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A mixture of dodecanethiol-capped Au nanoparticles (AuNPs) and the amphiphilic fatty-acid
Stearic Acid (StA), spread as a monomolecular layer on water surface, is observed with Brewster
Angle microscopy (BAM) to form a two-dimensional network of AuNP clusters through de-mixing,
at concentration of AuNPs by weight, (ρ) > 10% and the surface pressure, (π) ≥ 10 mN m−1. For
π = 15 mN m−1, the number of nodes (n) remains unchanged till ∼ 2 hours and then changes over
to a lower n state, where the pattern consists of almost perfect circles with greater in plane thickness
of the AuNP lamellae. For the higher n state the mean square fluctuation of BAM intensity remains
flat and then decays as f(ξ) = ξ2α with α ∼ 0.6 (correlated fluctuations) over the length scales of
400 µm-6 µm and below 6µm, respectively. For the lower n state the fluctuation decays almost over
the entire length scale with α = 0.3, indicating emergence of aperiodicity from quasi-periodicity and
a changeover to anti-correlated fluctuations. These patterns can be looked at as two distinct chaotic
trajectories in the I − I ′ ’phase space’ of the system (I being the scattered light intensity at any
position of the pattern and I ′ its gradient) with characteristic Lyapunov exponents.

PACS numbers: 82.40.Bj; 81.16.Rf; 05.65.+b; 68.18.-g.

I. INTRODUCTION

Patterns, in general, form through processes of self or-
ganization in systems that are driven far from equilib-
rium [1–3]. In addition to understanding the underlying
thermodynamics and mechanisms involved in pattern for-
mation, patterns are also studied within the formalism of
universality classes, fractals and self similarity, critical-
ity and percolation, chaos and complexity [4, 5]. Such
pattern formation is, in a number of instances, guided by
the competing tendencies of integration and segregation
of constituents in mixtures with long-term instabilities
[6] and hence studies of patterns on a long timescale are
important.
Self-organization of AuNPs has been reported in vari-

ous polymer/lipid matrices [7–11]. These include both in
situ studies at the air-water interface and ex situ ones af-
ter transferring the film onto a substrate. In all these the
focus was on the morphology of the self-organized struc-
tures on a scale of µm to nm. However, to our knowledge,
the evolution of such patterns over a timescale spanning
more than say, 2hrs, has not been studied, perhaps due
to the apparent stability of the pattern.
Here we present a maiden study of the long-term dy-

namics of one such spatial pattern resulting from the self-
organization of dodecanethiol-capped gold nanoparticles
(AuNPs) in a monomolecular film of the amphiphilic
fatty acid, stearic acid (StA) at air-water interface. In
a previous communication we gave a preliminary re-
port on the formation of a spatial pattern of AuNPs in
stearic acid featuring an interconnected network of en-
closed micro-spaces [12]. In that work the pattern was
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characterized by measuring the average pore size of the
interconnected microspaces and studied while varying the
surface pressure π. Since it was the first observation of
such a network the emphasis was on the reproducibil-
ity and reversibility of the pattern in general and during
compression-decompression cycles in particular. Most
important, however, is that we did not carry out any
study at timescales longer than 2 hours and hence, no
really long-term dynamics was investigated.

The major aspect of the present study is precisely this
long-term observation exceeding 4 hours, whereby an en-
tirely new pattern or state has been found to emerge after
2 hours. In this communication we have characterized
the patterns by the node density, n, a more accurately
measureable quantity, in order to carry out a rigourous
and extensive study of long term dynamics of this 2D
pattern as a function of n, from its initial to final state
with surface pressure as a fixed parameter. Our presen-
tation of this long-term dynamics of the pattern includes
statistical analyses of the pattern in its initial and finally
evolved states where the two states have been studied
within the context of statistical fluctuations, correlations
over real space and the corresponding power spectra in
reciprocal space [13]. The initial state has been identified
to be quasiperiodic and the final state to be completely
aperiodic, while both the states are found to be spatially
chaotic through a calculation of the Lyapunov exponents.
In a 2D system such as ours fluctuations play a major role
and indeed we have shown that the pattern evolves from
one chaotic state to another [14–16] through a change in
the nature of this fluctuation.
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FIG. 1. (Color online) Schematic of the experiment show-
ing the Langmuir trough with movable trough barriers. Au
nanoparticles (AuNPs) are depicted as spheres with surround-
ing thiol caps while the StAmolecules have hydrophillic spher-
ical head groups and hydrophobic tails.

