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Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed
medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic sig-
natures of these random-walk enzymes are the result of two coupled stochastic processes –scanning
and catalysis. Here we develop analytical models to understand the conversion profiles produced
by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly cou-
pled, against a loosely-coupled passive model. Diagrammatic theory and path integral solutions of
these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed
deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine
deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the
chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA
was homogeneous. The C→U deamination profiles in both analytical predictions and experiments
exhibit a strong contextual dependence, where the conversion rate of each target site is strongly con-
tingent on the identities of other surrounding targets, with the intrusive model showing an excellent
fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures
of other DNA modification enzymes, with potential applications to cancer, gene regulation and
epigenetics.

PACS numbers: 02.50.-r, 05.40.-a, 05.20.-y, 87.10.-e

Enzymes catalyze highly specific chemical transforma-
tions on their substrates. In the cell the substrates tar-
geted by a particular enzyme are typically distributed
within an inhomogeneous medium. To seek out their
targets, enzymes must diffuse through this matrix to find
them. Enzymatic reactions with high intrinsic turnover
rates are often diffusion-limited [1, 2], where the proba-
bility of the chance encounter between enzyme and sub-
strate controls the reaction rate. Certain enzymes, such
as the endonucleases, and DNA binding proteins (e.g. lac
repressor), operate with higher target location efficiency
than random diffusion predicts, and models of facilitated
diffusion have been advanced to explain their more rapid
targeting [3–10].

While diffusion-controlled enzymatic reactions with
high intrinsic turnover rates have received a great deal
of attention, the question of how the diffusion of a low-
or moderate-efficiency enzyme affects catalytic conver-
sions on spatially-dispersed substrate targets has not
been solved. Any agent, chemical or otherwise, that can
catalyze conversions on multiple targets distributed in
the underlying space it is scanning can leave behind com-
plex spatial signatures of both its diffusive and catalytic
dynamics. Our models demonstrate how the seemingly
random conversions produced by such an enzyme can be
guided by the interplay between its catalytic activities
and motions. Permuting the targets or simply rearrang-
ing their positions can drastically alter the random out-
comes. This has important implications for a number of
systems.

For instance, activation-induced deoxycytidine deam-
inase (AID) [11] is responsible for initiating antibody
diversification in B-cells, by deaminating C→U in a
scanning-coupled catalytic reaction [12, 13] favoring trin-

ucleotide WRC target motifs (W=A/T, R=A/G) [14].
This produces hypermutation in the Ig variable and
switch regions, which are critical for the fitness of the
immune system [15–17]. Yet even when acting on its
most highly favored AAC motif, the range of catalytic
efficiency is remarkably low, ∼ 1 – 7% [13]. Seemingly,
the combination of stochastic and inefficient catalysis has
evolved to provide a highly efficient way to ensure opti-
mal Ab diversity. Cancer genomes, on the other hand,
often contain clustered mutations termed “kataegis” that
are thought to be produced by AID/APOBEC dC deam-
inases via similar scanning-coupled enzymatic reactions
[18–22]. Notably, AID, Apo3A and Apo3B appear to
cause “off-target” mutations in proto-oncogenes impli-
cated in B-cell lymphoma [23–26], breast and other can-
cers [18–22], which typically occur in regions of ssDNA
generated perhaps during aberrant DNA replication and
repair. It is here that the models have the potential
to make significant impact in mutationally based dis-
ease, since the DNA sequence exerts a major influence
on where mutations occur. Analogous coupled stochas-
tic processes are also found in epigenetics where DNA
methyltransferases [27] imprint methylated CpG islands
at DNA sequences at or near transcription sites of genes
to exert control over their expression, and in base excision
repair of endogenous and exogenous DNA damage by a
variety of DNA glycosylases [28, 29]. Since there are no
a priori restrictions on nucleic acid sequence, our model
applied to AID is similarly applicable to identifying cou-
pled scanning-catalysis mechanisms for these enzymes.

In this article, we formulate two general analytical
models for scanning-coupled catalysis to investigate the
coupling between enzyme diffusion and catalysis. Using
spatial mutational patterns measured experimentally, we
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deduce sequence context effects on catalysis. Employing
a standard Kolmogorov equation to couple the kinetics
of catalysis into the scanning motions of the enzyme, we
arrive first at a “passive” model. By simple analytical
arguments, we show that in this passive picture catalysis
does not materially modify the statistics of the diffusion
paths even though they are coupled. A more interest-
ing alternative, an “intrusive” model, can be constructed
from a path integral picture in which the catalytic action
of the enzyme produces new composite paths reflecting
coupled scanning-catalytic trajectories absent from the
passive model. Both models have zero adjustable param-
eters and employ the same inputs, all of which can be de-
termined from independent experiments. These models
represent two alternative views of how catalysis might al-
ter the scanning dynamics of an enzyme, the fundamental
distinction between them resting essentially on how the
paths are counted. The mathematical solutions to these
models show that close coupling between scanning and
catalysis generates intricate spatial relationships in the
locations of the catalyzed changes in the intrusive model,
and the observed catalytic efficiencies can exhibit com-
plex contextual dependencies where the conversion of one
substrate is controlled not only by its own susceptibility
to catalysis, e.g., WRC hot motifs, but also by surround-
ing non-hot-motifs or by any DNA sequence with or with-
out C. The passive model, on the other hand, shows no
contextual dependence. More generally, we exploit a for-
mal isomorphism between the models and quantum me-
chanics to interpret their predictions. Though scanning-
coupled enzyme systems are classical, this quantum iso-
morphism suggests that the enzyme interrogates its tar-
get sites by repeatedly applying a position measurement,
causing interruptions to its scanning paths. The out-
comes of these effects are contingent on how the targets
are arranged in space. Our results suggest that biolog-
ical systems could potentially exploit contextual effects
to guide the catalytic actions of random walk enzymes,
which for AID could facilitate mutations in Ig variable
regions that determine antibody-antigen recognition. As
a practical application to biological systems, our analysis
can be used to identify distinctive spatial genomic mod-
ification signatures arising from inadvertent catalysis by
random-walk enzymes implicated in cancer.

