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Signal transmission across chemical synapses relies crucially on neurotransmitter receptor
molecules, concentrated in postsynaptic membrane domains along with scaffold and other post-
synaptic molecules. The strength of the transmitted signal depends on the number of receptor
molecules in postsynaptic domains, and activity-induced variation in the receptor number is one of
the mechanisms of postsynaptic plasticity. Recent experiments have demonstrated that the reac-
tion and diffusion properties of receptors and scaffolds at the membrane, alone, yield spontaneous
formation of receptor-scaffold domains of the stable characteristic size observed in neurons. On the
basis of these experiments we develop a model describing synaptic receptor domains in terms of
the underlying reaction-diffusion processes. Our model predicts that the spontaneous formation of
receptor-scaffold domains of the stable characteristic size observed in experiments depends on a few
key reactions between receptors and scaffolds. Furthermore, our model suggests novel mechanisms
for the alignment of pre- and postsynaptic domains and for short-term postsynaptic plasticity in
receptor number. We predict that synaptic receptor domains localize in membrane regions with
an increased receptor diffusion coefficient or a decreased scaffold diffusion coefficient. Similarly, we
find that activity-dependent increases or decreases in receptor or scaffold diffusion yield a tran-
sient increase in the number of receptor molecules concentrated in postsynaptic domains. Thus,
the proposed reaction-diffusion model puts forth a coherent set of biophysical mechanisms for the
formation, stability, and plasticity of molecular domains on the postsynaptic membrane.

PACS numbers: 87.16.-b, 82.40.-g, 87.19.lp, 87.19.lw

I. INTRODUCTION

Synapses are asymmetric contact regions between neu-
rons which mediate signal transmission from pre- to post-
synaptic cells. It is thought [1] that the stability and
plasticity of synapses constitute part of the physiolog-
ical basis for memory formation and learning. One of
the key regulators of signal transmission across chemi-
cal synapses are receptor molecules [1–4] concentrated
in postsynaptic membrane domains opposite presynaptic
terminals. Synaptic receptor molecules transiently bind
to neurotransmitter molecules released by the presynap-
tic cell. The strength of the transmitted signal—the so-
called postsynaptic potential—depends on the number
of receptor molecules present in the postsynaptic domain
[1, 3], and activity-induced variation in the concentration
of synaptic receptors is one of the mechanisms governing
postsynaptic plasticity [5–7]. A fundamental question in
neurobiology is: What determines the number of recep-
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tor molecules in a postsynaptic domain? And an even
more basic question is: Why do synaptic receptors con-
centrate at synapses rather than spread homogeneously
on the cell membrane through diffusion?

An important role in the localization of receptors at
synapses is played by scaffold molecules [1–4] which are
thought to stabilize receptor molecules in synaptic mem-
brane domains. Yet, recent experiments have demon-
strated [7, 8] a rapid turnover of synaptic receptors [9–11]
as well as their associated scaffolds [12–15], with individ-
ual molecules leaving and entering the synaptic domain
on typical time scales as short as seconds. But the synap-
tic strength, which depends crucially on the number of
receptor molecules concentrated in the postsynaptic do-
main, can be stable over months or even longer periods
of time [16, 17]. Thus, the time scales of the synapse as
a whole and its constitutive elements are not commen-
surate [8–10], and the question arises of how the mea-
sured molecular turnover and diffusion rates can be rec-
onciled with the presence of stable synaptic receptor do-
mains of the well-defined characteristic size observed in
experiments. This is a particular instance of the general
problem, pointed out many years ago [18], of how the
physiological stability necessary for memory formation is
achieved in the presence of the erratic dynamics that rule
the molecular realm.
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What are the minimal conditions sufficient for the for-
mation of receptor domains of a well-defined and stable
characteristic size? From a theoretical perspective, it has
been demonstrated [19] that cooperative interactions be-
tween receptors, which favor the insertion of new recep-
tors into membrane regions with a high receptor density,
can (transiently) stabilize pre-existing receptor clusters,
while still allowing for a rapid turnover of individual re-
ceptors. A more recent, thermodynamic model [20] in-
cludes both receptor and scaffold molecules; it assumes
that pre- and postsynaptic interactions stabilize scaffold
molecules in certain pre-determined regions of the cell
membrane, resulting in phase separation with a high re-
ceptor density opposite the presynaptic terminals and a
relatively small density of receptors away from presynap-
tic contacts. Alternative dynamical models [21, 22] bal-
ance currents of receptors into and out of synaptic do-
mains. The stability of synaptic domains then follows
from an inward current sufficient to compensate for re-
ceptor depletion. Stabilization of receptor clusters has
also been studied [23, 24] using models which rely on an
interplay between spatial heterogeneity in receptor re-
cycling and diffusive trapping of receptors in pre-existing
synaptic domains. This has allowed quantitative descrip-
tion of single-molecule data on receptor diffusion in nerve
cells, and suggested mechanisms for activity-dependent
regulation of receptor number through local changes in
receptor recycling.

From an experimental point of view, minimal systems
devoid of the molecular machinery commonly associated
with postsynaptic domain formation [25] have been used
to study the conditions sufficient for the formation of
receptor domains of a well-defined and stable character-
istic size. In particular, single non-neural (fibroblast)
cells were transfected with neuronal receptor and scaf-
fold molecules [14, 26], allowing for the rapid diffusion of
receptors [14, 27, 28] observed in neurons [8–10] as well as
for interactions between receptors and scaffolds. If recep-
tor and scaffold molecules were both present, receptor-
scaffold domains (RSDs) formed spontaneously [14, 29–
36]. Furthermore, RSDs were observed to be stable once
they reached a characteristic size comparable to that of
synaptic domains in neurons [14, 26, 29, 37]. If only
receptors but no scaffolds were transfected, receptor do-
mains did not emerge, apart from possible occurrences
of transient micro-domains [26, 27]. If only scaffolds but
no receptors were transfected, large intracellular blobs of
scaffolds were observed, but no association with the cell
membrane was detected [26, 38]. Collectively, these ob-
servations suggest [29] that receptor-scaffold interactions,
together with the diffusion properties of each molecular
species at the membrane, are sufficient for the formation,
stability, and characteristic size of synaptic receptor do-
mains. In particular, the presence of a presynaptic ter-
minal is not essential for the occurrence of stable RSDs.

In this article, we build on the above experimental ob-
servations and our earlier theoretical work [29] to develop
a comprehensive model of synaptic domains in terms of

the underlying reaction and diffusion properties of recep-
tor and scaffold molecules. Our article is organized as
follows. We first discuss qualitative aspects of the spon-
taneous formation of stable synaptic receptor domains
from a reaction-diffusion mechanism. This qualitative
scenario is then translated into a mathematical descrip-
tion of the reaction and diffusion processes exhibited by
receptors and scaffolds at the membrane. The mathe-
matical formulation of our reaction-diffusion model yields
constraints on the reaction and diffusion rates of recep-
tors and scaffolds, which must be satisfied for the forma-
tion of stable synaptic receptor domains to occur. We
then describe the results of computer simulations of our
reaction-diffusion model, which allow us to make direct
comparisons between patterns obtained from our model
and the corresponding experimental patterns of RSDs.
This is followed by a discussion of how, based on the
reaction-diffusion model of synaptic receptor domains, lo-
cal modifications in the receptor or scaffold diffusion rate
induced by synaptic activity may yield alignment of pre-
and postsynaptic domains. Furthermore, we show that
the reaction-diffusion model of synaptic receptor domains
suggests a biophysical mechanism of short-term postsy-
naptic plasticity in the number of receptors contained
in an RSD. We conclude by summarizing our approach,
discussing our predictions in light of experimental ob-
servations, and describing open questions pertaining to
our model. The mathematical details of our reaction-
diffusion model are presented in the appendix, along with
a description of our numerical methods and possible gen-
eralizations of the reaction-diffusion model of synaptic
receptor domains.

