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The compensated 3-dimensional turbulent kinetic energy spectrum exhibits a peculiar bump at
wavenumbers in the vicinity of the cross-over from inertial to viscous regimes due to pile up in
turbulent kinetic energy, a phenomenon referred to as the bottleneck effect. The origin of this bump
is linked to an inflection point in the second-order structure function in physical space caused by
competition between vortex stretching and viscous diffusion mechanisms. The bump location and
magnitude are reasonably predicted from a novel analytical solution to the Von Kármán-Howarth
equation reflecting the competition between these two mechanisms and accounting for variable
structure skewness with decreasing scale.

a. Introduction: At wavenumbers k much larger
than the integral length scale of the flow (Lp), the three-
dimensional turbulent kinetic energy spectrum φtke(k)
exhibits a ’bottleneck’ whose signature is a bump at the
cross-over from inertial to viscous regimes in its compen-
sated form k5/3φtke(k). This ’bump’ has been confirmed
by Direct Numerical Simulations (DNS), experiments,
and theories including the Test Field Model (TFM)
and Eddy-Damped Quasi-Normal Model (EDQNM) [1–
13]. Not accounting for the bottleneck prevents ac-
ceptable reproduction of the longitudinal velocity gra-
dient skewness [10, 14, 15] thereby prompting interest
in phenomenological theories that explain the onset of
such a bottleneck and provide mathematical representa-
tion of the shape of φtke(k) around the bottleneck. It
is for this reason that the causes of the bottleneck re-
ceived scrutinity [6, 12, 16, 17]. One study attributes
the bottleneck occurrence entirely to the restricted in-
ertial subrange in DNS [18]. Models based on TFM
and EDQNM propose the main source of energy in the
bump to be non-local interactions governing the trans-
fer terms across the energy cascade [2]. On similar the-
oretical lines, it is accepted that the bottleneck arises
due to the lack of small scale vorticity at k exceed-
ing the so-called Kolmogorov micro-scale wavenumber
kd ∝ η−1, where η = (ν3/ǫ)1/4 is the smallest length
scale of turbulence where the action of fluid viscosity (ν)
is appreciable and ǫ = 2ν

∫

∞

0
k2φtke(k)dk defines the

mean turbulent kinetic energy dissipation rate, which
is assumed to be identical to the energy transfer rate
across scales. In the vicinity of kd, absence of small scale
vortices makes this energy cascade less efficient thereby
resulting in an apparent energy pileup in φtke(k) for
k < kd. The bottleneck effect was shown to be ampli-
fied when unrealistic hyper-viscosity was used in simula-
tions [3, 5, 7, 8, 11, 17]. However, this bottleneck appears
much weaker [4, 19, 20] or almost absent [1, 21] in many
experiments reporting one-dimensional component-wise

velocity spectra, at least compared to DNS results re-
porting three-dimensional φtke(k). The reason for the
presence of a bottleneck in 3-D but their muted or ab-
sent signature in one-dimensional component-wise spec-
tra is understood [1, 7]. What is contested is the level of
complexity needed to reproduce the main features of the
bottleneck. Bumps at the cross-over from large-scales to
inertial-scales have also been reported and discussed [6]
but they are beyond the scope of the work here. Previ-
ous approaches were based on complex two-point closure
schemes used to predict the evolution of φtke(k) usually
from the Von Kármán-Howarth (VKH) equation written
in spectral space (e.g. the EDQNM and TFM closure
schemes mentioned above) since their applicability ex-
tends beyond inertial range scales. It is demonstrated
here that the bottleneck can be analytically predicted
from the VKH equation [13, 22–24] written in physi-
cal rather than spectral space using a closure scheme
that accommodates variable structure skewness approx-
imation across scales. While the VKH modeled second-
order structure function D2(r) with scale r does not ex-
hibit a bottleneck, the bump in the compensated turbu-
lent kinetic energy spectrum is linked to a maximum in
r1/3dD2(r)/dr, which approximately coincides with an r
at which d2D2(r)/dr

2 = 0. The d2D2(r)/dr
2 = 0 is an

outcome of a competition between vortex stretching and
viscous diffusion mechanisms.
b. Definitions: In homogeneous isotropic turbu-

lence, the nth-order structure function of a turbulent ve-
locity component q = u, v, w with variance σ2

q = σ2
u =

σ2
v = σ2

w and turbulent kinetic energy (3/2)σ2
q at two

points separated by distance r is given by

Dn(r) = 〈(∆rq)
n〉, (1)

where ∆rq defines the differences in the flow variable q
at two points in the fluid separated by a scalar distance
r, r = (r2x + r2y + r2z)

