the future evolution of the spectral fluxes.
By studying Lagrangian correlation functions, we explain our findings by showing that both the
spectral fluxes and the Okubo–Weiss parameter are independently correlated for long times along
fluid-element trajectories, and thus that any predictive capacity of the Okubo–Weiss parameter
arises because it is coupled to fluid advection. Our results suggest potential strategies for forecast-
ing in complex flows by looking for quantities with long Lagrangian correlation times.
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I. INTRODUCTION

Fluid motion is often highly spatiotemporally com-
plex; but even at extremely high Reynolds numbers, it is
not unstructured. Instead, unsteady and turbulent flows
tend to organize spontaneously into spatially extended
regions of distinct character that persist for macroscopic
times. Because of this tendency, which must be rooted in
the nonlinear dynamics of the Navier–Stokes equations,
a large body of work has been built up over the years
aimed at pinpointing and characterizing such coherent
structures [1]. Although coherent structures were first
studied in the context of flow visualization, they are also
thought to have promise for modeling complex flows [2].
Building a viable model based on coherent structures,

however, requires understanding the role played by the
chosen structures in the dynamics of the system [3]. For
describing turbulent flows, we must characterize how
structures contribute to or interact with the scale-to-scale
cascade processes that make turbulence a distinct state
of flow. Typically, these spectral cascades are treated in
Fourier space, as this is the natural way to tease apart
multi-scale processes. Once we take a Fourier transform,
however, we lose all information about the spatial vari-
ation of the velocity field—and thus cannot connect the
spectral dynamics to a description of the flow in terms
of coherent structures. Here, therefore, we take a differ-
ent approach based on so-called filter-space techniques
[4–11], which allow the spatial localization of spectral
processes.
Previously [12], we studied how the scale-to-scale flux

of energy in a quasi-two-dimensional weakly turbulent
flow was related to so-called Lagrangian coherent struc-
tures (LCSs) [13], and showed that LCSs tend to divide
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regions of the flow field with different spectral character
[14]. Current methods for calculating LCSs, however,
require knowledge of the future evolution of the flow,
and thus our results on the connection between LCSs
and spectral flux cannot be used to forecast how the flux
will change in time. Here, therefore, we consider a much
simpler kind of coherent structure that can be computed
instantaneously. We use the classic Okubo–Weiss param-
eter Λ = det∇u = (s2 − ω2)/4, where s2 is the square
of the strain rate and ω2 is the enstrophy (ω is the vor-
ticity), to partition the flow field into regions that are
dominated by rotation (Λ < 0) and those that are domi-
nated by strain (Λ > 0) [15, 16].

Although there are some theoretical issues with the
use of the Okubo–Weiss parameter as a criterion for par-
titioning the flow field (such as its non-invariance under
some kinds of reference-frame boosts [17] or an implicit
assumption that the velocity gradient evolves slowly com-
pared to the vorticity gradient [18]), it has the advantages
of being simple both to compute and to interpret and re-
lying only on instantaneous information. Thus, it can be
measured in complex geophysical flows where finely re-
solved long-time flow data may not be available, preclud-
ing the measurement of more intricately defined coherent
structures [19]. Additionally, previous work on connect-
ing structure and spectral dynamics has shown that the
sign of Λ does indeed correlate with differences in the flux
of enstrophy between scales [8]. Here, we expand on this
work and consider the scale-to-scale fluxes of both energy
and enstrophy in our quasi-two-dimensional laboratory
flow. We show that not only does the sign of Λ corre-
late with differences in these fluxes, but that these dif-
ferences persist in time—and thus that an instantaneous
measurement of the Okubo–Weiss field may allow some
limited forecasting of the evolution of the local spectral
properties of the flow. We explain this result by measur-
ing the Lagrangian autocorrelation function of Λ, finding
that Λ remains correlated along fluid-element trajecto-
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ries for appreciable lengths of time. Combined with our
previous results demonstrating similar long correlations
for the spectral fluxes [12] as well as recent theoretical
results on the correlation of scalar fields with Lagrangian
advection [20], our results indicate that the persistence
of many flow properties for individual fluid elements may
be useful for designing forecasting methods.
We begin below in Sec. II with a description of our

experimental apparatus and procedures and the anal-
ysis tools we use. We then present our results in
Sec. III, including the statistics of the scale-to-scale en-
ergy and enstrophy fluxes conditioned on the sign of the
Okubo–Weiss parameter, measurements of their persis-
tence along trajectories, and the Lagrangian correlation
functions of Λ. Finally, we summarize and discuss some
of the implications of our measurements in Sec. IV.