I. SCANNING, CATALYSIS, AND THE
PASSIVE MODEL

When occurring separately, scanning and catalysis are
described by well-known models. The scanning motions
define a continuous-time random walk. Let the substrate
targets i ∈ {1, 2, · · ·N} be located at fixed positions
{r1, r2, · · · rN} within the space that is being scanned
by the catalyst, and each target i has a different intrinsic
catalytic rate ui. The details of how the enzyme dif-
fuses among the target sites can be encapsulated into
a generator matrix W, where its element Wij describes

the transition rate of the enzyme moving from site j to i.
The transition matrixW allows for non-nearest-neighbor
hops, and it generates a Kolmogorov equation for the
scanning motions

dpi
dt

=
∑

j

Wijpj (1)

for pi(t), the time-dependent probability of finding the
enzyme on target i. In the absence of catalysis, the
solution of the Kolmogorov equation is given by the
propagator matrix K0(t) = exp(tW), whose element
[K0(t2−t1)]ij specifies the conditional probability of find-
ing the enzyme on target i at time t2 given it was on j
at time t1 < t2.
The Kolmogorov equation is a phenomenological equa-

tion of motion for the scanning propagator matrix K0(t).
The same propagator [K0(t2−t1)]ij can be derived from a
path integral over all possible stochastic trajectories q(t)
taken by the enzyme to diffuse from site j to i between
time t1 and t2 [30],

[K0(t2 − t1)]ij =

∫ i

j

Dq(t)P0[q(t)], (2)

where q ∈ {1, 2, · · ·N}, and q(t) is subject to the bound-
ary conditions q(t1) = j and q(t2) = i. Along the scan-
ning path q(t), the enzyme makes transitions from one
site to another. Each time a transition occurs between
sites k and l, the functional P0 picks up a contribution
δkl +Wkldt+ o(dt), where o is Landau’s symbol and δ is
Krnoecker’s delta. The path integral in Eq.(2) sums over
all possible transitions and over all transition times. For-
mally, the scanning path integral in Eq.(2) is isomorphic
to the imaginary-time path integral for the Boltzmann
operator [31] K0(t) = exp[−βH0] of a quantum particle
with Hamiltonian H0 = −W, under the mapping t to
the inverse temperature β (in units where h̄ = 1). Un-
der this isomorphism, the Kolmogorov equation Eq.(1) is
also equivalent to the imaginary-time Schrödinger equa-
tion [31].
While accounting for the enzyme’s scanning motions is

simple via diffusion paths, how to incorporate catalytic
rates into the stochastic model is not as clear. In ordi-
nary diffusion-reaction systems [32, 33], the species that
is diffusing is also the reactant. This naturally gives rise
to source or sink terms in its diffusion equation. But in
the type of scanning-coupled catalytic systems describing
random-walk enzymes, it is the catalyst that is executing
the random walk while the reactions are occurring on im-
mobile targets. Since the concentration of the catalyst it-
self does not change with time, there is no a priori reason
to include the reactions into the diffusion propagator. In
fact, there is no obvious mechanism for how the chemical
conversions should impact the enzyme’s scanning paths
at all.
The kinetics of enzyme catalysis are typically described

by Poisson statistics [33, 34]. As the enzyme randomly
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scans its target sites, catalytic conversions occur as a sec-
ondary stochastic Poisson process along each scanning
path q(t), where the intrinsic catalytic susceptibility ui

at each target i may be site-dependent. Using a spin-1/2
variable mi ∈ {− 1

2 ,+
1
2} to denote the chemical state of

each site i where − 1
2 represents an unconverted target

and + 1
2 a converted one, the state of the system can

be specified by a vector x = (q,m1,m2, . . . ,mN ), where
q gives the location of the enzyme and mi the current
chemical state of each site i. Using a straightforward
extension of the scanning model in Eq.(1), we can incor-
porate catalytic activities into a scanning-mutation Kol-
mogorov equation to describe the time-evolution of the
probability Px(t) of each state x:

dPx

dt
=

∑

x′

Ωxx′Px′ . (3)

The transition matrix elements Ωxx′ in Eq.(3) be-
tween states x′ = (q′,m′

1,m
′
2, . . . ,m

′
N ) and x =

(q,m1,m2, . . . ,mN ) are given for x 6= x′ by:

Ωxx′ =











Wij , if q = i 6= j, q′ = j and mk = m′
k ∀ k,

ui, if q = q′ = i,mi = m′
i + 1 and

mk = m′
k ∀ k 6= i,

0, otherwise,
(4)

and Ωxx ≡ −
∑

x′ 6=x
Ωxx′ . The first condition in Eq.(4)

describes transitions due to scanning, where Wij are
the same scanning transition rates in the scanning-only
model Eq.(1). The second describes transitions due to
catalytic conversions, which can occur on site i with rate
ui only when the enzyme is also at q = i. Initially all
targets start in the − 1

2 state. A target may be converted
only when the enzyme visits it and may be converted no
more than once even if the enzyme revisits it.
While scanning and catalysis are manifestly coupled

through the transition matrix elements Eq.(4), it is easy
to show that using these transition rules in Eq.(3) does
not materially alter the statistics of the scanning tra-
jectories compared to those in a scanning-only system
described by Eq.(1). We can deduce this by reducing
Eq.(3), grouping states x into sets according to the loca-
tion of the enzyme q. Let ĩ = {x : q = i} be the set of all
states in which the enzyme is at position q = i, regard-
less of the current chemical state of the targets. The sum
P̃i ≡

∑

x∈ĩ Px then denotes the total probability over this
set. Using this reduction, Eq.(3) can be re-expressed as:

dP̃i

dt
=

∑

j

Wij P̃j . (5)

This reduction demonstrates that the composite prob-
ability P̃i over each set ĩ evolves in time solely under the
influence of scanning alone. This is true because while
there are interconversions among states within each set ĩ
due to the conversion rates ui, P̃i within each set is con-
served under catalysis. Only scanning modifies the com-
posite P̃i. Equation (5) is identical to the scanning-only

Kolmogorov equation (1). According to the phenomeno-
logical equation of motion Eq.(3), the scanning motions
of the enzyme are therefore decoupled from its enzymatic
activities.
We will refer to the Kolmogorov equation (3) as the

passive model for scanning-coupled catalytic processes.
The complete decoupling of scanning dynamics from
catalysis in the passive model is significant in several
ways. First, the phenomenological stochastic model
Eq.(3) suggests that the scanning paths are not per-
turbed in any way by the chemical activities of the en-
zyme. Second, as long as the scanning transition matrix
W is isotropic, a large ensemble of the enzyme’s scan-
ning paths should cover the entire target space uniformly,
simply because the initial binding site at the beginning of
each path is random. Third, and most importantly, since
the scanning paths access the target space uniformly,
the observed conversion probability of each target site
i should be a function only of its intrinsic susceptibility
ui and completely independent of its neighbors’.
The catalytic signature of a random-walk enzyme op-

erating under the passive model is trivial. The char-
acteristics of the random-walk have no bearing on the
observed conversion probabilities of the targets as long
as the scanning paths cover the target space uniformly
under the action of W. The target conversion profile in
the passive model has no contextual dependence at all.