1/2, rx, ry, and rz are separation
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distances projected along the longitudinal (x), lateral (y),
and vertical (z) directions, respectively, and u, v, w are
velocity components along x, y, z and 〈·〉 is ensemble
averaging. The D2(r) is related to φtke(k) using [6, 25]

D2(r) =
4

3

∫

∞

0

(

1− sin(kr)

kr

)

φtke(k)dk, (2)

where k = (k2x + k2y + k2z)
1/2. At r ≥ Lp, D2(r) ≈ 2σ2

q ≈
(4/3)

∫

∞

0
φtke(k)dk. Also, as r → 0, sin(kr)/(kr) → 1

and D2(0) → 0 irrespective of the shape of φtke(k) as
expected from its definition. An inflection point in D2(r)
is necessary but not sufficient for explaining a bump in
φtke(k) as shown elsewhere [6]. The main mechanisms
causing this inflection point and why they can lead to a
bump in φtke(k) are now discussed in the context of the
VKH equation.
c. The Von Kármán-Howarth (VKH) equation:

Prior results [13, 23] and numerical studies [9] demon-
strated connections between solutions to VKH (in phys-
ical space) and φtke(k). A logical starting point for de-
veloping a phenomenological theory is the simplest form
of the VKH equation in physical space that retains all
the essential mechanisms at the cross-over from inertial
to viscous regimes. For simplicity, q = u, the turbulent
kinetic energy is (3/2)σ2

u, and the VKH equation for the
u component is given by

D3(r) − 6ν
dD2(r)

dr
= −4

5
ǫr, (3)

where the right-hand side is the net energy transfer rate
cascading from scale r to finer scales, D3(r) is inertial
cascade related to generation of enstrophy by vortex-line
stretching (D3(r) ∼ r3 〈ωi(r)ωj(r)Sij(r)〉, where ω is vor-
ticity and Sij is the strain rate [23]) and 6νdD2(r)/dr
is the removal rate by viscous diffusion. In the limit
of 6νdD2(r)/dr → 0, Eq. (3) recovers the well-known
D3(r) = 〈[u(x+ r)− u(x)]3〉 = −(4/5)ǫr or the so-called
Kolmogorov’s 4/5 rule [26]. It also implies that when
viscous diffusion is negligible, as is the case in the iner-
tial subrange, vortex stretching is responsible for much of
the net energy transfer rate at scale r. When interpreting
D2(r) as representing the squared amplitude of the mean
velocity gradient at scale r (i.e., D2(r) ∼ 〈(rdu/dr)2〉),
the VKH equation can be physically translated into
a competition between vortex stretching (i.e. D3(r))
and viscous diffusion (i.e., νdD2(r)/dr) mechanisms to
match energy dissipation (i.e., −(4/5)ǫr). On the one
hand, the viscous diffusion term ’smoothes-out’ veloc-
ity gradients (and hence vorticity) at scale r. On the
other hand, velocity gradients do contribute to D3(r) ∼
r3〈ωi(r)ωj(r)Sij(r)〉 to efficiently transfer energy from r
to finer scales thereby setting up the competing mecha-
nisms.
d. Closure schemes To predict D2(r), closure ap-

proximations to the vortex stretching term are neces-
sary and wide ranging possibilities exist [24]. Using the
constant skewness hypothesis as a closure of maximum

simplicity [27], D3(r) = SuD2(r)|D2(r)|1/2. The con-
stant structure skewness Su value can be determined
from inertial subrange scaling by noting that D2(r) ≈
C′

kǫ
2/3r2/3 resulting in Su ≈ −(4/5)/(C′

k
3/2) ≈ −0.27,

where C′

k = (4/3)Ck = 2.0 is the Kolmogorov constant
associated with the second-order structure function (in
3-dimensions). With a constant Su, Eq. (3) reduces to
[23]

dD2(r)

dr
+ auD2(r)|D2(r)|1/2 = bur, (4)

where au = −Su/(6ν) and bu = (2/15)(ǫ/ν). A point of
departure from earlier work [23] is to obtain an analytical
solution of Eq 4 while retaining a variable structure skew-
ness for scales smaller than those in the inertial subrange.
A variable structure skewness can be achieved by assum-
ing a linear relation between D3(r) and D2(r) given as
D3(r) = Su(C

′

kǫ
2/3r2/3)1/2D2(r). This simplification is

arbitrary but accommodates the numerous experiments
and simulations [9, 13] that demonstrated the structure
skewness computed as −D3(r)[D2(r)]

−3/2 increases with
decreasing r outside the inertial subrange. With this ap-
proximation, Eq. (4) simplifies to

dD2(r)

dr
+ a′uD2(r)r

1/3 = bur, (5)

where a′u = au(C
′

k)
1/2ǫ1/3 recovers the Kolmogorov scal-

ing in the inertial subrange forD2(r). This equation cap-
tures the competition between a nonlinear vortex stretch-
ing and a linear viscous diffusion and can be analytically
solved when enforcing D2(0) = 0 to yield a compact ex-
pression given by