II. METHODOLOGY

A. Experimental Details

We generate quasi-two-dimensional flow in the labo-
ratory using an electromagnetically stirred thin layer of
electrolytic fluid. We have described the apparatus in
detail elsewhere [11, 21–23], and so we only give a brief
description here. We place a layer of salt water (16%
NaCl by mass in deionized water) 5 mm deep on top of
a glass plate. The lateral extent of the salt-water layer
is 86×86 cm2. Beneath the glass is a square array of
permanent neodymium-iron-boron magnets arranged in
stripes of alternating polarity. Since the salt-water layer
is electrically conductive, we drive steady electric cur-
rent through it using a current-controlled power supply
connected to a pair of copper bar electrodes that are
immersed in the fluid. The combination of the electric
current and the magnetic field produce a Lorentz body
force that drives flow. At low currents, the flow is locked
to the symmetries of the magnet array; for alternating
stripes such as we use here, the low-current flow is a pat-
tern of alternating shear bands typically known as a Kol-
mogorov flow [24]. As the current is increased, however,
the flow breaks free of the imposed symmetry and be-
comes (weakly) turbulent [24]. To compare different flow
conditions, we define a Reynolds number Re based on
the measured in-plane root-mean-square velocity U , the
kinematic viscosity of the salt water ν, and the spacing
between the magnets Lm, which roughly sets the scale
of energy injection into the flow. For the data presented
here, taken with an electric current of 1.25 A, we mea-
sure Re = ULm/ν = 270. At this Reynolds number, the
flow is energetic enough to be spatiotemporally complex
and not constrained by the magnets, while still remain-
ing reliably two-dimensional [21]. We note, however, that
this Reynolds number should really be viewed as a nondi-
mensionalization of the electric current [25], rather than
as a measure of any turbulent scale separation. Further
details, including the global energy spectrum of the flow

and a detailed analysis of the scale-to-scale energy and
enstrophy transfer, are given in Ref. [23].
To measure the flow field, we use particle tracking ve-

locimetry (PTV). We seed the fluid with 50-µm-diameter
fluorescent polystyrene microspheres that absorb in the
blue and fluoresce in the green. The particles have a
specific gravity of 1.05, and so rise to the surface of the
salt water; to avoid surface-tension-driven interaction be-
tween them, we float a 5 mm layer of pure water on top
of the salt water. On the time scale of our experiments
(typically a few minutes), salt diffusion between the lay-
ers is not a factor. The upper surface of the pure-water
layer is free, and the pure water is undriven (since the
electric current flows only through the salt water).
We image the particles with an IDT MotionPro M5

camera mounted above the apparatus at a frame rate of
60 frames per second. The data set analyzed here con-
sists of 5000 frames, or about 83 s. The 2320×1728 pixels
on the camera detector correspond to an imaged area of
31.7×23.6 cm2 (roughly 12.5×9 Lm), which we position
in the center of the apparatus, far from any wall effects.
Thus, the portion of flow we measure is open and un-
bounded. We track the motion of about 30 000 particles
per frame using a multi-frame predictive tracking algo-
rithm [26], and measure the particle velocities by con-
volving the resulting trajectories with a smoothing and
differentiating kernel [27]. We then construct velocity
fields from the individual particle locations and veloci-
ties by projecting them onto a basis of streamfunction
eigenmodes [21], which both removes noise and ensures
that the measured fields are two-dimensional.

B. Filtering and Spectral Fluxes

To measure the spatially localized spectral proper-
ties of the flow, we use so-called filter-space techniques
(FSTs) that reveal the coupling between scales by sup-
pressing the small-scale variation of the flow field [4–11].
We construct filtered flow observables by convolving the
experimentally measured fields with a function that acts
as a low-pass filter in Fourier space. The ith component
of the filtered velocity field, for example, is given by

u
(r)
i (x) =

∫

G(x − x
′; r)ui(x

′)dx′, (1)

where G is the filter kernel and the superscript (r) de-
notes the length scale below which the variation is sup-
pressed. Any function that acts as a low-pass filter will
work in an FST, and the results are typically insensitive
to the exact filter shape [7, 12]. Here, we used a round
finite impulse response filter constructed by convolving
a sharp spectral filter with the desired frequency cutoff
with a Gaussian window function.
The utility of filtering becomes apparent when we write

the equations of motion for the filtered kinetic energy

E(r) = (1/2)u
(r)
i u

(r)
i and enstrophy Ω(r) = (1/2)ω(r)ω(r),
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where ω is the vorticity (a scalar in two dimensions).
Starting from the Navier–Stokes equations, one can write