II. THE INTRUSIVE MODEL

In the passive model, the mutations are purely ancil-
lary – they do not modify the random walk of the enzyme
and they occur stochastically along the same diffusion
paths the enzyme would have taken if there were no mu-
tations. This perspective seems intuitive, because scan-
ning is random and the enzyme would not have known
whether a target site is mutable until it has actually
reached it. If this passive picture is correct, scanning
should completely decouple from catalysis and the prob-
lem becomes trivially solvable.
To formulate an alternate perspective, we turn to the

path integral picture in Eq.(2). We consider compos-
ite scanning-mutation paths in which both catalysis and
scanning characterize the overall time evolution of the
system and use diagrams to deduce the probability of
each path. The mutation variables {mi}, which spec-
ify the chemical states of the targets, are denoted by
the vector m, and their time evolution is described by
a path m(t) while q(t) describes the scanning path of
the enzyme. The composite path is therefore x(t) =
(q(t),m(t)).
The paths that make up the intrusive model are illus-

trated diagrammatically in Fig. 1 in the form of a pertur-
bation series. For notational simplicity, a single variable
m(t) =

∑

imi(t) is used to describe the mutations. Ev-
ery time a conversion is made m(t) is incremented by
1, and using the instantaneous position of the enzyme
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FIG. 1. Diagrammatic representation of the perturbation series for scanning-coupled catalysis. Single lines represent scanning
trajectories. Circles labeled U represent mutation events. Loop diagrams correct for paths with multiple mutations on the
same motif. The full propagator, represented by the double line, is the sum over all possible paths.

the location of the converted target can be ascertained.
From the perspective of the intrusive picture, two com-
posite paths (q(t),m(t)) and (q′(t),m′(t)) are considered
distinct if m(t) 6= m′(t) even if q(t) = q′(t). To sum all
possible scanning and mutation trajectories that the sys-
tem may take from time 0 to t, we turn on the mutation
rates and count the additional paths being generated.

The first diagram on the right of the equality, the
zero-order term, represents all scanning paths with no
mutations, from target j to i over time t, which is just
K0(t) = exp(tW), shown as a single arrow in Fig. 1. The
next diagram depicts propagation from site j to i at time
t1 with the propagator K0(t1), where a mutation occurs
with probability ukdt1, and m(t) is incremented by 1 at
t1. This is followed by propagation from k to i to the final
time t with the propagator K0(t − t1). This first-order
term accounts for the additional paths that are spawned
as the result of one mutation event during the scanning
trajectory. The third diagram represents second-order
paths with two mutations on target k at time t1 and
then l at t2, with arrows representing the bare propaga-
tors. Since mutations cannot occur on the same target
twice, the fourth diagram represents second-order terms
with k = l which must be removed from the path sum, de-
noted by a minus sign (see Appendix A for details). The
second row in Fig. 1 represents all third-order diagrams.
All higher-order diagrams (not shown) are constructed in
the same way. For each, a time-ordered integration over
the intermediates times t1 < t2 < · · · as well as a sum
over all intermediate targets k, l, . . . are required. The
white circles at the termini of each diagram indicate that
a sum over i and j are also needed since the starting and
ending positions of the enzyme should be uniformly dis-
tributed across all the targets. The sum over all diagrams
then yields the full propagator K(t) shown as the double
line on the left (Fig. 1).

The perturbation approach treats the problem as a

branching process, where the mutation events spawn new
paths on top of the scanning trajectories. Notice that the
interaction between scanning and catalysis modifies nei-
ther the intrinsic scanning transition matrix W nor the
intrinsic mutation rates {ui}. The same W and {ui} are
also assumed in the passive picture. The only difference
between the two models is in how the paths are counted.
Appendix A provides more mathematical details on the
diagrams and the paths.

Perturbation series like those in Fig. 1 are familiar in
quantum and statistical physics. Accurate approxima-
tions to the series can be developed by selecting appropri-
ate partial sums. The series can alternatively be solved
by rearranging the diagrams to yield an integral equation
[34]. If there are no non-Markovian effects, diagrams can
often be summed by Laplace transforms or by diagonal-
ization [35].

If the catalytic rate is not too high and the duration
of the paths is not too long, repeat conversion attempts
on any target should be rare, and a reasonable approx-
imation is to ignore all loop diagrams in Fig. 1. Re-
summing the remaining terms then yields the Markovian
approximation K1(t) = exp[t(W + U)], where U is a
diagonal matrix with elements Uii = ui, containing the
site-dependent intrinsic mutation rates. This approxi-
mate propagator K1(t) = exp[t(W+U)] turns out to be
isomorphic to the Boltzmann operator exp[−βH1] for a
quantum particle on a discrete lattice under the mapping
t to the inverse temperature β (in units where h̄ = 1),
and −(W + U) to the Hamiltonian H1. Isomorphisms
of this type are well-known [31, 36], and for scanning-
coupled catalysis, −W maps to the translational Hamil-
tonian of the quantum particle and −U to the potential
energy. Exploiting the quantum analogy, the propagator
K1(t) and all observables can be computed analytically
by using the eigenfunctions and eigenvalues from the so-
lution of the Schrödinger equation H1Ψ = EΨ. (See
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Appendix B for details.)
Notice that the only inputs into the intrusive model,

W and {ui}, are the same used for the passive model
via the transition rates defined by Eq.(4). However, the
outcomes of the intrusive model are markedly different.
In the passive model, Eq.(5) suggests that the mutations
do not materially modify the statistics of the scanning
paths compared to a scanning-only system. In the intru-
sive model, the mutations when considered together with
the scanning trajectories create new paths that the pas-
sive model did not consider as distinct. While in the pas-
sive model the probabilities of the scanning trajectories
are unaltered regardless of what mutation events might
occur along them, the intrusive model counts a scanning
path q(t) that is associated with a mutation path m(t) as
distinct from another composite path (q(t),m′(t)) where
m(t) 6= m′(t).

III. COMPARING INTRUSIVE AND PASSIVE
MODEL PREDICTIONS WITH AID

MUTATIONAL PATTERNS

To demonstrate the salient features of the passive ver-
sus intrusive pictures and to make contact with exper-
iments, we apply the solution K1(t) to AID-catalyzed
C→U transitions observed in ssDNA mutant libraries.
The quantities calculated are the expected observed mu-
tation probability of each target, which are obtained
from the propagator by solving the Schrödinger equation.
Mathematical details are given in Appendix B.
The enzyme AID binds and scans ssDNA sequences

processively [13, 14], deaminating C nucleotides to U
preferentially at trinucleotide WRC hot motifs (W=A/T,
R=A/G) over SYC cold motifs (S=C/G, Y=C/T) [14].
The mutations are random, but in a large library of mu-
tant clones we can measure the mutation probability on
each motif. Varying the sequence and composition of the
hot/cold motifs on the DNA allows us to study how scan-
ning and catalysis interact with each other. Modifying
the DNA sequence does not significantly alter the in-
trinsic scanning transition matrix W for AID, which has
been measured experimentally for a homogeneous ssDNA
substrate [12]. By inserting different DNA sequences or
“cassettes” into the substrate, we can rigorously test the
analytical models.
Both the intrusive and the passive models are