II. EXPERIMENTAL DETAILS

AuNPs were synthesized by Brust’s method [17, 18]
and consisted of spherical Au cores each 2-3 nm
wide surrounded by a capping layer of hydrophobic
dodecane thiol, as checked by Transmission Electron
Microscopy[12]. 50µl of a chloroform solution of AuNPs
(<1 mol% of mixture) and StA, was spread at the
surface of aspirated, purified water (Millipore, resistivity
18 MΩcm) in a Langmuir trough (NIMA Technologies
UK). The AuNPs self-organize in the monolayer cushion
of StA [19, 20] formed at the air-water interface (Figure
1). These NPs interact via short-ranged van der Waals
attractive forces with each other as well as with the
surrounding StA molecules through the alkyl chains of
their thiol caps and those of the surrounding StA tails,
and this attractive force stabilizes the AuNPs against
complete phase segregation in the film [21, 22].

The film of StA and AuNPs so formed was compressed
quasi-statically by moving in the two Teflon barriers (13
cm wide), provided in the trough, at 1 cm/min. The
surface pressure π, given by γ0 − γ (where γ0 (γ) is the
surface tension of pure (monolayer-covered) water), was
measured from the force acting on a Wilhemy paper plate
(Whatman’s Chr1 grade) suspended at the air-film inter-
face. The film morphology was then studied with an
Imaging Ellipsometer (ep3 Accurion Nanofilm GmbH,
Germany) in the Brewster Angle Microscopy mode, at
an in-plane resolution of 450 nm [23, 24]. The film was
maintained at constant π through very slow compres-
sion of the monolayer that compensated for the loss of
molecules through different mechanisms over the period
of our observation. Time evolution of the film was studied
once this desired surface pressure was reached whereby
images of the film were acquired after every 10 minutes
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FIG. 2. (Color online) Brewster Angle Microscopy (BAM)
images of the Dodecanethiol-capped Au Nanoparticle (AuNP)
(20% by wt) - Stearic Acid (StA) mixed thin film at Surface
Pressure (π)=15 mN m−1 at (a) 0, (b) 60, (c) 120, (d) 180
and (e) 240 min (scan size 432µm × 337µm). AuNP clusters
appear as bright white threads on the StA monolayer form-
ing the dark grey background. (f) Variation of node density
(nodes per mm2, n, •) of the pattern with time. Data in ◦

and ⋄ represent monolayers with 30% Au and π = 10 mN m−1

and 20 mN m−1, respectively.

over a period of 4 hours.

III. RESULTS AND DISCUSSION

A. Formation of a micro-scale network pattern

The compression of the AuNP-StA film at water sur-
face caused the AuNPs to form clusters visible at even
π ≃ 0. The clusters decorated the domain boundaries be-
tween a condensed phase and a low density phase of StA,
in the low pressure coexistence regime. On steady com-
pression beyond a threshold, the density fluctuations of
the AuNPs gave rise to self-organization of a 2D network
pattern of AuNP clusters (Figure 2(a)) in the StA mono-
layer [12] with extensive monolayer coverage for concen-
tration of AuNPs (by weight) ρ > 10% and π ≥ 10 mN
m−1. The pattern was found to be stable till 20 mN m−1

beyond which it began to collapse laterally.

B. Long time evolution of the pattern

We explored the long-time evolution of this pattern
for a AuNP (20% by weight)-StA thin film at π = 15
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mNm−1. Figure 2(a)-(e) shows the evolution of the pat-
tern over a period of 4 hours while Figure 2(f) shows the
change in the 2D density of nodes (nodes per mm2, n)
connecting three (or more) AuNP lamellae, at π = 10,
15 and 20 mNm−1. At π= 15 mNm−1 we see an ini-
tial period of stability with a pattern characterized by
high n and quasiperiodicity, followed by a dramatic fall
in n during the second and third hours, finally slowing
down in the final fourth hour to another pattern having a
lower value of n and mostly ring shaped structures with a
wide distribution of diameters. This remains almost un-
changed for at least 20 hours. The completely different
long-term dynamics observed for different Au concentra-
tions and π rules out any dominant role of experimental
drifts. The absence of any external factor or any appar-
ent change in the composition of the mixed monolayer in
undergoing the total change in pattern from the initial to
the final state does not also suggest a role of Marangoni
forces.