∂E(r)

∂t
= −

∂J
(r)
i

∂xi
− ν

∂u
(r)
i

∂xj

∂u
(r)
i

∂xj
−Π(r) (2)

and

∂Ω(r)

∂t
= −

∂K
(r)
i

∂xi
− ν

∂ω(r)

∂xi

∂ω(r)

∂xi
− Z(r). (3)

Here, J
(r)
i and K

(r)
i are spatial currents of (filtered)

energy and enstrophy, respectively, and contain contri-
butions to spatial transport from advection, pressure
stresses, and viscous diffusion; their analytical expres-
sions are

J
(r)
i =

1

ρ
u
(r)
i p(r) + u

(r)
i E(r) − ν

∂E(r)

∂xi

+ u
(r)
j

[

(uiuj)
(r)

− u
(r)
i u

(r)
j

]

(4)

and

K
(r)
i = u

(r)
i Ω(r) − ν

∂Ω(r)

∂xi
+ ω(r)

[

(uiω)
(r) − u

(r)
i ω(r)

]

,

(5)
where ρ is the fluid density, p is the pressure, and ν is
the kinematic viscosity.
The terms proportional to ν are direct dissipation

terms. Analogues to these currents and dissipation terms
also appear in the equations of motion for the full energy
and enstrophy. The final terms on the right-hand sides of
these equations are new, however, and encode the cou-
pling between the resolved scales and those that have
been suppressed. These terms are given by

Π(r) = −
[

(uiuj)
(r)

− u
(r)
i u

(r)
j

] ∂u
(r)
i

∂xj
(6)

and

Z(r) = −
[

(uiω)
(r)

− u
(r)
i ω(r)

] ∂ω(r)

∂xi
, (7)

and directly measure the flow of energy and enstrophy,
respectively, from scales larger than r to those smaller
than r. With the sign convention we have chosen, pos-
itive values of these spectral fluxes denote transfer to
smaller scales, while negative values denote transfer to
larger scales. Importantly, both Π(r) and Z(r) are func-
tions of space, and can be defined locally; thus, they give
us a way to connect the spectral properties of the flow
with the spatial properties. Finally, we note that the fil-
tering operation is a post-processing step; thus, unlike
in large-eddy simulation where the filter scale is chosen
at the outset, we can re-filter our data with whatever r
we choose, so long as it is appreciably larger than the
resolution limit of our data [28].
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FIG. 1. (Color online) Conditional mean values of the (a)
energy and (b) enstrophy fluxes as a function of the filter scale
r normalized by the magnet spacing Lm. Red squares denote
mean values conditioned on being in rotational regions, while
blue triangles denote those conditioned on being in straining
regions. Black circles show the unconditional means.

III. RESULTS

A. Conditional Moments of Spectral Fluxes

For fully developed two-dimensional turbulence,
the Kraichnan–Leith–Batchelor phenomenology predicts
that we should observe two spectral cascade processes
[29–31], unlike the single Kolmogorov–Richardson energy
cascade found in three-dimensional turbulence: one cas-
cade of enstrophy from the scale of energy injection Linj

to smaller scales, where it is dissipated by viscous ac-
tion, and an inverse cascade of energy from Linj to larger
scales, where it is dissipated by large-scale frictional pro-
cesses.
In Figure 1, we plot the the measured mean energy

and enstrophy fluxes 〈Π(r)〉 and 〈Z(r)〉, where the angle
brackets denote averaging over space and time (where
we weigh space and time equally in the average), as a
function of the filter scale r. As we have reported before
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[21, 23], we see average behavior that is consistent with
expectations. We find an energy injection scale of Linj ≈
1.8Lm. The energy flux (Figure 1(a)) is largest for r >
Linj , where it is negative (flowing to large scales in an
inverse cascade, given our sign convention). Since our
turbulence is not fully developed, there is some leakage
of energy to small scales [7], and we do not observe an
inertial range with constant energy flux. The enstrophy
flux, in contrast, is large and positive for r < Linj (Figure
1(b)), flowing to small scales, with little leakage to large
scales. As an aside, we note that since our turbulence is
not fully developed, long scaling ranges are not required
to produce the correlations we describe below.
Previously, Chen et al. [8] reported that in the enstro-