D2(r)

C′

k(ǫr)
2/3

= 1− 1
1
2

√

3a′ur
2/3

DawF

(

1

2

√

3a′ur
2/3

)

, (6)

where DawF (ζ) is the Dawson function given by

DawF (ζ) = exp(−ζ2)

∫ ζ

0

exp(p2)dp

≈ ζ − 2

3
ζ3 +

4

15
ζ5 − 8

105
ζ7 + ... (7)

Eq. (6) can be arranged to yield

D2(r)

C′

k(ǫr)
2/3

= yc(ζ) = 1− 1

ζ
DawF (ζ), (8)

where ζ = θ(r/η)2/3, θ = (10C′

k)
−1/2, and yc is a

non-dimensional second order structure function. Fig.
1 shows that Eq. (8) reasonably approximates a nu-
merical solution to Eq. (4) that employs a constant
structure skewness [23]. In fact, Fig.2 compares the
structure skewness predicted from the analytical solution
here ≈ −0.27[1 − 1

ζDawF (ζ)]
−1/2, the constant skew-

ness assumption Su ≈ −0.27, and the measured struc-
ture skewness reported elsewhere [13]. It is clear that
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the constant skewness model (numerical) and the vari-
able skewness analytical solution proposed here bound
expected variations in structure skewness with decreas-
ing r. It follows that any agreement between these two
modeled outcomes can be viewed as a robustness mea-
sure to the precise skewness closure (constant or dy-
namic across scales). As a further check, good agree-
ment was found between Eq.(8) and the Batchelor scaling
for D2(r) described elsewhere [6]. The Batchelor scaling
was demonstrated to be robust to finite Reynolds num-
ber and large-scale anisotropic effects than its spectral
counterpart when identifying the cross-over from iner-
tial to viscous ranges [6]. The viscous diffusion term
causes deviations from K41 scaling through the Daw-
son function that then introduces an inflection point in
D2(r). As expected, when r/η ≫ 1, vortex stretching
(i.e., modeled D3(r)) explains much of the (4/5)ǫr term,
and conversely, when r/η ∼ 1, viscous diffusion explains
the remaining (4/5)ǫr around the Kolmogorov microscale
η (top-mid and top-right panels in Fig. 1). In the vicin-
ity of r/η = 5− 10, the analytical solution with its vari-
able structure skewness and the numerical solution with
its constant structure skewness confirm the occurrence
of a maximum in the viscous diffusion term coinciding
with an inflection point in D2(r) (i.e. d

2D2(r)/dr
2 = 0).

This is the scale where the spectral bottleneck peak is
expected. It follows that an occurrence of a maximum
in the viscous diffusion term, analytically and numeri-
cally predicted to occur at some scale r/η ∈ [5, 10] ir-
respective of the skewness closure, must also coincide
with the scale that most effectively weakens the effi-
ciency of vortex stretching with further reductions in r
(i.e. the term dD3(r)/dr = −(4/5)ǫ − 6νd2D2(r)/dr

2).
The term 6νd2D2(r)/dr

2 reverses sign with reduced r at
r/η ∈ [5, 10] while (4/5)ǫ remains constant. This turns
out to be the link with the spectral bottleneck commonly
featured as a bump in k5/3φtke(k) as will be seen in the
next section.
e. The spectral bump: It was shown that in physical

(or r) and spectral (or k) spaces, the kinetic energy of
eddies of size η < r = le < Lp are approximately [23]

rV (r)|r=le ≈ [kφtke(k)]k=π̂/le ;V (r) = −3

8
r2

d

dr

1

r

dD2(r)

dr
,

(9)
where π̂ = 9π/8 and V (r) is the signature function.
The rV (r) approximation to kφtke(k) breaks down in
the vicinity of r = η but holds reasonably far from it
(i.e. around the presumed location of the bottleneck).
Numerical experiments were conducted (not shown)
and confirm that estimating φtke(k) from φtke(k) =
k−1

∫

∞

0
sin(kr)(dD2(r)/dr)dr reasonably agree with Eq.