II. SPONTANEOUS FORMATION OF STABLE

SYNAPTIC RECEPTOR DOMAINS

Before describing our quantitative results, we summa-
rize here qualitative aspects of our mathematical model.
Postsynaptic domains containing neurotransmitter re-
ceptors are enormously complex molecular assemblies in-
volving thousands of proteins [2, 4, 8, 10]. Instead of
considering the postsynaptic apparatus in its full com-
plexity, we focus here on a minimal experimental sys-
tem which was shown previously [29] to contain the com-
ponents sufficient for the spontaneous formation of sta-
ble synaptic receptor domains of the characteristic size
observed in neurons [14, 26, 37]. In this minimal ex-
perimental system, fibroblast cells were transfected with
glycine receptors, which are one of the main receptor
types at inhibitory synapses, and their associated scaf-
folds, gephyrin molecules. Accordingly, our model in-
cludes receptor molecules and their associated scaffolds,
together with the reaction and diffusion properties of
these molecules at the cell membrane (see Fig. 1(a)).
We assume that the membrane geometry is locally flat

at the scale of synaptic receptor domains. This is a good
approximation for synaptic receptor domains in fibrob-
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FIG. 1: (Color online) Reaction-diffusion mechanism for the
formation and stability of synaptic receptor domains. (a)
Schematic illustration of reactions between receptor (green)
and scaffold (red) molecules, and the diffusion of receptors
and scaffolds along the cell membrane (grey curve). Com-
pared to free diffusion (thick arrows), diffusion in crowded
membrane regions is hampered by steric constraints (thin ar-
rows). The illustrated reactions correspond to endocytosis
and insertion of receptors and scaffolds, as well as stabiliza-
tion of receptors and scaffolds by scaffold molecules at the
membrane. Molecular complexes formed by receptors and
scaffolds are assumed to be transient [7–15]. See Sec. III for
the mathematical expression of the indicated reaction and
diffusion processes. (b) Illustration of the reaction-diffusion
mechanism producing stable RSDs. Time evolution of re-
ceptor and scaffold concentrations in the absence of diffusion
(top panels) and in the presence of diffusion (bottom panels)
according to the mean-field reaction-diffusion model, which
neglects noise in the reaction and diffusion of molecules.

last cells, but membrane curvature can be expected to
introduce further complications in highly curved regions
of neural membranes, e.g., in dendritic spines. We use the
quantitative experimental data available for glycine re-
ceptors and gephyrin scaffolds [3, 9–11, 14, 27] as the ba-
sis for our numerical calculations. Thus, while our quali-
tative predictions may be generic to the self-assembly of
synaptic receptor domains, our quantitative results per-
tain to glycine receptors and gephyrin scaffolds. Our

model for the formation of stable RSDs relies crucially
on the difference between the diffusivity of receptors and
that of scaffolds, and on the property of scaffolds to stabi-
lize other scaffolds as well as receptors at the membrane.
Indeed, experiments on the diffusion properties of glycine
receptors and gephyrin scaffolds [3, 9–11, 14, 27] suggest
that receptors diffuse much more rapidly than scaffolds,
while gephyrin scaffolds transiently bind [3, 9–11, 14, 27]
other scaffold as well as receptor molecules (Fig. 1(a)).

Figure 1(b) illustrates the reaction-diffusion (Turing
[39]) mechanism which yields [29], in our model, the
spontaneous formation of synaptic receptor domains of
a stable characteristic size. In the terminology of the
reaction-diffusion mechanism of pattern formation [39–
47], receptors play the role of ‘inhibitors’ of molecular
concentrations in our model, while scaffolds play the
role of ‘activators.’ In particular, we assume that recep-
tors diffuse rapidly and inhibit increased molecular con-
centrations through steric constraints [8–10, 14, 27, 28],
and that scaffolds diffuse slowly compared to receptors
and activate increased molecular concentrations through
transient binding to receptors as well as scaffolds [7–15].

Consider a random spatial fluctuation in the initial
molecular concentrations of receptors and scaffolds, that
produces a local excess of scaffolds (Fig. 1(b)). When
this occurs, additional molecules of both species are fur-
ther recruited at that membrane location because scaf-
folds activate increased molecular concentrations of both
receptors and scaffolds. Now, if receptors diffuse away
faster than scaffolds, the concentration of scaffolds ini-
tially wins over that of receptors in the perturbed region.
As a result, the receptor and scaffold concentrations both
increase in this region of the membrane, again because
scaffolds are activators, and the scaffold concentration
is further enhanced after diffusion. Eventually, however,
this positive feedback is damped and a dynamic steady
state is reached when a large diffusive current of recep-
tors balances out the effective attraction of receptors and
scaffolds into RSDs. This leads to the overall stability of
RSDs in the presence of rapid molecular turnover and
diffusion at the cell membrane [9–11, 27, 30]. Once the
system reaches a steady state, the concentration profiles
of receptor and scaffold molecules are inhomogeneous in
space, i.e., there is spatial patterning. A key point, here,
is that in the absence of rapid receptor diffusion the pos-
itive feedback responsible for the patterning instability
is absent. Random perturbations then simply decay, and
the steady state concentrations of receptors and scaffolds
are homogeneous in space.

As just outlined, RSDs arise in our model because
of the combined ‘activator’ nature of scaffold molecules,
which stabilize themselves and receptors at the mem-
brane, and ‘inhibitor’ nature of receptors, due to their
steric repulsion. These features of the two molecular
species, together with their diffusion properties, result
in a patterning instability. One may wonder whether a
converse scheme, in which scaffolds play the role of in-
hibitors and receptors play the role of activators, may
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yield another candidate model; we discuss this possibil-
ity in some detail below, in Sec. VC.

III. REACTION-DIFFUSION MODEL OF

SYNAPTIC RECEPTOR DOMAINS

A. Receptor and scaffold diffusion

Based on the experimental phenomenology of RSDs
[3, 9–14, 27] we formulate a simple continuum model
of RSDs [29] which incorporates receptor-receptor,
receptor-scaffold, and scaffold-scaffold interactions, as
well as the lateral diffusion of both molecular species on
the cell membrane (Fig. 1(a)). We represent the local
concentrations of receptor and scaffold molecules by the
functions r(x, y, t) and s(x, y, t), where the variables x
and y denote coordinates along the cell membrane, and
the variable t denotes time. The movement and inser-
tion of receptors and scaffolds is inhibited by steric re-
pulsion [3, 9–11], which counteracts high molecular con-
centrations of receptors or scaffolds. For instance, single-
molecule experiments have suggested [9, 10] that steric
repulsive interactions yield nonlinear diffusion of recep-
tors inside synaptic receptor domains, while receptors are
able to diffuse freely outside synaptic domains. In order
to account for such crowding effects in our coarse-grained
model, we impose the constraint 0 ≤ r + s ≤ 1 on all re-
action and diffusion processes, where we have normalized
r and s so that the maximum concentration of receptors
and scaffolds is equal to 1. This steric constraint then
yields the generalized reaction-diffusion equations