phy cascade, regions of the flow field with different signs
of the (filtered) Okubo–Weiss parameter had different
enstrophy flux characteristics, and that the net forward
cascade of enstrophy was primarily active in straining
regions with Λ(r) > 0. In Figure 1, then, we also plot
the mean energy and enstrophy fluxes conditioned on the
sign of Λ(r). Just as Chen et al. reported, we see a non-
negligible effect, although one that is different for differ-
ent filter scales. Strain appears to enhance the dominant
fluxes we see (the inverse flux of energy and the forward
flux of enstrophy) relative to rotation. For the leakage
fluxes of energy and enstrophy we observe, however, the
picture is somewhat less clear. Λ(r) has very little impact
on the mean enstrophy flux for scales larger than Linj ,
and does not show uniform behavior for the energy flux
below Linj .
The mean energy and enstrophy fluxes, however, do

not give a complete picture of the spectral dynamics
in the flow. Since the net energy and enstrophy cas-
cades are the result of a small imbalance in positive
and negative flux, the local values of Π(r) and Z(r) can
be orders of magnitude larger than the mean values
[8, 11, 12]. We therefore also computed the conditional
skewnesses (that is, the normalized third moments, e.g.

〈Π(r)3〉/〈Π(r)2〉3/2) of Π(r) and Z(r) to study the asym-
metry in the sign of the flux. Note that Chen et al. [8] also
observed more skewed distributions of Z(r) in straining
regions in the enstrophy cascade. As shown in Figure 2,
we do see an effect of Λ(r) on the skewnesses for both en-
ergy and enstrophy, and the picture is somewhat different
from the story told by the mean values shown in Figure 1.
For the enstrophy, both the mean flux and its skewness
are enhanced in straining regions relative to rotational
regions. For the energy, however, the flux is marginally
more skewed in rotational regions, even though its mean
value is enhanced in straining regions, although the effect
of Λ(r) on the energy flux skewness is not large.

B. Spatiotemporal Persistence

We have shown that the sign of Λ(r) can be used to
glean some information about the nature of the local
spectral dynamics, and in particular that regions where
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FIG. 2. (Color online) Conditional skewness (normalized
third moments) of the (a) energy and (b) enstrophy fluxes
as a function of the filter scale r normalized by the mag-
net spacing Lm. Red squares denote rotational regions, while
blue triangles denote straining regions. Black circles show the
unconditional skewnesses.

strain dominates rotation tend to be associated with
more intense spectral transfer. Knowing about the in-
stantaneous state of the flow, however, is of limited util-
ity; if we hope to use coherent structures to forecast the
evolution of the flow, we must ensure that our instanta-
neous observations persist in time.

One could try to assess the temporal persistence of the
effects we have seen by considering, for example, the way
Π(r), Z(r), and Λ(r) vary at fixed locations. But any
such Eulerian measures of persistence will be dominated
by large-scale sweeping, and will often reveal more about
the mean flow than the subtleties of the turbulent dy-
namics. Instead, therefore, we consider the Lagrangian
averages of the energy and enstrophy fluxes [14]; that is,
we measure the average value of Π(r) and Z(r) along the
trajectories of fluid elements (computed using the full,
unfiltered velocity fields), calculating functional integrals
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FIG. 3. (Color online) Time evolution of the Lagrangian aver-
ages of the (a) energy and (b) enstrophy fluxes at a fixed filter
scale of r = 1.5Lm. Black circles denote unconditional aver-
ages; red squares are averages taken over particles that were
initially (at τ = 0) in rotational regions, while blue triangles
are for those that were initially in straining regions.