(9) in the inertial subrange and in the vicinity of the bot-
tleneck though these numerical experiments suffer from
the finite size corrections discussed elsewhere [6]. Us-
ing the V (r) approximation, some distortion of φtke(k)
become significant for kη > 0.2. The scaling analysis
between k and r spaces is now exploited to identify the
bump location given by d(k5/3φtke(k))/dk = 0 or the
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FIG. 1. Top: Comparison between the analytical (solid,
variable structure skewness) and numerical (dashed, con-
stant structure skewness) solutions to yc and the compet-
ing terms in VKH equation. The comparison suggests that
yc(ζ) = 1 − ζ−1DawF (ζ) reasonably approximates the VKH
equation and all its terms in the inertial to viscous ranges
when closed with Su ≈ −0.27. Dimensionless (top panels) and
dimensional (bottom panels) results are shown with −(4/5)ǫr
highlighted in the bottom-center and -right panels. Note the
inflection point in D2(r) at scale r/η ∈ [5, 10] determined by
d2D2(r)/dr

2 = 0 (bottom left).

equivalent r location where d(r1/3V (r))/dr = 0. Insert-
ing the analytical result for D2(r) into V (r) leads to an
r that satisfies d(r1/3V (r))/dr = 0 obeying the algebraic
equation

−5C′

k

(

r

η

)2/3

+

[

5C′

k +

(

r

η

)4/3
]

G(r/η) = 0, (10)

where G(r/η) =
√
10DawF

[

(r/η)2/3/
√

10C′

k

]

. An ap-
proximate solution to Eq. (10) corresponds to r/η =
(10C′

k)
3/4. For C′

k = 2, this leads to a bottleneck
at r/η = 10, which is close to the r/η at which
d2D2(r)/dr

2 = 0. The predicted bump location and
magnitude are now compared with DNS results report-
ing k5/3φtke(k). When the entire spectrum is estimated
from Eq. (9) and Eq. (6), agreement between DNS
results and model calculations shown in Fig. 2 is en-
couraging except close to kη = 1 (as expected). Again,
it must be emphasized that the DNS results do have
their own limitations and suffer from finite size effects
and some large-scale anisotropy due to finite shearing
[6], which are absent from the VKH model. The out-
come of the numerical solution with constant skewness
closure to the VKH equation shown in Fig. 1 is pre-
sented to illustrate that the findings are not sensitive
to such skewness closure. Also, the same analysis is re-
peated with a Townsend VT (r) = (3/4)dD2(r)/dr and
the main conclusions about the occurrence and magni-
tude of the spectral bump are not significantly altered
even though distortions to predicted k5/3φtke(k) in the
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FIG. 2. Top: Measured variations in Su(r) (dot) relative to
the constant (dashed) Su = −0.27 and modeled ≈ −0.27[1 −

1

ζ
DawF (ζ)]

−1/2 using the analytical solution to the VKH.

Bottom: Comparison between DNS reported k5/3φtke(k) re-

ported elsewhere [10] along with modeled k5/3φtke(k) from the
VKH (analytical and numerical) equation with D2(r) trans-
formed to the Fourier domain using Eq. (9). DNS results from
other studies [15] are also included as symbols. For reference,

modeled k5/3φtke(k) using VT (r) are featured.

viscous range are larger as foreshadowed by other stud-
ies [6]. Hence, the presence of a viscous diffusion term
ensures the existence of an inflection point in D2(r) or a
maximum in dD2(r)/dr, which is one of the agents nec-
essary to cause a bump in k5/3φtke(k) when employed
with Eq. (10). The inflection point in D2(r) appears
necessary for the onset of a spectral bump but clearly
not sufficient. An inflection in the compensated and nor-

malized structure function given by Wn(r) = (1 − yc)ζ
can delineate the onset of a spectral bottleneck (unlike
D2(r)). For the analytical solution to the VKH proposed
here with a variable structure skewness, Wn(r) possess
an inflection point as predicted from Eq. (8) by virtue
of DawF (ζ) shape that also coincides with the inflec-
tion point in D2(r). On the other hand, a spectrum of
the form φtke(k) = Cǫ2/3k−5/3 exp (−αkη), when trans-
formed into physical space using Eq. 9, yields a D2(r)
that has an inflection point; however, it can be shown
that the Wn(r) of D2(r) associated with this spectrum
does not posses an inflection point even though D2(r)
has an inflection point. This is the sought result.

f. Conclusion Simple (i.e. algebraic) closure
schemes previously adopted to integrate spectral-budget
equations (e.g. Heisenberg or Pao’s hypothesis [23]) fail
to reproduce the bottleneck effect observed in compen-
sated spectra and were replaced by much more com-
plex approaches such as the TFM and EDQNM closure
scheme. This level of complexity is not required when
working in real space. An analytical model that accom-
modates decreased structure skewness with decreasing
scale used in conjunction with the VKH equation rea-
sonably predicted the spectral bump location and mag-
nitude. It also compares reasonably with the Batchelor
scaling for D2(r) in physical space, where the cross-over
from inertial to viscous is shown to be robust to large-
scale anisotropy and finite size effects [6] than its spectral
counterpart. As pointed out by others [23], it is remark-
able how simple closure schemes in real space yield so
much more information than their counterparts in the
spectral domain.
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