∂r

∂t
= F (r, s)− νr∇ · Jr , (1)

∂s

∂t
= G(r, s)− νs∇ · Js , (2)

where the polynomials F (r, s) and G(r, s) describe the
reactions in our system, and the diffusion currents read

Jr = −Dr(1− s)∇r −Drr∇s− (1− r − s)r∇Dr , (3)

Js = −Ds(1− r)∇s −Dss∇r − (1 − r − s)s∇Ds . (4)

The coefficients νr and νs in Eqs. (1) and (2) are the dif-
fusion constants associated with receptors and scaffolds
moving freely outside of RSDs [8–10], and Dr(x, y, t) and
Ds(x, y, t) account for spatial and temporal variations in
the receptor or scaffold diffusion rates [3, 48–55]. Ex-
perimental studies [3, 9–11, 13, 14, 27] of the diffusion
properties of glycine receptors and gephyrin scaffolds, as
well as of other types of receptors and scaffolds, suggest
that νr ≫ νs.
The non-standard diffusion terms in the generalized

reaction-diffusion model in Eqs. (1) and (2) can be de-
rived from a lattice gas formulation [56–58] of receptor
and scaffold diffusion processes. In Appendix A we pro-
vide such a systematic derivation of Eqs. (1) and (2).

Descriptions of multi-species diffusion under steric con-
straints of the form in Eqs. (3) and (4) have been used
before in the context of population biology [56–58] and
were found to yield the correct continuum description of
the underlying lattice gas model. Here, for the purposes
of the present discussion, we illustrate the way in which
such equations can be derived heuristically and mention
physical interpretations in the context of receptor and
scaffold diffusion [29]. If we discretize space according to
a mesh size a, the right-ward receptor current along the
x-axis direction is proportional to

Dr (x, y) r (x, y) [1− r (x+ a, y)− s (x+ a, y)] . (5)

Similarly, the left-ward receptor current along the x-axis
direction is proportional to

−Dr (x+ a, y) r (x+ a, y) [1− r (x, y)− s (x, y)] . (6)

To first order in a, the total current is then propor-
tional to

−Dr
∂r

∂x
(1− s)−Drr

∂s

∂x
−

∂Dr

∂x
r (1− r − s) , (7)

which amounts to the x-component of Eq. (3). Thus,
the first term in Eq. (3), −Dr(1 − s)∇r, represents the
combined effects of standard surface diffusion, biased in
the direction of decreasing r, and of the excluded-volume
mechanism, which limits diffusion in the direction of in-
creasing s. Similarly, the current −Drr∇s is in the
direction in which s is decreasing and arises because,
due to the exclusion condition, it is favorable for recep-
tor molecules to diffuse into regions with fewer scaffold
molecules. These nonlinear corrections to the standard
receptor diffusion current, −∇r, in Eq. (3) are important
in regions with substantial scaffold concentrations, and
provide a simple mean-field description of the observed
steric effects on receptor diffusion inside RSDs [9, 10].
Finally, the current −(1− r− s)r∇Dr is in the direction
of decreasing Dr and is generated because membrane re-
gions whereDr is reduced represent ‘sinks’ of the diffusive
motion of receptors. Similar considerations hold for Js in
Eq. (4), which accounts for steric constraints on the diffu-
sion of scaffolds inside RSDs. In principle, the reaction-
diffusion mechanism for pattern formation [39–47] does
not rely on steric repulsion or spatiotemporal variations
in the diffusion rates, but we include these generalizations
in our description of synaptic receptor domains in order
to allow for the crowded membrane environment of RSDs
[3, 9–11] and for putative effects of synaptic activity on
receptor or scaffold diffusion [3, 48–55].

B. Receptor and scaffold interactions

What are suitable representations of the receptor and
scaffold reaction kinetics in the reaction-diffusion model
in Eqs. (1) and (2)? Even in our minimal model sys-
tem for receptor domain formation, which does not in-
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clude most of the synaptic machinery, molecular interac-
tions are highly complex [3, 8–11]. For instance, recep-
tors may be inserted into the cell membrane as receptor-
scaffold complexes and, conversely, receptors may diffuse
on the cell membrane while bound to scaffold molecules.
Here, our aim is to formulate simple reaction kinetics be-
tween receptors and scaffolds which are consistent with
the basic biochemistry of glycine receptors and gephyrin
scaffolds [3, 4, 9–11], and which capture the interac-
tions essential for the formation and stability of RSDs
(Fig. 1(a)). We therefore only consider the fields r and
s describing the concentrations of receptors and scaffolds
at the membrane. While our model allows for transient
complexes of receptors and scaffolds, it does not con-
sider stable complexes of receptors and scaffolds. The
latter would necessitate additional fields capturing the
concentrations of stable bound complexes at the mem-
brane, and corresponding parameter sets describing the
reaction and diffusion properties of stable complexes. At
the cost of introducing additional reaction and diffusion
parameters, our model could be extended to allow for
such stable higher-order complexes (see Appendix D).
On the most basic level, receptors and scaffolds may

both be removed from the cell membrane through endo-
cytosis or some other molecular process [3, 9, 10], yielding
reactions of the form R −→ Rb and S −→ Sb. In these
expressions, R and S stand for receptors and scaffolds
at the membrane, while Rb and Sb denote receptors and
scaffolds in the cytoplasmic ‘bulk’ of the cell. Using the
standard formalism of chemical dynamics [40–47], these
reactions are represented in Eqs. (1) and (2) by the terms

F1 = −f1r , (8)

G1 = −g1s , (9)

in F and G, respectively, where f1 and g1 are effective pa-
rameters describing the reaction rates associated with the
decay of receptor and scaffold populations at the mem-
brane. While previous studies have allowed for spatial
variations in the rates of receptor recycling [23, 24], we
assume, here, for the sake of simplicity, that reaction
rates are constant along the cell membrane.
The reactions in Eqs. (8) and (9) involve only single

receptors or scaffolds, but interactions between receptors
and scaffolds are crucial for the formation of stable RSDs
in experiments [26, 27, 29, 38]. Thus, we must augment
Eqs. (8) and (9) to allow for nonlinear reaction terms in
Eqs. (1) and (2). In particular, glycine receptors tran-
siently bind to gephyrin scaffolds. It has been argued
[3, 9–11] that this reaction is paramount for the pref-
erential accumulation of glycine receptors in RSDs. In
our coarse-grained reaction-diffusion model, the simplest
expression of receptor stabilization through scaffolds is
provided by the reaction Rb + S −→ R + S, which cor-
responds to the preferential insertion of receptors into
membrane regions with an increased scaffold population
[9, 10]. Following the same procedure [40–47] as above,
this reaction yields the contribution

F2 = f2(1 − r − s)s (10)

to F in Eq. (1), where f2 is the rate associated with the
reaction Rb + S −→ R + S and the factor 1 − r − s im-
poses the steric constraint 0 ≤ r + s ≤ 1. Similarly, on
the basis of structural models of gephyrin scaffolds it has
been suggested [3, 9] that gephyrin molecules can form
dimers as well as trimers, possibly yielding a honeycomb
lattice of gephyrin in synaptic membrane domains. In our
model, a simple representation of the transient dimeriza-
tion and trimerization of scaffolds is obtained by includ-
ing the reactions Sb + S −→ 2S and Sb + 2S −→ 3S.
These reactions yield [40–47] the contributions