of the form

1

τ

∫ τ

0

Π(r)(X(t))dt, (8)

where the integral is taken over the Lagrangian trajec-
tory X(t). We have shown previously that this kind of
averaging can reveal the advective structure of the flow,
and that the Lagrangian-averaged energy flux correlates
well with the spatial distribution of Lagrangian coherent
structures [14]. Lagrangian averaging is also closely re-
lated to so-called mesochronic analysis [32], which has its
underpinnings in ergodic theory [33].
In Figures 3 and 4, we show the Lagrangian averages of

the energy and enstrophy fluxes as a function of the av-
eraging time τ for two different filter scales: r = 1.5Lm,
where the forward enstrophy flux is most intense (Figure
3), and r = 2Lm, where the inverse energy flux is largest
(Figure 4). We computed the averages using 6006 tra-
jectories with initial locations placed evenly throughout
the flow domain. For both cases, the Lagrangian aver-
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FIG. 4. (Color online) Time evolution of the Lagrangian av-
erages of the (a) energy and (b) enstrophy fluxes at a fixed
filter scale of r = 2Lm. Black circles denote unconditional
averages; red squares are averages taken over particles that
were initially in rotational regions, while blue triangles are
for those that were initially in straining regions.

age of the total energy and enstrophy fluxes are nearly
stationary in time, confirming our previous findings [14].
However, the Lagrangian averages of Π(r) and Z(r) con-
ditioned on the initial value of Λ(r) show very different
behavior. Rather than being nearly stationary, the evo-
lution of the Lagrangian averages is highly dependent on
the initial character of the local flow field. At r = 1.5Lm

(Figure 3), the Lagrangian average of both Π(r) and Z(r)

increases markedly in initially straining regions, while
decreasing sharply for initially rotational regions. The
trend changes, however, as the averaging time increases.
For Π(r) the instantaneous enhancement seen for strain-
ing regions (see Figure 1) re-emerges after about one ve-
locity integral time scale TL (equal to 2.4 s in this data
set). For Z(r), the distinction between initially strain-
ing and initially rotational regions begins to disappear
for τ ≫ TL, and eventually the conditional averages ap-
proach the unconditional average, although the enhance-
ment due to strain persists for long times.
The situation is somewhat different for the larger filter
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FIG. 5. (Color online) Lagrangian autocorrelation coefficient
for the Okubo-Weiss parameter, filtered at different filter
scales. The dashed black line shows the autocorrelation coef-
ficient for the full (unfiltered) Okubo–Weiss parameter. The
horizontal axis is normalized by TL, the integral time scale
for the velocity field. The inset shows the integral time scales
for the different filter lengths. The colors of the symbols in
the inset correspond to the filter scales used for the curves in
the main panel.

scale, r = 2Lm (Figure 4). For Π(r), the initial enhance-
ment in straining regions quickly gives way to stronger
inverse fluxes in rotational regions. For Z(r), the trend
is different. The initial enhancement of the weak in-
verse enstrophy flux in rotational regions grows for short
times, but is eventually overtaken by an enhancement
due to strain. This distinction persists for long times,
even though the instantaneous conditional means for the
enstrophy flux in this regime are the same as the uncon-
ditional mean (Figure 1).

C. Lagrangian Correlations

To make sense of these results, we turn to the La-
grangian correlation functions. In Figure 5, we plot
the Lagrangian autocorrelation coefficient ρΛ(r)Λ(r)(T )
for the Okubo–Weiss parameter, defined as

ρΛ(r)Λ(r)(T ) =
〈Λ(r)(t)Λ(r)(t+ T )〉

〈Λ(r)(t)2〉
, (9)

where the averages are taken along Lagrangian trajec-
tories, for a range of filter scales. As is typical with
Lagrangian correlations, these curves fall off relatively
rapidly; however, the rate at which they do depends on
the filter scale. To measure the decay rate, we calculate
the integral time scales TΛ, defined as

TΛ =

∫

∞

0

ρΛ(r)Λ(r)(T )dT. (10)
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FIG. 6. (Color online) Lagrangian cross-correlations between
the filtered Okubo–Weiss parameter and the (a) energy and
(b) enstrophy fluxes. The colors are the same as in Figure 5.

We plot TΛ as a function of r in the inset to Figure 5,
scaled by the integral time scale TL of the velocity field.
TΛ is smaller than TL for all r; however, it drops signifi-
cantly for filter scales in the range where we observe net
inverse energy flux. More importantly, however, the val-
ues of TΛ we measure are similar to the times at which the
Lagrangian averages of the energy and enstrophy fluxes
peak in Figures 3 and 4. Thus, these data imply that the
enhancement to the energy and enstrophy fluxes we see
when averaging them along trajectories is a result of the
finite correlation time of both the fluxes [12, 14] and the
Okubo–Weiss parameter, and that the Lagrangian aver-
ages function as a “coherence filter” that reveal the net
effects of this finite correlation.