C. Spatial Correlations and Mean square
fluctuation

The spatial variation of intensity along a typical line in
each of the observed patterns corresponds to spatial vari-
ations in AuNP density. The mean square (m.s) intensity
fluctuation f(ξ) and the power spectra p(k), where ξ is
the separation between points along any horizontal or
vertical line in the images, k is the reciprocal of ξ and
p(k) the Fourier transform of intensity autocorrelation
C(ξ), were obtained for each of the two states in Figure
2(a) and 2(e) with

f(ξ) =< [∆I(ξ)− < ∆I(ξ) >]2 > (1)

C(ξ) =
< (I(q0)− < I(q0) >)(I(q0 + ξ)− < I(q0) >) >

< (I(q0)− < I(q0) >)2 >
(2)

where I is the reflected intensity along a typical line
of the image, q is the space coordinate (q = x or y),
and ∆I(ξ) = I(q0 + ξ) − I(q0). Fluctuation and power
spectrum, for the high n state, are shown respectively in
Figure 3(a) and 3(b) while those for the low n state are
shown respectively in Figure 3(c) and 3(d). For any par-
ticular value of ξ, the averages were computed by varying
q0 over 5 lines (separated by 100 pixels) along the breadth
of the image, where each line consisted of 949 pixels. f(ξ)
along a typical line shows for the initial high n state a
more or less flat part between 432 µm (∼ image width)
to 6 µm (∼ cell width in the network) below which it
crosses over to a power law decay regime (f(ξ) = ξ2α)
with an average Hurst exponent α = 0.6 that signifies
long range correlations.
For this high n state, a model periodic intensity varia-

tion with some random spacing between the pulses (Fig-
ure 4(a)) produced f(ξ) and p(k) (Figure 4(b) and (c))
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FIG. 3. (Color online) (a,c) Mean square fluctuation (log f
vs log ξ) and (b,d) power spectrum (log p vs log k, k = ξ−1)
of the intensity profile along a typical line across Figure 2(a)
and Figure 2(e), respectively. Red lines show power law fits.
See text for details. log ⇒ log10.

similar to those for the observed pattern (Figure 3(a) and
(b)), leading us to conclude that oscillations in the flat
part of Figure 3(a) occur due to presence of periodicity,
while the irregularity in the spacing of these oscillations
results from random modulations, and that the initial
high n state is a quasiperiodic state with random modu-
lations embedded in spatial periodicity.
The fluctuations for the low n state, on the other hand,

shows a reduced flat region extending only over larger
lengths (432-50 µm) indicating larger structures and a
single slope over almost the whole range with α = 0.3
signifying long range anticorrelations (Figure 3(c)). The
flat region consists of broad peaks at an average sepa-
ration ∼ 80µm (∼ size of rings). Sharp spikes in p(k)
of the initial state (Figure 3(b)) change to a smoother
spectrum of k values (Figure 3(d)). The emergence of
rings of all possible diameters at the end of long time
evolution of the film destroys the initial quasi-periodicity
and makes a prediction of spatial intensity variations im-
possible, suggesting a spatially chaotic pattern. However,
the reliable parameter to quantify chaotic behavior is the
Lyapunov exponent and we decided to extract it from
both the states.

D. Lyapunov exponents and chaos

The Lyapunov exponent (λ) measures the rate of expo-
nential divergence or convergence of trajectories in phase
space over time[25]. A positive λ signifies chaos, i.e. di-
vergence of two states with slightly different initial con-
ditions with time, the magnitude of λ determining how
soon the system dynamics becomes unpredictable. In the
context of our system, the time series is replaced with a
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FIG. 4. (a) A quasi-periodic wave model for the pattern at T = 0 min, (b) the corresponding f(ξ) and (c) p(k).
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FIG. 5. (a) I vs space co-ordinate (q) and (b) spatial deriva-
tive of intensity (I ′) vs intensity (I) along a typical line of the
observed pattern for initial high node density state, (c) I vs
q and (d) I ′ vs I along a typical line of observed pattern for
the final low node density state.

spatial series and hence λ here measures the rate of loss
of predictability of intensity over space.
The Lyapunov exponents were estimated by Rosen-

stein’s method using the TISEAN software package,
which treats two very close values along the spatial series
as the initial conditions for two close, perturbed trajec-
tories [26, 27]. The distance ∆0 between these values
for a chaotic system then grows exponentially in time as
∆l = ∆0e

λl, l being the number of steps. Intensity data
along successive lines along the breadth of the image were
concatenated to increase data points and hence the accu-
racy in determining λ. After concatenating 3 successive
lines of the image (949×3 data points) λ was found to
saturate. This was repeated at different locations along
the breadth of the images, whereupon we obtained 0.13
≤ λ ≤ 0.19 for the high n state and 0.13 ≤ λ ≤ 0.27 for
the low n state, indicating a small increase for the final
state over the initial one.
Variations in I along typical lines of the experimental

high and low node states (Figure 2(a) and (e)) are plotted
in (Figure 5(a) and (c)), while spatial derivatives of I (I ′)

against I along those lines are plotted in (Figure 5(b) and
(d)), respectively. Both states have non-periodic orbits
but whereas the initial state follows a trajectory filling
the phase space with some closed orbits, the final state is
dominated by low amplitude structures forming a dense
region in the phase space with some large amplitude ones
surrounding it, showing that both states have spatially
chaotic but distinct natures.