parameter-free. The only inputs are the W matrix and
the intrinsic mutation susceptibilities {ui}, and these can
be independently and experimentally determined using
homogeneous substrates. Predictions from the two mod-
els are illustrated in Fig. 2 for a test sequence designed
to provide direct comparison with experiments. This test
cassette consists of 63 motifs. On the left side are 30 al-
ternating hot (AAC) and hot′ (AGC) motifs. On the
right are 30 alternating hot (AAC) and cold (GTC) mo-
tifs, with a 3-silent-motif spacer between them. This 63-
motif cassette is embedded between two extended silent
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FIG. 2. Computed mutation probabilities on a hot-hot′/hot-
cold test cassette. (A) Intrinsic mutations rates ui on the
63-motif hot-hot′/hot-cold cassette for AID-catalyzed C→U
mutations on ssDNA. (B) Mutation probabilities predicted
by the passive model as a function of sequence position are
directly proportional to the intrinsic mutation rates. (C) Mu-
tation probabilities predicted by the intrusive model shows
contextual dependence, where the computed mutation prob-
ability of a site is influenced by surrounding motifs. (D)
Probability ρi of finding the enzyme on the cassette corre-
sponding to C, decomposed into contributions from the four
lowest eigenfunctions in the order red, green, blue and black.
(E) Mutation probabilities predicted by the intrusive picture
in the rapid diffusion limit where the system reduces to the
passive picture. (F) Mutation probabilities predicted by the
intrusive picture in the slow diffusion limit, which also reduces
to the passive picture.
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sequences on both the 5′ and 3′ ends. Figure 2A shows
the site-by-site mutation susceptibilities ui along this test
sequence, which define the U matrix used in our calcula-
tions. Experiments, described below, have been carried
out on the same cassette sequence. The predicted muta-
tion profiles in Figs. 2 B, C, E and F were computed for t
= 45s, corresponding to the length of these experiments.

Figure 2B shows the mutation probability of each mo-
tif on this hot-hot′/hot-cold cassette as determined using
the passive model. In the passive model, the expected
mutation probability is simply related to the intrinsic
catalytic susceptibility of each site individually, which
is clear comparing Figs. 2B and A. On the other hand,
Fig. 2C, which shows contrasting predictions from the
intrusive model, reveals more complex behaviors. In the
intrusive picture, mutation probabilities computed using
the approximate propagator K1 from the perturbation
series (see Appendix B for computational details) are
not straightforwardly related to the intrinsic mutation
susceptibilities. Instead, they exhibit a nontrivial con-
textual dependence where the observed hit rate of each
site appears to be contingent on the identities of the sur-
rounding sites. In particular, the mutation probabilities
are lower on the left and right edges of the cassette closest
to the silent motifs on the two ends. The hot motifs (red)
are predicted to be converted with a higher observed hit
rate when they are among other hot′ motifs (orange) but
lower when they are among cold ones (blue). The in-
trusive model therefore suggests that the sequence can
exert substantial control over the mutation rate of indi-
vidual target sites on the DNA. Figures 2D, E and F,
respectively, show the probability of finding the enzyme
on this cassette projected onto its eigenfunctions as well
as predictions from the intrusive model in two separate
limits, rapid diffusion or rapid mutation, and these will
be discussed below.

The corresponding experiments are summarized in
Fig. 3. Libraries of mutant clones on a number of in-
homogeneous ssDNA sequences with mixed motifs were
analyzed. Figure 3A shows the experimental setup (see
Appendix F for experimental details), with the previ-
ously reported [12] scanning transition matrix elements
Wij plotted in Fig. 3B as a function of distance i−j. This
W [12] was used as input to our calculations along with
the average intrinsic AID-catalyzed deamination rates
measured for each trinucleotide motif [14]. These inputs
were defined using independent experiments on homoge-
neous substrates [12] and the models have zero adjustable
parameters.

Figure 3 shows experimentally determined and calcu-
lated mutation signatures on two different ssDNA cas-
settes. Results shown on the left panels in Fig. 3 (C, D
and E) correspond to the sequence (AAC AGC)15-sss-
(AGC GTC)15, where sss is a 9-nt spacer, flanked by
two extended sequences of silent motifs on the 5′ and
3′ ends. The intrinsic deamination rates along this se-
quence, shown in Fig. 3C, have ratios of roughly 5:3:1 for
AAC:AGC:GTC (this cassette is the same as the one in

Fig. 2). The observed mutation probabilities shown in
Fig. 3D from a batch of 814 clones are compared against
predictions from the intrusive model shown in Fig. 3E.
The experiments clearly exhibit similar contextual effects
as the intrusive model predicts. Not plotted explicitly in
Fig. 3 are full predictions from the passive model. In the
passive model, the mutational probabilities are simply
proportional to the intrinsic site-by-site catalytic suscep-
tibilities ui, resulting in a mutational profile that would
have the same appearance as Fig. 3C. Some site-to-site
variations in the observed target conversion probabilities
are due to statistics related to sample sizes. The exper-
imental uncertainties in the mutation are approximately
square root of the observed counts, typically < 5. While
the predicted spectra are smooth, the observed ones are
noisy, but the agreement between experiment and predic-
tions are quantifiably significant, as we will show below.

Results for a second ssDNA test sequence are shown
on the right panels in Fig. 3 (F, G and H). This consists
of a (AAC AGC)15-sss-(AAC GAC)15-sss-(AAC GAC)15
cassette flanked by two silent sequences. The intrinsic
deamination rates of AAC:AGC:GAC(shown in Fig. 3F)
are roughly 5:3:0.5, and this cassette corresponds to a
mixed sequence of hot-hot′ motifs on the left and alter-
nating hot-frigid motifs in both the center and the right
of the substrate. The experimentally observed mutation
profile is shown in Fig. 3G, with the intrusive model pre-
diction in Fig. 3H. Again, passive model results, which
should be identical in appearance to the intrinsic cat-
alytic susceptibilities for this cassette (Fig. 3F), are not
shown explicitly.