We can also use Lagrangian correlation functions—in
this case, cross correlations—to provide more informa-
tion on how the Okubo–Weiss parameter is linked with
the energy and enstrophy fluxes. We show in Figure 6 the
Lagrangian cross correlations between the Okubo–Weiss
parameter and Π(r) and Z(r) for different filter scales.
For the energy flux (Figure 6(a)), we observe positive
correlation at small filter scales. In this range, the mean
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energy flux tends to be positive, again implying a net cor-
relation between strain (Λ(r) > 0) and energy flux. At
larger filter lengths, we observe instead anti-correlation
at short times. In this range, however, Π(r) is on the av-
erage negative, so this anti-correlation again implies that
the energy flux is net correlated to strain. For the enstro-
phy, the picture is slightly different, as we do not observe
anti-correlation at short times for large filter scales. This
suggests that the small inverse transfer of enstrophy at
large filter scales is correlated with rotation rather than
strain. At first glance, this result may seem counter to
previous work that showed a strong relationship between
enstrophy flux and strain [8]; in that work, however, the
authors fixed the filter scale to lie in the forward enstro-
phy cascade range, whereas here we find correlation with
rotation only in the weak inverse enstrophy flux range.

IV. DISCUSSION AND CONCLUSIONS

Taken together, our results suggest that the sign of
the instantaneous Okubo–Weiss parameter can be used
both to determine (statistically) the character of the local
spectral energy and enstrophy fluxes and their evolution
in time. Consistent with earlier observations, we find
that both types of fluxes are enhanced in regions that
are predominantly straining, although the weak inverse
enstrophy flux we observe eventually becomes stronger
in rotational regions.

This result connecting the Okubo–Weiss parameter to
the spectral dynamics of the flow may seem somewhat
surprising, given that the Okubo–Weiss parameter has
many known shortcomings. But our correlation analysis
reveals why our results occur, particularly when com-
bined with our earlier results on the Lagrangian correla-
tions of the spectral fluxes themselves [12]. The correla-
tion we see between Λ(r), Π(r), and Z(r) is not indicative
of any deep relationship between the three; in particu-
lar, let us be clear that we are not arguing for a causal

relationship between the instantaneous Okubo–Weiss pa-
rameter and the spectral properties of the flow. Rather,
our results indicate that Λ(r), Π(r), and Z(r) are indepen-
dently correlated with another quantity—the fluid advec-
tion itself [20]. Since all three persist along trajectories,
instantaneous knowledge of one and of the correlations
between them may provide information about the other
two. This observation is likely linked to mesochronic
analysis [32] and ergodic partitioning [33], and may be
part of the reason why many different metrics for locating
Lagrangian Coherent Structures (such as finite-time Lya-
punov exponents or geodesic methods [13]) produce very
similar results. Our results therefore suggest that, with
appropriate Lagrangian averaging, quantities that have
finite correlations along trajectories, frame-invariant or
not, may find use in forecasting applications.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science
Foundation under Grant No. DMR-1206399.

[1] A. K. M. F. Hussain, “Coherent structures and turbu-
lence,” J. Fluid Mech. 173, 303–356 (1986).

[2] G. L. Brown and A. Roshko, “On density effects and large
structure in turbulent mixing layers,” J. Fluid Mech. 64,
775–816 (1974).

[3] N. T. Ouellette, “On the dynamical role of coherent
structures in turbulence,” C. R. Physique 13, 866–877
(2012).

[4] M. Germano, “Turbulence: the filtering approach,” J.
Fluid Mech. 238, 325–336 (1992).

[5] S. Liu, C. Meneveau, and J. Katz, “On the properties
of similarity subgrid-scale models as deduced from mea-
surements in a turbulent jet,” J. Fluid Mech. 275, 83–119
(1994).

[6] G. L. Eyink, “Local energy flux and the refined similarity
hypothesis,” J. Stat. Phys. 78, 335–351 (1995).

[7] M. K. Rivera, W. B. Daniel, S. Y. Chen, and R. E.
Ecke, “Energy and enstrophy transfer in decaying two-
dimensional turbulence,” Phys. Rev. Lett. 90, 104502
(2003).