G2 = g2(1− r − s)s , (11)

G3 = g3(1− r − s)s2 (12)

to G in Eq. (2), where g2 and g3 are the corresponding
reaction rates and, as in Eq. (10), the factor 1 − r − s
enforces the steric constraint 0 ≤ r + s ≤ 1.
We show, below, that the sums of the reactions in

Eqs. (8)–(12) constitute a simple reaction scheme yield-
ing RSDs, and we term this reaction scheme model A.
It is mathematically convenient to redefine the reaction
rates in Eq. (8)–(12) to write the reaction terms F and
G in Eqs. (1) and (2) associated with model A as

FA(r, s) = −b
(
r −

s

s̄
Er̄
)
, (13)

GA(r, s) = −β (s− sE) + µ
s

s̄
E (s− s̄) , (14)

where b, β, and µ are constants with β > µ, E = 1−r−s
1−r̄−s̄

imposes the steric exclusion constraint 0 ≤ r+s ≤ 1, and
the concentrations (r, s) = (r̄, s̄) are non-trivial solutions
of the homogeneous fixed point equations

F (r̄, s̄) = G(r̄, s̄) = 0 , (15)

with r̄ 6= 0, 1 and s̄ 6= 0, 1. Note that Eqs. (8)–(12) and
Eqs. (13) and (14) contain the same number of parame-
ters, but Eqs. (13) and (14) yield the fixed point solution
(r, s) = (r̄, s̄) in a transparent manner. As explained in
Appendix B, the reaction kinetics in Eqs. (13) and (14)
can, in addition to the phenomenological argument given
above, also be motivated from the mathematical proper-
ties of reaction-diffusion instabilities.
While model A provides a simple phenomenological de-

scription of a few elementary interactions between glycine
receptors and gephyrin scaffolds, other molecular inter-
actions occur in general. Such additional interactions
between receptors and scaffolds can be included follow-
ing similar steps as above and, in order to ascertain the
effect of different reaction schemes on the dynamics of
RSDs, we survey here a set of different models of varying
levels of complexity (see Table I). In particular, a simple
modification of the reaction kinetics of model A is imple-
mented inmodel A

′ which, in addition to the reactions in-
corporated in model A, allows for higher-order reactions
in F in Eq. (1) up to the same order as G. Conversely,
model B contains the same receptor reaction kinetics as
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TABLE I: Reaction schemes for synaptic receptors and scaffolds. Chemical reactions are expressed in terms of R and S, which
stand for receptors and scaffolds at the membrane, Rb and Sb, which denote receptors and scaffolds in the bulk of the cell, and
the unspecified bulk molecule Mb, which may be a receptor molecule, a scaffold molecule, or some other molecule interacting
with receptors or scaffolds at the membrane. All molecular complexes are assumed to be only transient [7–15].

Contributions to F Contributions to G

Model A R −→ Rb , Rb + S −→ R + S S −→ Sb , Sb + S −→ 2S , Sb + 2S −→ 3S

Model B R −→ Rb , Rb + S −→ R + S S −→ Sb , Sb + 2S −→ 3S

Model A′ R −→ Rb , Rb + S −→ R + S , Rb +R + S −→ 2R + S S −→ Sb , Sb + S −→ 2S , Sb + 2S −→ 3S

Model B′ R −→ Rb , Rb + S −→ R+ S , Rb +R + S −→ 2R + S S −→ Sb , Sb −→ S , Sb + 2S −→ 3S

Model C R −→ Rb , Rb −→ R , Mb +R −→ Rb +Mb , S −→ Sb , Sb −→ S , Mb + S −→ Mb + Sb ,

Rb + S −→ R + S , Rb +R+ S −→ 2R + S Sb + 2S −→ 3S

model A, but fewer lower-order interactions in the scaf-
fold reaction kinetics and, in particular, does not allow
for dimerization of scaffolds. Model B allows us to test
whether dimerization of scaffolds is essential for RSDs.
In analogy to model A′, model B

′ extends the reaction
kinetics of model B so that F and G in Eqs. (1) and (2)
contain reactions of the same order. Finally, model C

[29] represents the most complex reaction scheme con-
sidered here, and contains all the reactions included in
models A, A′, B, and B′. Mathematical representations
of the various reaction schemes in Table I are obtained
following similar steps as for model A (see Appendix B).

C. Constraining the interaction and diffusion of

receptors and scaffolds

In principle, reaction rates such as those in Eqs. (13)
and (14), as well as the receptor and scaffold diffusion co-
efficients, can be estimated on the basis of single-molecule
experiments. However, while great efforts have been ex-
pended [3, 8–11] on the quantitative characterization of
the reaction and diffusion properties of glycine receptors
and gephyrin scaffolds, as well as of other types of synap-
tic receptors and scaffolds, such measurements are diffi-
cult to carry out in the complex membrane environment
provided by living cells. Our model provides a comple-
mentary approach for constraining the reaction and dif-
fusion rates of receptors and scaffolds, which relies on
the mathematical conditions mandated by the reaction-
diffusion mechanism for domain formation [29, 39–47].
These mathematical conditions are expressed in terms
of the linear stability matrix associated with Eqs. (1)
and (2). In particular, for the zero Fourier (infinite wave-
length) mode of our reaction-diffusion system only the re-
action terms in Eqs. (1) and (2) contribute to the linear
stability matrix, which can then be written as

M =

(
r11 r12
s21 s22

)
=

(
∂F
∂r

∂F
∂s

∂G
∂r

∂G
∂s

)
, (16)

with all terms evaluated at (r, s) = (r̄, s̄). For the
reaction-diffusion model in Eqs. (1) and (2) to exhibit

domain formation, instability must occur at a finite wave-
length. Thus, the homogeneous non-trivial solution must
be stable to uniform perturbations and, hence, the real
parts of the eigenvalues of the stability matrix in Eq. (16)
must be smaller than zero. It follows that the trace of
the stability matrix is negative and the determinant is
positive:

trM < 0 , (17)

detM > 0 . (18)

Moreover, for Eqs. (1) and (2) to admit domain forma-
tion at a finite length scale, the real part of the larger
eigenvalue associated with the linear stability matrix at
(r, s) = (r̄, s̄) must pass through zero for some Fourier
modes, yielding a finite (positive) characteristic length
scale in the system. This means [29] that for certain
Fourier modes the determinant of the stability matrix of
Eqs. (1) and (2) vanishes, and we find

νr [(1 − s̄)s22 − r̄s21] + νs [(1 − r̄)r11 − s̄r12]

> 2 [νrνs(1− r̄ − s̄) detM]1/2 , (19)

where, for simplicity, we have set Dr = Ds = 1.
For a given choice of reaction kinetics, Eqs. (17)

and (18) impose constraints on the relative values of the
reaction rates, while Eq. (19) constrains the relative val-
ues of the reaction and diffusion rates. For instance, in
model A we obtain

M =

(
−b 1−s̄

1−r̄−s̄ b r̄s̄

[
1− s̄

1−r̄−s̄

]

−β s̄
1−r̄−s̄ µ− β s̄

1−r̄−s̄

)
(20)

from Eq. (16) with Eqs. (13) and (14). We note that
Eq. (20) implies that r11 < 0 and s21 < 0. Equations (17)
and (18) then yield

b(1− s̄) + βs̄− µ(1− r̄ − s̄) > 0 , (21)

β(r̄ + s̄)− µ(1 − s̄) > 0 . (22)

These constraints, together with Eq. (19), must neces-
sarily be satisfied by the reaction and diffusion rates of
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model A for Eqs. (1) and (2) to exhibit domain forma-
tion through a reaction-diffusion mechanism. The cor-
responding constraints on the other formulations of the
reaction kinetics in Table I are obtained from Eqs. (17)–
(19) following similar steps.