For both cassettes, experimental data in Fig. 3D and G
show that the hot motifs in the leftmost hot-hot′ region
have a higher mutation frequency than the hot motifs in
other regions. In contrast, the hot motifs in the hot-frigid
regions (Fig. 3G, center and right spectra) are colder than
those in the hot-cold region (Fig. 3D, right spectrum).
In Fig. 3D, the total hot-spot mutation count on the left
hot-hot′ region on the cassette is 643, compared to 434
on the right hot-cold region. Similarly in Fig. 3G, the to-
tal hot-spot mutations on the left hot-hot′ region is 572,
compared to 230 and 243 in the center and right hot-frigid
regions, respectively. On the edges of both cassettes in
Fig. 3D and G, there are noticeable depletions in the mu-
tation counts transitioning into the silent regions. The
observed variations in the mutation probabilities across
both cassettes are significantly stronger than fluctuations
coming from experimental variability. The experimental
variability, ∼(number of mutations)1/2, is typically < 5
over the entire cassette, whereas the sequence-dependent
effects on motif deamination efficiencies are generally >
20. Both sets of experimental data also exhibit contex-
tual signatures consistent with each other. The experi-
mental mutation profiles in Figs. 3E and G clearly corrob-
orate predictions from the intrusive model in Figs. 3E and
H. Contrasting this, the passive model predicts that the
hot motif mutation probabilities should have no sequence
dependence. It can be soundly rejected with a p-value
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FIG. 3. Experimental setup and results. (A) Deamination assay reports AID-catalyzed deaminations on target cassettes
with multiple trinucleotide motifs NNC embedded in lacZα reporter gene. Examples of deaminated mutant clones with C→U
deaminations shown as Ts. (B) Elements of the scanning transition matrix Wij as a function of distance i − j derived from
mutation correlation analysis on a homogeneous (AGC)56 cassette [12]. (C) Motif-dependent intrinsic deamination rates along
the DNA sequence for an inhomogeneous hot-hot′/hot-cold cassette, and (D) the experimentally observed mutation frequencies
showing sequence-dependent deamination probabilities, (E) the mutation frequencies predicted by the intrusive model after t

= 45s, the length of the experiments. (F) Intrinsic deamination rates along the DNA sequence for a hot-hot′/hot-frigid/hot-
frigid cassette, and (G) the observed mutation frequencies, (H) the frequencies predicted by the intrusive model after t = 60s.

Experimental variability in (D) and (G), ∼(number of mutations)1/2, are typically < 5, whereas the sequence-dependent effects
are generally > 20. Dashed lines in (E) and (H) indicate expected hot-motif mutation counts from the passive model which
exhibit no sequence context dependence. (Other details of the passive model results are not shown.)

< 0.0001 based on the experimentally observed differ-
entials in the hot-motif mutation counts in the hot-hot′

region compared to the hot-cold and hot-frigid regions
on the two cassettes. Mutation counts from the passive
model, which are uniform across the entire sequence re-
gardless of sequence context, are shown as dashed lines
in Figs. 3E and H for comparison.

The intrusive model explains the contextual depen-
dence in the mutation profiles observed in the exper-
iments. Biological systems could potentially exploit
these contextual effects to guide the catalytic actions of
random-walk enzymes. It may also be possible to con-
trol the target conversion efficiencies of scanning enzymes
by re-engineering the substrate sequence. While the ex-

periments studied here used regularly repeating target
sequences, similar contextual effects occur for random se-
quences, though the details of the contextual signatures
will depend on the interplay between the length scales
of the scanning versus the inhomogeneity of the target
sequence discussed in the next section.
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IV. ISOMORPHISM BETWEEN
SEQUENCE-DEPENDENT CATALYTIC

COUPLING AND QUANTUM
DELOCALIZATION

Despite the fact that this is a classical system, the
origin of the contextual influence or “spillover” derived
from the sequence neighborhood predicted by the intru-
sive model and observed in the experiments can best be
understood via the quantum isomorphism. This quan-
tum isomorphism suggests that the enzyme interrogates
its target sites by repeatedly applying a position operator
(see Eq.(6) below), causing interruptions to its scanning
paths. The outcomes of these effects are contingent on
how the targets are arranged in space, thereby producing
the observed contextual dependence in the target conver-
sion spectrum.

Any quantum particle, due to its translational Hamil-
tonian, has an intrinsic dispersion which characterizes
the extent of its delocalization. The same dispersion
effect, in the equivalent scanning-coupled catalysis sys-
tem, enables the enzyme to communicate information
from surrounding motifs across a distance. The length
scale of the spillover predicted by the intrusive model
is controlled by the characteristic diffusion length of the
enzyme, which is the equivalence of quantum delocaliza-
tion. But while diffusion induces dispersion, the hetero-
geneity of the intrinsic mutation rates on the substrate
targets also competes against it to attempt to contain
the spillover. Formally, this competition is analogous
to quantum confinement. The motif-dependent intrinsic
mutation rates ui produce a potential U in the quantum
analog, and hot motifs map onto low-energy sites on the
potential energy surface. These hot motifs behave like
attractors for the scanning paths, which visit these hot
sites with a disproportionately higher frequency. Figure
2D shows the probability of finding the enzyme ρi as a
function of position on the sequence, decomposed into in-
dividual eigenfunctions of H1. As expected, the ground
state (red) contributes most significantly to the overall ρi
and it is predominately localized in the hot-hot′ domain.
The next eigenfunction (green) is localized in the hot-
cold domain. These two eigenfunctions make up most
of the contributions to ρi. By permuting or rearranging
the hot, hot′ and cold motifs, the eigenfunctions can be
shifted. It is therefore possible to produce different dis-
persion structures by engineering the sequence. When
the variation of the mutation rates on a heterogeneous
substrate sequence is comparable to the diffusion length
of the enzyme, confinement sets in. The diffusion length
of the enzyme lD, which is the typical distance travelled
by the enzyme between mutations, can be estimated from
the diffusion coefficientD0 associated with the bare prop-
agatorK0(t) according to

√

D0/ū, where ū is the average
intrinsic mutation rate across all sites. If lD is smaller
than the length scale of the spatial heterogeneity in the
site-dependent mutation rates, the paths will be trapped.
However, when the substrate is replaced by a homoge-

neous repeating sequence with motifs of the same kind,
the potential surface in the quantum analog becomes flat.
This causes scanning to uncouple from catalysis and re-
duces a homogeneous substrate in the intrusive picture
to the passive model, as we have previously shown math-
ematically and experimentally [12].