[8] S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao,
“Physical mechanism of the two-dimensional enstrophy
cascade,” Phys. Rev. Lett. 91, 214501 (2003).

[9] S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan,
and Z. Xiao, “Physical mechanism of the two-dimensional
inverse energy cascade,” Phys. Rev. Lett. 96, 084502

(2006).
[10] Z. Xiao, M. Wan, S. Chen, and G. L. Eyink, “Phys-

ical mechanism of the inverse energy cascade of two-
dimensional turbulence: a numerical investigation,” J.
Fluid Mech. 619, 1–44 (2009).

[11] Y. Liao and N. T. Ouellette, “Spatial structure of spectral
transport in two-dimensional flow,” J. Fluid Mech. 725,
281–298 (2013).

[12] D. H. Kelley and N. T. Ouellette, “Spatiotemporal per-
sistence of spectral fluxes in two-dimensional weak tur-
bulence,” Phys. Fluids 23, 115101 (2011).

[13] G. Haller, “Lagrangian coherent structures,” Annu. Rev.
Fluid Mech. 47, 137–161 (2015).

[14] D. H. Kelley, M. R. Allshouse, and N. T. Ouellette, “La-
grangian coherent structures separate dynamically dis-
tinct regions in fluid flows,” Phys. Rev. E 88, 013017
(2013).

[15] A. Okubo, “Horizontal dispersion of floatable particles
in the vicinity of velocity singularities such as conver-
gences,” Deep-Sea Res. 17, 445–454 (1970).

[16] J. Weiss, “The dynamics of enstrophy transfer in two-
dimensional hydrodynamics,” Physica D 48, 273–294
(1991).

[17] G. Haller, “An objective definition of a vortex,” J. Fluid
Mech. 525, 1–26 (2005).

[18] M. K. Rivera, H. Aluie, and R. E. Ecke, “The direct



8

enstrophy cascade of two-dimensional soap film flows,”
Phys. Fluids 26, 055105 (2014).

[19] M. R. Allshouse and J.-L. Thiffeault, “Detecting coherent
structures using braids,” Physica D 241, 95–105 (2012).

[20] M. Farazmand, “Hyperbolic Lagrangian coherent struc-
tures align with contours of path-averaged scalars,”
arXiv:1501.05036 (2015).

[21] D. H. Kelley and N. T. Ouellette, “Onset of three-
dimensionality in electromagnetically forced thin-layer
flows,” Phys. Fluids 23, 045103 (2011).

[22] Y. Liao, D. H. Kelley, and N. T. Ouellette, “Effects of
forcing geometry on two-dimensional weak turbulence,”
Phys. Rev. E 86, 036306 (2012).

[23] Y. Liao and N. T. Ouellette, “Geometry of scale-to-
scale energy and enstrophy transport in two-dimensional
flow,” Phys. Fluids 26, 045103 (2014).

[24] N. T. Ouellette and J. P. Gollub, “Dynamic topology in
spatiotemporal chaos,” Phys. Fluids 20, 064104 (2008).

[25] D. H. Kelley and N. T. Ouellette, “Using particle tracking
to measure flow instabilities in an undergraduate labora-
tory experiment,” Am. J. Phys. 79, 267–273 (2011).

[26] N. T. Ouellette, H. Xu, and E. Bodenschatz, “A quan-
titative study of three-dimensional Lagrangian particle

tracking algorithms,” Exp. Fluids 40, 301–313 (2006).
[27] N. Mordant, A. M. Crawford, and E. Bodenschatz, “Ex-

perimental Lagrangian probability density function mea-
surement,” Physica D 193, 245–251 (2004).

[28] R. Ni, G. A. Voth, and N. T. Ouellette, “Extracting
turbulent spectral transfer from under-resolved velocity
fields,” Phys. Fluids 26, 105017 (2014).

[29] R. H. Kraichnan, “Inertial ranges in two-dimensional tur-
bulence,” Phys. Fluids 10, 1417–1423 (1967).

[30] C. E. Leith, “Diffusion approximation for two-
dimensional turbulence,” Phys. Fluids 11, 671–673
(1968).

[31] G. K. Batchelor, “Computation of the energy spectrum in
homegeneous two-dimensional turbulence,” Phys. Fluids
12, II233–II239 (1969).
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