IV. RESULTS

A. The reaction-diffusion mechanism produces

stable synaptic receptor domains

In order to investigate the reaction-diffusion mecha-
nism for the formation and stability of RSDs we simu-
lated Eqs. (1) and (2) for a variety of different choices of
the receptor and scaffold reaction and diffusion dynam-
ics. Using reaction and diffusion rates within the ranges
of values suggested by experiments [3, 9–11, 14, 27], we
observed in our simulations the spontaneous formation of
stable patterns of RSDs with a characteristic wavelength
of approximately 1 µm (see Fig. 2). Furthermore, we
obtained in our simulations a stable characteristic RSD
area of 0.2 to 0.3 µm2. Provided that the constraints in
Eqs. (17)–(19) were satisfied, these results were robust
with respect to perturbations to the reaction kinetics.
The spontaneous formation, stability, and characteristic
size of synaptic receptor domains found in our simula-
tions are consistent with the corresponding experimental
results [14, 26, 29, 37] on synaptic receptor domains in
neurons and transfected non-neural cells.
While the spontaneous formation and stability of RSDs

are generic features of our reaction-diffusion model, the
detailed properties of the patterns of RSDs obtained
in our simulations were dependent on the particular
model formulation considered. We discuss first the most
straightforward case of receptor and scaffold diffusion
rates which are constant along the cell membrane, which
corresponds to Dr = Ds = 1 in Eqs. (1) and (2). Fig-
ure 2(a) displays numerical solutions of Eqs. (1) and (2)
with the reaction kinetics associated with model A in Ta-
ble I, or Eqs. (13) and (14), at a time of 24 hours after
initiation of pattern formation from random initial con-
centrations of receptors and scaffolds. In the steady state,
we obtained regular (hexagonal) patterns of receptor and
scaffold domains with a wavelength of approximately 1
µm. The receptor and scaffold patterns were in phase
with each other and formed on a time scale of hours. In-
dividual RSDs had an area of approximately 0.2 to 0.3
µm2 and, once the pattern had formed, the size and lo-
cation of RSDs was stable.
We note that the time scale of RSD formation in our

simulations, which is of the order of hours, is significantly
longer than the typical molecular time scales appearing
in the reaction-diffusion model, which are of the order of
seconds (see Appendix C for a discussion of the param-
eter values used in our simulations). The emergence of
this longer time scale can be intuited along the lines of
arguments used previously in the context of focal adhe-

Stable R domains Stable R domains Stable R domains

Stable S domains Stable S domains Stable S domains

Overlay Overlay Overlay

a b c

FIG. 2: (Color online) Stable patterns of synaptic recep-
tor domains. Numerical solutions of Eqs. (1) and (2) with
Dr(x, y, t) = Ds(x, y, t) = 1 for the reaction kinetics in (a)
model A in Table I at time t = 24 hrs, (b) model B′ in Ta-
ble I at time t = 2 hrs, and (c) model C in Table I at time
t = 24 hrs. In our simulations, we used random initial condi-
tions in the receptor and scaffold concentrations at time t = 0,
and the generated patterns were found to be stable. The top
panels show the receptor concentrations at the membrane, the
middle panels display the scaffold concentrations at the mem-
brane, and the lower panels were obtained by superimposing
the receptor and scaffold concentrations in the top and mid-
dle panels (receptors in green, scaffolds in red, overlapping
receptor and scaffold concentrations in yellow). For all re-
action kinetics considered, receptor and scaffold domains are
in phase with each other. Reaction and diffusion rates were
chosen as specified in Eqs. (C6)–(C8) (see Appendix C for
further details). Scale bars, 0.5 µm.

sions [59]. The formation of stable patterns of RSDs re-
quires a redistribution of receptors and scaffolds through
diffusion (Fig. 1(b)). Since scaffolds diffuse slower than
receptors in our model, the time scale of RSD forma-
tion is set by the characteristic size of RSDs together
with the scaffold diffusion coefficient, for which we use
νs = (0.02–0.05)× 10−2µm2/s in Fig. 2. Combining this
range of scaffold diffusion coefficients with the charac-
teristic wavelength, 1 µm, of patterns of RSDs in Fig. 2
yields a characteristic time scale ∼ 30–80 min, consis-
tent with the time scale of RSD formation obtained in
our simulations.

For model A′ in Table I we observed patterns which
were similar to the results in Fig. 2(a), and also found the
same characteristic size of RSDs. By contrast, with the
reaction kinetics of model B in Table I, we were not able
to obtain stable RSDs in our simulations; while model B
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allows for a Turing instability, the resulting patterns of
corrugated receptor and scaffold concentrations are out of
phase, and thus no RSDs emerge. This can be intuited
by noting that, in order to satisfy Eq. (18), we must
have s22 < 0 in model B, which means that scaffolds
do not stabilize other scaffolds around the homogeneous
fixed point (r, s) = (r̄, s̄). In other words, our reaction-
diffusion model suggests that to obtain RSDs, scaffolds
need to be autocatalytic, which is in agreement with the
basic phenomenology of gephyrin scaffolds [3, 9–11].

In contrast to model B, stable patterns of RSDs are
readily obtained with the reaction kinetics correspond-
ing to model B′ in Table I (see Fig. 2(b)). The size of
RSDs produced by model B′ in our simulations was sim-
ilar to that of the RSDs obtained with models A and A′.
However, the large-scale patterns obtained with model
B′ were more irregular than those produced by models A
and A′. The irregularity of the patterns generated by
model B′ is reminiscent of experimental results on pat-
terns of RSDs [14, 29]. As shown in Fig. 2(c), irregular
patterns of RSDs were also obtained with model C in Ta-
ble I. As for models A, A′, and B′, RSDs formed spon-
taneously on a time scale of hours in model C, and the
size of RSDs was stable once the patterns had formed.
We found the irregular locations of the RSDs produced
by models B′ and C to be stable over the time scales
accessible to our simulations.

Depending on the model formulation used, the con-
centrations of receptors and scaffolds inside RSDs can
be increased by factors of more than ≈ 18 and ≈ 11
or by as little as ≈ 1.3 and ≈ 4.2 over their respective
molecular concentrations outside RSDs. For example,
for model C in Fig. 2(c) receptor and scaffold concentra-
tions increase by factors of ≈ 19 and ≈ 4.2. However,
the numerical values of the relative receptor and scaffold
concentrations inside and outside RSDs depend on the
details of the reaction kinetics and, considering the un-
certainties involved in experimental measurements of the
reaction and diffusion parameters entering our model, do
not represent general model predictions.

Akin to other types of reaction-diffusion models [40–
47, 60, 61], our reaction-diffusion model of synaptic recep-
tor domains predicts that receptor and scaffold molecules
can produce a variety of different patterns depending on
the specific diffusion rates considered. For instance, af-
ter varying the scaffold diffusion coefficient in model A,
we observed the stable patterns shown in Fig. 3(a). The
characteristic wavelength of these patterns was approx-
imately 0.5 µm, and circular RSDs were now replaced
by labyrinthine patterns of receptors and scaffolds which
were out of phase. This suggests that experimental mod-
ification of the diffusion properties of scaffolds (or re-
ceptors) may influence the shape of stable domains in a
manner that is, at least qualitatively, predictable.