While the length scales of diffusion versus motif hetero-
geneity “interact” to generate marked sequence-coupled
mutation rates, the timescales of the mutations versus
scanning must also match in order for contextual spillover
to be significant. In the limit where one is much faster
than the other, contextual dependence disappears. First,
in the limit where diffusion is fast, the enzyme will be
able to scan all targets between mutations. Consequently,
conversion on each site should simply occur proportion-
ately to its intrinsic mutation susceptibility, and in this
limit the intrusive model reverts to the passive model.
This is illustrated in Fig. 2E for the same cassette as
Fig. 2C, and the spillover effect is now gone. Second, if
mutations occur much faster than diffusion the enzyme
would be almost stationary between mutations, and since
the initial binding of the enzyme has no site-preference
the observed mutation probabilities should be simply
proportional to the intrinsic mutation rates. Therefore,
the rapid mutation limit also reduces the intrusive pic-
ture to the passive picture, and this is illustrated in
Fig. 2F. Enzymes optimized for high target-seeking effi-
ciency, such as the endonucleases, operate in this regime
because of their fast catalytic rates. In this limit the
Markovian approximation overestimates the conversion
probabilities because it allows multiple hits on the same
motif, and Fig. 2F shows that hit rates on the hotter mo-
tifs are exaggerated. However, including non-Markovian
effects will not alter the fact that spillover is absent in
the limit diffusion is very slow. Because of these two
opposing limits, rapid diffusion versus rapid mutation,
nontrivial contextual effects in the mutation probabilities
will only manifest themselves inside a special parameter
regime where the length scales as well as the timescales
of both scanning and catalysis become comparable. The
particular combination of scanning and mutations char-
acteristics of AID-catalyzed mutations on ssDNA places
it right in the center of this nontrivial parameter regime.
Appendices C and D discuss other equivalent models and
how they are related in the intrusive picture.

V. NON-MARKOVIAN MONTE CARLO
ANALYSIS TO ELIMINATE SAME-SITE

CATALYTIC EVENTS

To capture non-Markovian effects left out in the ap-
proximate propagator K1(t), we exploit the quantum
isomorphism further to construct a Hamiltonian that is
fully equivalent to scanning-coupled catalysis in which
multiple conversions of the same target are prohibited.
The imaginary-time quantum system that emerges is
analogous to a magnetic encoder moving over a one-
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dimensional spin-1/2 lattice with the Hamiltonian:

H2 = −W −

N
∑

i=1

uiQi[σ̂x]i − b

N
∑

i=1

[σ̂z ]i. (6)

In Eq.(6), W and Q operate on the scanning degree of
freedom q. [σ̂x]i and [σ̂z]i are 2 × 2 Pauli matrices op-
erating on the spin degree of freedom on each site i.
Each spin on the lattice corresponds to a mutable mo-
tif and begins in its ↓-state representing an unmutated
site. −W maps to the translational Hamiltonian. The
diagonal matrix Qi measures whether the encoder is on
site i, and if it is, it can rewrite the spin state of that
site by flipping it from ↓ to ↑ via the operator [σ̂x]i, and
the coupling ui is site-dependent. Once flipped, the op-
erator [σ̂z]i provides a bias to stabilize the ↑-state, in-
hibiting motifs from receiving multiple mutations. The
Boltzmann operator K2(β) = exp[−βH2] for this sys-
tem is again completely equivalent to the propagator for
scanning-coupled catalysis when β is mapped to time
t. (See Appendix E for more details.) The Hamilto-
nian (6) cannot be solved analytically or by numerical
diagonalization (the size of the basis set being 2N ×N).
Figure 4B shows results from large-scale path integral
Monte Carlo simulations [37, 38] for the ↑-spin (i.e. con-
verted motif) profile in the isomorphic quantum system
corresponding to the mutation probabilities on the 96-
motif hot-hot′/hot-frigid/hot-frigid cassette employed in
the experiments shown in Fig. 3G, and Fig. 4C the cor-
responding probability of finding the enzyme as a func-
tion of sequence position. For AID catalysis, the reaction
rates are slow (≤ 0.05 s−1) [12, 13]. Given the typical
during of the experiments (30 s ≤ t ≤ 2 min), repeat
events on each motif are expected to be rare. Comparing
Figs. 4B and D, it is clear that while non-Markovian ef-
fects are present, they do not significantly alter the qual-
itative signatures of the spillover effects. Analogous to
the hot-hot′/hot-cold cassette, the computed mutation
probabilities in Fig. 4B corroborate the experimental ob-
servations in Fig. 3G. In contrast with the hot-hot′/hot-
cold cassette (Fig. 3D and E), the mutation profile of
the hot-hot′/hot-frigid/hot-frigid cassette in the center
domain does not exhibit the same rounding as the two
edges. Instead, the center domain interpolates between
the 5′ hot-hot′ and the 3′ hot-frigid edges, lending fur-
ther support to the hypothesis that the spillover effects
are due to the dispersion inherent in the W matrix (lD ∼
8.4 motifs).

VI. SUMMARY

The intrusive model predicts nontrivial context depen-
dencies in the mutation probabilities on the substrate
targets in AID-catalyzed C→U mutations deposited on
single-stranded DNAs due to the coupling between scan-
ning and catalysis. Experiments confirm these predic-
tions. How do the catalyzed conversions impact the scan-
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FIG. 4. Computed mutation probabilities on a hot-hot′/hot-
frigid/hot-frigid test cassette. (A) The site-dependent intrin-
sic mutation rates ui on this 96-motif cassette, which corre-
sponds to the experiment in Fig. 3G. (B) Mutation probabil-
ities computed by Monte Carlo simulations. (C) Probability
of finding the enzyme ρi as a function of sequence position on
the substrate from the Monte Carlo simulations.

ning paths so significantly if they are not being trans-
ported with the enzyme? Within the formal mathemati-
cal model we have described, the origin of how mutation
events and scanning become entangled is related to what
is commonly referred to as measurement theory in quan-
tum mechanics. When a measurement is applied to a
quantum particle, it is thrown into an eigenstate of the
measurement operator. In the quantum isomorphic sys-
tem described by H2, mutations on each site i are gener-
ated by the termQi[σ̂x]i. Qi measures the position of the
enzyme and [σ̂x]i performs the conversion. Because of the
coupling between Qi and [σ̂x]i, even though mutations
may not be directly modifying the diffusive behavior of
the enzyme, they effectively perform a measurement on
the enzyme’s position repeatedly. Because of this, the
catalyzed conversions materially interact with the en-
zyme’s scanning paths in a nontrivial manner, which re-
quires that they must be treated explicitly in the path
integrals to properly describe the time-evolution of the
composite system. Direct support for this may have been
observed in recent single-molecule studies of Apo3G on
ssDNA [39] and p53 on dsDNA [40], both showing evi-
dence for quasi-localized substrate scanning.