E. Instability and fluctuation driven dynamics

The homogenously mixed state, thus, is a stable state
only at very low surface pressure. The competition be-
tween the NP-NP cohesion on the one hand and NP-StA
adhesion on the other causes a competition between ag-
gregation and segregation of mixture constituents leading
to an instability. The instability persists and is further
amplified on compression because the molecules are con-
strained in two dimensions. Beyond a threshold the sys-
tem becomes unstable to a narrow band of wave vectors
resulting in a spatially quasiperiodic initial state. How-
ever, the system is only quasi-stationary in this state so
that this quasiperiodic state with time gives way to an
aperiodic pattern with a wider spectrum in k space. The
instability may thus be classified as Type IIs of Cross
and Hohenberg [2].
In most physical systems the control parameter is im-

portant and thermal effects are treated as insignificant.
In contrast, for our micro-scale patterns formed by sub-
micron sized clusters interacting via short-ranged forces,
fluctuation is expected to play a determining role in pat-
tern evolution especially if this fluctuation is correlated or
anti-correlated. We propose that the final chaotic state
is achieved by stochastic elements that drive the system
towards it. Since the effect of fluctuation slowly builds
up in the system the exact time duration after which the
final chaotic state is observed varies in repeated experi-
ments. However the final state always consists of rings
of varying diameters. This formation of rings as the fi-
nal state of the pattern is favored on account of closer
packing of AuNP clusters accompanied by an increase in
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the number of nearest and next nearest neighbors (Figure
6(a) and (b)). The strength of the short-ranged cohesive
force between the AuNPs and the resistance offered to
their motion by the StA monolayer ensures the stability
of the initially formed high node density state for a con-
siderable length of time. This regime is characterized by
correlated fluctuations (α = 0.6) signifying a superdiffu-
sive regime.

(a) (b)

FIG. 6. (Color online) (a) Nodes of the pattern with intercon-
necting lamellae in the high n state, formed by AuNP clusters
depicted as spheres and (b) formation of close packed struc-
tures after long time evolution resulting in the low n state of
the pattern.

Fluctuations may, however, destroy nodal points and
drive the system to the low node density state. That the
interconnected porous network ends up with circular ring
structures points towards the tendency of forming mini-
mum enclosing perimeters favored by a reduction in line
tension and formation of close packed structures without
collapsing or forming Diffusion Limited Aggregates. The
AuNP clusters are therefore guided by the 2D analog of
the principle of minimum surfaces guiding the structure
and dynamics of soap bubbles in a foam [28]. Here the
fluctuations become anti-correlated (α = 0.3) consistent

with subdiffusion.

IV. CONCLUSION

We have studied the long-time evolution of a micro-
scale pattern in two dimensions, formed by the de-mixing
of two fluids, one of which is composed of nano-clusters
of Au nanoparticles and the other is a Langmuir mono-
layer of Stearic acid (an amphiphile) wherein the pat-
tern was found to evolve from one chaotic state to an-
other. Fluctuations are known to be dominant in 2D
systems [29–32] near equilibrium. Our results underscore
the importance of correlated (or anti-correlated) fluctu-
ations in complex fluids in two-dimensions in determin-
ing their non-equilibrium behavior. The Hurst exponents
were found to be 0.6 (corresponding to a correlated sig-
nal) and 0.3 (corresponding to an anti-correlated signal)
respectively for the initial and final states of the pat-
tern indicating superdiffusive and subdiffusive de-mixing
consistent with the anisotropic, superdiffusive and subd-
iffusive Brownian motions recently observed in complex
fluids [33]. Further, our studies emphasize the impor-
tance of fluctuations in patterns formed at micro and
nano-scales unlike the case of macroscopic patterns. For
such micro and nano-scale patterns superdiffusive and
subdiffusive de-mixing originating from correlated and
anti-correlated fluctuations can cause a transition from
one kind of pattern to another.
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