We also observed in our simulations that, in contrast
to variations in diffusion rates, the formation of RSDs is
generally quite insensitive to variations in reaction rates.
For instance, experiments suggest [3, 9, 10] characteristic

Stable R domains Stable R domains Stable R domains

Stable S domains Stable S domains Stable S domains

Overlay Overlay Overlay

a b c

FIG. 3: (Color online) Perturbation of synaptic receptor do-
mains. Numerical solutions of Eqs. (1) and (2) as in Fig. 2,
for (a) model A in Table I at time t = 2 hrs and (b,c) model
C in Table I at time t = 24 hrs. For the simulations in panel
(a), the scaffold diffusion coefficient was decreased by a fac-
tor 0.2 compared to the scaffold diffusion coefficient used in
Fig. 2(a), with all other parameter values remaining the same.
For the simulations in panels (b) and (c), the rate of recep-
tor endocytosis R −→ Rb was decreased by a factor 10−3

compared to Fig. 2(c), with (b) the rates of Rb −→ R and
Mb + R −→ Mb + Rb increased compared to Fig. 2(c), and
(c) the same reaction rates as in Fig. 2(c) (with the exception
of the rate of R −→ Rb), with all other parameter values re-
maining the same. The receptor and scaffold concentrations
are out of phase in panel (a) but in phase in panels (b) and
(c). Reaction and diffusion rates were chosen as specified in
Eqs. (C9)–(C11) (see Appendix C for further details). Scale
bar, 0.5 µm.

time scales for receptor turnover ranging from seconds to
hours. As shown in Figs. 3(b) and 3(c), patterns compa-
rable to those in Fig. 2 were obtained when the rate of
endocytosis of receptor molecules was decreased by sev-
eral orders of magnitude, from decay times of seconds to
decay times of hours. Thus, we find that, if the reac-
tion rates are chosen within the broad ranges of values
suggested by experiments and constrained by Eqs. (17)–
(19), our reaction-diffusion model can yield stable RSDs
of the characteristic size observed in experiments. One
caveat, here, is that the rates used in the model refer to
molecular reactions, while the time scales obtained exper-
imentally may be ‘effective time scales’ that result from
the concatenation of several chemical reactions, and it is
not straightforward to relate the two. We return to this
issue in Sec. V.



9

B. The reaction-diffusion mechanism yields a

characteristic size of synaptic receptor domains

The emergence of a characteristic size of RSDs in our
simulations can be understood from the linear stability
analysis of Eqs. (1) and (2) [29]. In particular, the two
Fourier modes for which the larger eigenvalue associated
with the linear stability matrix of Eqs. (1) and (2) at the
homogeneous fixed point (r, s) = (r̄, s̄) vanishes define a
band of unstable modes. A simple estimate of the charac-
teristic wavelength of the patterns generated by Eqs. (1)
and (2), and corresponding characteristic size of RSDs, is
provided by the mid-point of the band of unstable modes,
from which we find the characteristic scale

ℓc = 2π

√
2νrνs(1− r̄ − s̄)

νr [(1− s̄)s22 − r̄s21] + νs [(1− r̄)r11 − s̄r12]
,

(23)
where, for the sake of simplicity, we have set Dr = Ds =
1. Note that the constraints in Eqs. (18) and (19) ensure
that ℓc > 0. The estimate in Eq. (23) is obtained by cal-
culating the eigenvalues of the stability matrix associated
with Eqs. (1) and (2) and, for the sake of simplicity, only
allowing for non-zero Fourier modes in one spatial direc-
tion, which is equivalent to permitting diffusion in only
one spatial direction in Eqs. (1) and (2). The eigenvalues
of the stability matrix are functions of the square of the
wavenumber. The two zeros of the larger eigenvalue yield
expressions for the squares of two critical wavenumbers
delineating the band of unstable modes, which we aver-
age, invert, take the square root of, and multiply by 2π
to obtain Eq. (23). In agreement with our numerical re-
sults, Eq. (23) yields ℓc ≈ 1 µm for the parameter values
used in Figs. 2, 3(b), and 3(c), and ℓc ≈ 0.5 µm for the
parameter values used in Fig. 3(a).
In principle, Eq. (23) predicts the characteristic size of

RSDs for a given set of reaction and diffusion rates mea-
sured in experiments. In practice, however, experiments
have so far only been able to yield broad ranges for the
rates of the reaction and diffusion processes exhibited by
synaptic receptors and scaffolds. Moreover, Eqs. (17)–
(19) only constrain the relative values of reaction and
diffusion rates in the form of inequalities, leaving con-
siderable freedom in the choice of reaction and diffusion
rates for the various model formulations. Thus, the char-
acteristic size of RSDs obtained in our simulations is not
a model prediction but, rather, a consistency check that,
for reaction and diffusion rates within the broad ranges
suggested by experiments [3, 9–11, 14, 27], our model can
indeed yield stable RSDs of the characteristic size found
in experiments.
Equation (23) can be employed to make simple order-

of-magnitude estimates of the characteristic scale of
RSDs associated with different reaction and diffusion
properties of receptors and scaffolds. For instance, the
general expression in Eq. (23) can be simplified by noting
that νr ≫ νs. If we assume further that the homogeneous
fixed point is such that r̄ ≪ 1 and s̄ ≪ 1, Eq. (23) is then

approximated by ℓc ≈ 2π
√
2νs/s22. The magnitude of

s22 in Eq. (16) is dominated by the fastest scaffold in-
teractions, for which various experiments [3, 11] suggest
s22 ≈ 10−2 s−1 (though this may correspond to an ‘ef-
fective’ rate combining several chemical reactions—see
above and Sec. V). For a receptor diffusion coefficient
νr ≈ 10−2 µm2 s−1 [3, 9–11, 14, 27], we then find that
the characteristic size of RSDs varies from approximately
0.4 µm to 1 µm as νs varies from to νs ≈ 0.01 νr to
νs ≈ 0.1 νr. These order-of-magnitude predictions of our
model agree with experiments on RSDs formed by glycine
receptors and gephyrin scaffolds [14, 26, 29, 37].