The intrusive model describes the contextual signa-
ture expressed in the mutational probabilities quite well.
Mathematically, the passive and intrusive pictures in-
vestigated in this paper represent the only parameter-
free minimal analytical models that could be invoked
to explain the stochastic dynamics of scanning-coupled
enzymatic processes. The intrusive picture apparently
contains sufficient physics to explain the key experimen-
tal observables. Incorporating additional biological or
molecular mechanisms into the models requires adding
more parameters. Indeed, it will be interesting to try to
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experimentally ascertain precise biophysical mechanisms
underlying the coupling between scanning and catalysis
implicated by the intrusive model.
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Appendix A: Perturbation Series

Each diagram in Fig. 1 represents a term in the pertur-
bation expansion of the propagator in orders of U, the
diagonal matrix containing the site-dependent intrinsic
mutation susceptibilities {ui} on the substrate. For ex-
ample, the third and fourth diagrams on the right of the
equation in Fig. 1 correspond to the second-order terms:

∫ t

0

dt1

∫ t1

0

dt2

N
∑

i,j=1

N
∑

k,l=1

[

et1W
]

jk
uk

[

e(t2−t1)W
]

kl

× ul

[

e(t−t2)W
]

li
(1− δkl), (A1)

where δ is Kronecker’s delta and W is the scanning tran-
sition rate matrix. Coefficient of each of the terms cor-
responding to the loops diagrams can be found in [41].
For example, coefficients of all third-order diagrams on
the second line of Fig. 1 may be obtained by expanding
the product (1− δkl)(1− δlm)(1− δkm).
Non-loop diagrams in the perturbation series may be

resummed using a Laplace transform in time. The re-
sulting approximate propagator is:

K1(s) =

∫ ∞

0

dte−stK1(t) = [s−W −U]−1. (A2)

This leads to a closed-form solution for the approximate
propagator K1(t) = exp[t(W +U)] in the time domain.
This propagator satisfies the Block equation, which is
the imaginary-time equivalent of the time-dependent
Schrödinger equation:

∂K1(t)/∂t = −H1K1(t) = [W +U]K1(t), (A3)

where H1 = −(W + U). The propagator K1(t) can be
computed by using the eigenfunctions and eigenvalues of
the corresponding time-independent Schrödinger equa-
tion H1Ψ = EΨ. In the quantum isomorphism, −W

is equivalent to the translational Hamiltonian and −U

to the potential. In quantum statistical mechanics, the
matrix exponential K1(t) = exp[−βH1] corresponds to
the Boltzmann operator, which is often referred to as the
imaginary-time propagator.

Whereas in imaginary-time quantum mechanics it is
usually the trace of exp[−βH1] that is of interest, in
scanning-coupled catalysis, the path integral corresponds
to the grand sum over all elements of the propagator ma-
trix exp[t(W+U], since a trajectory may start from any
motif j and end on any i. Except for this difference,
the two problems are mathematically equivalent. Due
to this isomorphism, the scanning-coupled catalysis of a
random-walk enzyme is formally identical to the problem
of a quantum particle with a translational Hamiltonian
−W subject to the site-dependent potential specified by
the elements of the diagonal matrix −U. The isomorphic
quantum particle has an intrinsic delocalization length
under the action of −W, but the potential −U tampers
this delocalization. The interplay between delocalization
and confinement is manifested in the scanning-coupled
catalysis by AID on ssDNAs in interesting ways. Notice
that since motifs with higher intrinsic deamination rates
map to sites with low potential energies on the isomor-
phic quantum lattice, hot motifs behave like attractors.
In the special case of a homogeneous substrate which
maps to a constant potential, the eigenfunctions of the
isomorphic quantum particle are delocalized over the en-
tire substrate in the form of Fourier waves. Counter-
acting this is the tendency of the potential −U to con-
fine the eigenfunctions, which happens when −U is no
longer constant on substrates with inhomogeneous motif
sequences.

Appendix B: Computing Mutation Probabilities
from Eigensolutions to the Schrödinger Equation

Once the solution for the propagator K1(t) is known,
the mutation probability P1(mi = + 1

2 ; t) on any motif i
on the sequence may be computed as follows. P1(mi =
+ 1

2 ; t) is proportional to the sum over all paths with any
deamination on i. Instead of computing the sum over
this subset of paths, it is actually easier to sum the paths
complementary to this set, i.e. those that have no deam-
inations on i at all. This is easily done by calculating
exp[t(W+U)] where U is identical to U except one ele-
ment U ii has been set to 0. Subtracting exp[t(W +U)]
from the full propagator exp[t(W+U)] then yields a sum
over all paths with mutations at i. In this way, the mu-
tation probability profile across the entire substrate can
be computed by zeroing out the mutation rate on each
motif one by one and repeating the diagonalization for
each.
The motif-dependent mutation probabilities P1(mi =

+ 1
2 ; t) are single-site reduced probabilities of Pn.

Pn(mi = + 1
2 ,mj = + 1

2 , . . . ; t) is the joint probability
of finding n mutations on sites i, j, etc.. While we have
focused exclusively on the single-site mutation probabil-
ities in this paper, higher-order correlations among mu-
tations on two or more motifs are related to the joint
probabilities P2, P3, etc. These correlations contain addi-
tional information regarding the coupling between scan-



11

ning and mutations. They also control how the mutation
are clustered. These multi-point mutation correlations
can be calculated easily with a method similar to that
used for the single-site mutation probabilities: By sus-
pending deaminations on more than one motif in the cas-
sette at a time, the Hamiltonian can be re-diagonalized
and the number of paths with mutations simultaneously
on two or more sites can thus be computed.
The diagonalization of the Hamiltonian was performed

numerically in Linpack. Typically, a long silent sequence
with 60 to 90 motifs having zero intrinsic mutation sus-
ceptibility was appended to both the 5′ and 3′ ends of the
cassette. Periodic boundary condition was used for the
scanning transition rate matrix, and we verified that the
boundary effects were negligible by varying the lengths
of the silent end caps.

Appendix C: Equivalence to Diffusion with Source
Terms

The Block equation Eq.(A3) has another alternative
interpretation. Equation (A3) is formally equivalent to
a diffusion equation with a site-dependent source term
U. This correspondence implies that in the intrusive
picture the problem of scanning-coupled catalysis where
the chemical conversions are deposited on a stationary
substrate instead of being transported with the diffusing
species can actually be modeled by a diffusion equation
with spatially-distributed source terms. While this result
is a direct consequence of the intrusive picture, as we have
discussed in the main text, there is no obvious a priori

basis for incorporating the mutations into the diffusion
equation of the enzyme. This equivalence would not have
been obvious without the analytical models presented in
the main text.