C. Alignment of pre- and postsynaptic domains

through local modification of receptor or scaffold

diffusion rate

Among the requirements for a mature synapse, per-
haps the most basic one is that the pre- and postsynap-
tic domains face each other [1, 2]. If synaptic domains
form and stabilize spontaneously, without any presynap-
tic involvement, what aligns pre- and postsynaptic do-
mains? Most obviously, perhaps, membrane proteins,
such as neurexin on the presynaptic side and neuroligin
on the postsynaptic side, may provide mechanisms for the
alignment of the two synaptic domains by way of chem-
ical bonds [62]. Our approach suggests a complemen-
tary, biophysical mechanism for the alignment of synap-
tic domains which relies on local variations in the dif-
fusion or reaction rates of receptor or scaffold molecules
induced by neural activity. Indeed, it has been observed
[3, 53–55] that the diffusion of receptors on the postsy-
naptic membrane can be modified through the binding
of presynaptic neurotransmitter molecules. In addition,
scaffold diffusion may be [48–52] decreased by interac-
tions with neuroligin and further modulated by synaptic
activity. As a simple phenomenological perturbation to
the reaction-diffusion mechanism for the formation and
stability of synaptic receptor domains, we implemented
pre- and postsynaptic interactions through a local in-
crease in the receptor diffusion rate, or a local decrease
in the scaffold diffusion rate, and simulated our reaction-
diffusion model with now varyingDr(x, y, t) orDs(x, y, t)
in Eqs. (1) and (2).
First we considered the case of a postsynaptic mem-

brane on which RSDs had already formed, without presy-
naptic involvement. When sustained presynaptic ac-
tivity, modelled by increased receptor diffusion, was
turned on at localized spots (representing the postsy-
naptic membrane locations opposite presynaptic termi-
nals), we found that RSDs slid on the postsynaptic mem-
brane in order to align their centers to these spots, over
a time scale of hours (Fig. 4(a)). We considered next
the case in which sustained presynaptic stimulation oc-
curred concomitantly with the emergence of RSDs: these
then appeared preferentially across presynaptic terminals
(Fig. 4(b)). In order to investigate the alignment mech-
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3.5 hours

8 hours

b 2.5 hours

FIG. 4: (Color online) Alignment of postsynaptic domains
with presynaptic domains through local variations in the dif-
fusion rate. (a) Sustained synaptic activity is turned on at
locations marked with a cross, after stable domains have al-
ready formed (at time t = 2.7 hrs). Over a time scale of
hours, RSDs slide to match the locations of stimulation. (b)
If stimulation is applied early in the formation of RSDs, these
nucleate preferentially at locations of synaptic stimulation.
(c) Response of a mature RSD to off-center pulses of synaptic
activity. Top panel: temporal profile of on/off stimulation.
Insets: Snapshots of RSD at selected times. Bottom panel:
separation, ∆r, between the location of maximal synaptic ac-
tivity and the RSD center. The periods of activity in panel (c)
lasted 2000 s, 4000 s, and 6000 s. All results were obtained by
simulating Eqs. (1) and (2) with Ds(x, y, t) = 1 and a locally
increased Dr(x, y, t) > 1 in the membrane regions marked by
a cross, using the reaction kinetics of model C in Table I. Re-
action and diffusion rates were chosen as specified in Eq. (C8)
(see Appendix C for further details). Scale bar, 0.5 µm.

anism more closely, we submitted a RSD to repeated
episodes of presynaptic activity from a terminal shifted
in space with respect to the RSD. We found that each
stimulation episode caused smooth sliding of the RSD to-
ward the presynaptic terminal (Fig. 4(c)). According to
the reaction-diffusion model of synaptic receptor domains
(Fig. 1(b)), a local increase in the receptor diffusion rate
such as considered in Fig. 4 has a similar effect as a lo-
cal decrease in the scaffold diffusion rate. Indeed, we
observed similar movements of RSDs as in Fig. 4 if the

scaffold diffusion rate was locally decreased instead of the
receptor diffusion rate increased. Conversely, we found
that RSDs were repelled from regions with decreased re-
ceptor or increased scaffold diffusion rates, respectively.
The translation of RSDs shown in Fig. 4 has a sim-

ple qualitative explanation in terms of the receptor and
scaffold molecule dynamics captured by our reaction-
diffusion model: Enhanced receptor diffusion (or re-
duced scaffold diffusion) near the fringe of a domain
(Fig. 4(c), top panel) yields a local increase in the scaf-
fold molecule concentration (by the very same reaction-
diffusion mechanism that governs RSD formation, illus-
trated in Fig. 1(b)) and, in turn, of receptor concentra-
tion. As a result, the RSD gradually shifts toward the
stimulation spot. The reverse argument holds for repul-
sion of RSDs from membrane regions with reduced re-
ceptor diffusion (or enhanced scaffold diffusion). We also
found in our simulations that, if receptor and scaffold
diffusion rates were both locally modified by an equal
fraction, RSDs were gradually drawn into regions with a
decreased diffusion rate, and away from regions with an
increased diffusion rate. But, in this case, the balance
between inhibitors (receptor molecules) and activators
(scaffold molecules) in our reaction-diffusion model was
not disturbed by the modification of diffusion rates, and
the (weak) localization of RSDs only resulted from the
collective diffusion of RSDs into low diffusivity regions.

D. Postsynaptic plasticity mediated by receptor

trafficking

The scenario for pre- and postsynaptic alignment de-
scribed above suggests also a speculative mechanism for
short-term postsynaptic plasticity. It is well known [5–7]
that synaptic activity can lead to local variations in the
postsynaptic receptor number, which is one of the mech-
anisms of postsynaptic plasticity. Short-term postsynap-
tic plasticity can result from one of a number of possible
molecular processes. In particular, it has been proposed
[63] that receptors are stabilized by an ‘anchoring’ pro-
tein molecule, and that the functional properties of in-
dividual receptors are modified upon binding with the
protein. Furthermore, it has been found that activity-
dependent changes in receptor currents into or out of
synaptic domains [21, 22], or activity-dependent regula-
tion of the local recycling rates of receptors [19, 23, 24],
can yield shifts in the postsynaptic receptor number.
Here, by contrast, we assume no such chemical changes,
modification of net receptor currents, or local regulation
of receptor recycling rates; short-term plasticity results
[29] from the same biophysical instability which leads to
self-assembly of domains together with the assumption
that the diffusion rates of receptors or scaffolds can be lo-
cally modulated by synaptic activity. This assumption is
supported by the experiments mentioned above [3, 7, 48–
55], according to which synaptic stimulation may modify
receptor or scaffold diffusion.
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FIG. 5: (Color online) Short-term plasticity of synaptic recep-
tor domains induced by spatiotemporal modulations of the
diffusion rate. Response of an individual RSD to synaptic
stimulation implemented as (a) a local increase in the receptor
diffusion rate or (b) a local decrease in the scaffold diffusion
rate. Top panels: duration of step stimulations. Insets: recep-
tor concentration profiles at times of maximum domain size.
Middle (bottom) panels: time course of the total in-domain
receptor (scaffold) population size, R (S), following stimu-
lation, normalized by the total in-domain receptor (scaffold)
population size in the absence of any stimulation, R0 (S0).
The results in panel (a) (panel (b)) were obtained by simu-
lating Eqs. (1) and (2) with Ds(x, y, t) = 1 (Dr(x, y, t) = 1)
and a locally increased Dr(x, y, t) > 1 (a locally decreased
Ds(x, y, t) < 1), using the reaction kinetics of model C in Ta-
ble I. The duration of stimulation in panels (a) and (b) was
2 s, 4 s, 8 s, and 12 s, and the stimulation strength (fractional
increase or decrease in receptor or scaffold diffusion rate) was
identical for panels (a) and (b), and ten times stronger than in
Fig. 4(c). Reaction and diffusion rates were chosen as spec-
ified in Eq. (C8). (See Appendix C for further details; top
and middle panels of (a) as in Ref. [29] and shown here for
completeness.)