Appendix D: Path Integrals and Other Equivalent
Systems

In the perturbation series, each diffusion path of the
scanning enzyme is also coupled to how many mutations
occur along its trajectory and the times and positions
at which they are deposited. If the proper measure is
assigned to these paths according to the prescription in
Sect. I, the propagator may be expressed in terms of a
path integral over all possible scanning trajectories q(t)
[31]:

[K(t)]qq′ =

∫ q′

q

Dq(t)P0[q(t)]

∫

Dm(t)eI[q(t),m(t)],

(D1)
where the functional P0[q(t)] represents the intrinsic
weight of the scanning path q(t) coming from the bare
propagator K0(t) = exp[tW], whose matrix elements are

[K0(t)]qq′ =
∫ q′

q Dq(t)P0[q(t)],
∫

Dm(t) denotes an inte-

gral over all possible mutation paths m(t), and the func-

tional I[q(t),m(t)] describes the interaction between mu-
tations and scanning.
Within the passive model, the scanning paths q(t) and

mutation paths m(t) have no interaction with each other,
equivalent to setting I[q(t),m(t)] = 0. On the other
hand, in the intrusive picture it is easy to show from
the perturbation series that the Markovian approxima-
tion to the propagator K1(t) corresponds to the path
integral in Eq.(D1) with

∫

Dm(t) exp(I[q(t),m(t)]) →

exp(
∫ t

0 uq(τ)dτ). This result can be interpreted as
a temporally-nonhomogeneous Poisson process occur-
ring along different scanning paths, each with a time-
dependent mutation rate uq(t). In terms of this, the ap-
proximate propagator becomes:

[K1(t)]qq′ =

∫ q′

q

Dq(t)P0[q(t)] exp

[
∫ t

0

uq(τdτ

]

, (D2)

where for each scanning path q(t), the factor

exp(
∫ t

0 uq(τ )dτ reflects the total measure of all possible
mutation paths that may occur along q(t). This exponen-
tial factor ascribes higher preference to scanning paths
that frequent the hot spots, and the effect of this is re-
flected in Fig. 2D, which shows that the probability of
finding the enzyme is higher at the hot motifs compared
to the cold. As the scanning paths are drawn to the hot
motifs, their characteristic dispersions are controlled by
the diffusion rate of the enzyme which limits how far the
enzyme may travel over time. The combination of these
two factors causes the probability of finding the enzyme
at sites closer to the hot motifs to be disproportionately
higher, and this is manifested as the spillover effects ob-
served in the mutational probability profiles.
In the discussions surrounding the Hamiltonian H1 of

the quantum isomorphic system, we have argued that
a homogeneous substrate with motifs having a constant
mutation rate u across all sites corresponds to a quan-
tum system with a flat potential energy surface, for which
scanning should uncouple from the mutations. In the
path integral picture, we can also interpret this uncou-

pling as a result of the integral
∫ t

0 uq(τ)dτ → ut, which
becomes identical for all scanning paths q(t). In the spe-
cial case of a homogeneous substrate, every scanning path
has identical weight in the intrusive picture, and this re-
duces the intrusive model to a passive one.
The path integral (D2) suggests an isomorphism to yet

another quantum system. In this isomorphic system, the
motion of a magnetic encoder is coupled to a single spin-
1/2 system, with the Hamiltonian

H3 = −(W +Uσ̂x). (D3)

This Hamiltonian is similar to H1 = −(W +U), except
the spin degree of freedom has been rendered explicit.
Each time Uσ̂x acts, it measures the mutation rate at
the location of the encoder q and simultaneously flips
the spin m from ↓ to ↑ or vice versa, with the number
of spin flips along the dual path (q(t),m(t)) represent-
ing the total number of mutations. In the Hamiltonian
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(D3), the number of spin flips is unconstrained, and this
corresponds to the Markovian limit of the perturbation
series in Fig. 1. The Hamiltonian (D3) can be easily
solved by using the (unnormalized) symmetric and anti-
symmetric spin superpositions {| ↓〉 + | ↑〉, | ↓〉 − | ↑〉},
arriving at the same formal result given in Eq.(D2) for
the time-nonhomogeneous Poisson process.

Appendix E: Spin-1/2 Lattice Model

The spin-1/2 lattice quantum system describe by the
Hamiltonian (6) is a multi-spin generalization of Hamil-
tonian (D3), where the mutation on each motif i is repre-
sented by an individual spin variablemi ∈ {↓, ↑}. Ascrib-
ing a separate spin to each motif allows the mutations to
be counted individually. With b > 0, the additional term

−b
∑N

i=1 {σ̂z}i in Eq.(6) stabilizes the ↑ state of each site
once it has been flipped, preventing multiple mutations
from being deposited on the same motif. The Hamil-
tonian Eq.(6) thus captures all non-Markovian terms in
the perturbation series in Fig. 1 as well. When the bias
b = 0, the system would revert to fully Markovian, and
in this limit the Hamiltonian Eq.(6) can be solved by
using the symmetric and antisymmetric spin superposi-
tions {| ↓〉i + | ↑〉i, | ↓〉i − | ↑〉i} for each spin, arriving
at formally the same result as Eq.(D2) for the one-spin
Hamiltonian (D3). When the bias b 6= 0, the system can
no longer be solved exactly. This complexity comes from
including non-Markovian effects.
A discretized path integral Monte Carlo simulation

was constructed for the Hamiltonian in Eq.(6) based
on standard methods using second-order accurate short-
time propagators [38]. The convergence of the discretized
path integrals were slow. Typically, a discretization time
between 0.1 to 0.05s were used for the MC simulations to

generate scanning and mutation paths of 45 to 60s in du-
ration. The ergodicity of the simulations was also rather
weak, requiring approximately 0.5 trillion Monte Carlo
passes in total to generate the results shown in Fig. 4B.

Appendix F: Experimental Methods

The library of lacZα clones containing AID-catalyzed
C→U deaminations in inhomogeneous cassettes of trin-
ucleotide motifs were generated experimentally as fol-
lows. Gapped DNA substrates containing either 60 trin-
ucleotide motifs (AAC AGC)15-sss-(AAC GTC)15 or 90
trinucleotide motifs (AAC AGC)15-sss-(AAC GAC)15-
sss-(AAC GAC)15 embedded in lacZα (see Fig. 3A,
sketch) were constructed as described in [13], where
sss represents a 9-nt silent spacer. The gapped DNA
were incubated with AID and deamination reactions
were quenched at 15, 30, 45, 60, 120, 300 and 600s.
C→U deaminations in trinucleotide NNCmotifs create
stop codons within the lacZα reading frame that result
in mutant M13 phage clones. Mutant M13 phage DNA
was isolated, and the inserted cassettes and the lacZα
portion on the 3′ side of the cassette were sequenced.
C→U deaminations were detected as C→T transition
mutations [12, 13]. To ensure that virtually all deam-
inations on individual substrates were caused by a sin-
gle AID molecule, AID and gapped DNA concentrations
were chosen so that the fractions of mutated clones were
always less than about 2%, as prescribed by Poisson
statistics [12, 13]. The mutation probabilities shown in
Fig. 3D for the hot-hot′/hot-cold cassette were obtained
from clones with an incubation time of 45s. Those shown
in Fig. 3G for the hot-hot′/hot-frigid/hot-frigid cassette
were collected from a number of experiments with various
incubation times averaging approximately 60s.
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