We implemented [29] synaptic activity in our reaction-
diffusion model of synaptic receptor domains through a
local increase (Fig. 5(a)), or a local decrease (Fig. 5(b)),
in the receptor, or scaffold, diffusion rate, respectively.
As shown in Fig. 5, with this representation of synaptic
activity we found, once the pre- and postsynaptic parts
of the synapse were aligned, a transient increase in the
synaptic receptor population due to synaptic activity. A
notable feature of both scenarios in Fig. 5 is that the
increase in the receptor population extended for a longer
time than the synaptic activity. Furthermore, while the
receptor and scaffold concentrations both increased, the
size of the RSDs remained approximately constant. We
also observed that if receptor and scaffold diffusion rates

were increased or decreased together by an equal fraction,
there entailed little change in the in-domain receptor and
scaffold populations.
The behavior described above follows from the inter-

play between the inhibitors (receptors) and activators
(scaffolds) in our reaction-diffusion model. Once synap-
tic activity is turned on, membrane regions with an in-
creased receptor diffusion rate (a decreased scaffold diffu-
sion rate) are initially distinguished by a relative decrease
in the receptor population (increase in the scaffold pop-
ulation) because the net diffusion current of receptors
(scaffolds) out of postsynaptic membrane domains is in-
creased (decreased). However, since the receptors are the
inhibitors, and the scaffolds the activators, of increased
molecular concentrations in our reaction-diffusion model,
more receptors as well as more scaffolds are drawn into
such regions through the receptor and scaffold reaction
kinetics, leading to a shift in the dynamic steady state
responsible for the spontaneous formation of stable RSDs
(Fig. 1(b)) and an increased receptor population. A no-
table qualitative difference between the evolution of the
receptor populations in Figs. 5(a) and 5(b) is that, in the
case of synaptic activity implemented as a local increase
in the receptor diffusion rate, the prolonged increase in
receptor concentration is preceded by a brief, transient
decrease in receptor population. Again, this behavior
follows from the temporary increase in the net receptor
diffusion current out of postsynaptic membrane domains
in Fig. 5(a), together with the coupling of receptor and
scaffold reaction kinetics. Finally, Fig. 5 shows that, for
a given fractional change in receptor or scaffold diffusion
rate, a local increase in the receptor diffusion rate pro-
duces a greater increase in receptor population.

V. DISCUSSION

A. Summary and outlook

Based on previous experimental and theoretical work
[29], we have developed a reaction-diffusion (Turing)
model which describes the spontaneous self-assembly of
stable postsynaptic receptor domains. The proposed
reaction-diffusion model explains how a small set of in-
teractions between receptors and scaffolds is sufficient for
the formation of stable postsynaptic receptor domains
of the characteristic size observed in neurons and trans-
fected non-neural cells [26, 27, 29, 38], and why no presy-
naptic or otherwise sophisticated molecular machinery
may be necessary for the emergence of postsynaptic re-
ceptor domains. Using reaction and diffusion rates within
the broad ranges of values suggested by experiments, the
spatial scales and geometry of the simulated arrays of
domains, as well as the time scale of their emergence, are
consistent with experimental observations.
At the heart of the model is a linear (Turing) insta-

bility, for which the differential diffusion of receptor and
scaffold molecules is essential and which triggers the for-
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mation of synaptic domains. This same mechanism can
also explain a preferential alignment of pre- and postsy-
naptic molecular machineries (provided that presynap-
tic activity alters the diffusive properties of receptor or
scaffold molecules) and, further, suggests a new form of
short-term postsynaptic plasticity [5–7]. In particular,
our model predicts that the receptor and scaffold popu-
lations in RSDs can be increased through a local increase
in the receptor diffusion rate or a local decrease in the
scaffold diffusion rate. For instance, our simulations indi-
cate that an increase (decrease) in the receptor (scaffold)
diffusion coefficient by 20% can enhance the total recep-
tor population in RSDs by more than 10% (3%) (Fig. 5).
Experimental observations indeed suggest [3, 7, 48–55]
that synaptic activity may modify receptor or scaffold
diffusion. Quantitative measurements of the magnitude
and sign of activity-induced changes in receptor or scaf-
fold diffusion, and the resulting changes in synaptic re-
ceptor populations, may allow direct experimental tests
of the speculative mechanism for short-term postsynaptic
plasticity suggested by our reaction-diffusion model.

Following Turing’s seminal theoretical and computa-
tional work [39, 64] on the spontaneous formation of sta-
ble biological patterns with a well-defined characteris-
tic wavelength [40–47] from random initial conditions,
concerted experimental and theoretical efforts to align
reaction-diffusion models more closely with pattern for-
mation in specific biological systems have begun to bear
fruit over recent years [60, 61]. In particular, reaction-
diffusion models have been invoked in the context of mor-
phogenesis in multicellular organisms [65–68] to address
how, in the absence of any pre-existing pattern [61, 69],
cells can be endowed with positional information. More
recently, reaction-diffusion models have been employed
[70–77] to understand how cells determine the cell center
as the site of cell division. Here, we use similar concepts
to describe the self-assembly of stable RSDs. RSD for-
mation, unlike morphogenesis and spatial cell regulation,
occurs on a subcellular scale: domains are localized at
different locations on the cell membrane and do not ex-
tend over the whole cell membrane.

The model developed here provides a conceptual bridge
that connects the ‘mesoscopic’ realm of synaptic receptor
domains to the ‘microscopic’ realm of synaptic receptor
and scaffold molecules; the former, in order to carry out a
biological function, must be stable over long times scales,
while the latter is governed by rapid chemical reactions
and diffusion processes. Our model constitutes a step
towards the goal [9, 10, 30] of unraveling the minimal
molecular components required for the maturation, main-
tenance, and regulation of synapses. Alongside other re-
cent applications of reaction-diffusion models that aim
at uncovering the molecular mechanisms responsible for
biological pattern formation [60, 61], the model we dis-
cussed here, together with potential new experiments it
can help design, may bring us closer to a quantitative
understanding of the relations between the properties of
biologically important supramolecular structures and the

dynamics and interactions that rule their components.

B. Relation of model predictions and experimental

observations

A number of experimental studies [9, 10, 29–36], car-
ried out on a variety of synapses, suggest that domains
of synaptic receptor molecules form spontaneously even
in the absence of presynaptic terminals. In particular,
in our minimal model system [29] the presence of glycine
receptors and gephyrin scaffolds is sufficient for the for-
mation of synaptic receptor domains of the stable char-
acteristic size reported [14, 26, 37] for neurons and trans-
fected non-neural cells. The reaction-diffusion model of
synaptic receptor domains provides a quantitative expla-
nation for the spontaneous formation of RSDs of a stable
characteristic size. Indeed, our model predicts that the
characteristic size of RSDs is set by the reaction and dif-
fusion properties of receptors and scaffolds (see Eq. (23)).
A crucial feature of the proposed reaction-diffusion

model is that the formation of membrane domains com-
posed of receptors or scaffolds can only occur if receptors
and scaffolds are both present (Fig. 1(b)), which is in
agreement with experimental observations [26, 27, 38] on
cells transfected with only glycine receptors or gephyrin
scaffolds. Our simulations show that the characteristic
scale and time of formation of the patterns produced by
our reaction-diffusion model are consistent with the ex-
perimental patterns of RSDs [14, 26, 29]. In particular,
irregular patterns of RSDs emerge over a time scale of
hours, and ultimately individual RSDs occupy an area
of approximately 0.2 to 0.3 µm2. The resulting profiles
of receptor and scaffold concentrations are in phase and
the cluster shapes and positions are stable. The reaction-
diffusion model of synaptic receptor domains predicts [29]
that the receptor and scaffold concentration profiles are
inhomogeneous across RSDs, with a maximal concentra-
tion of receptors and scaffolds at the center of RSDs, and
that the receptor concentration profiles across RSDs are
broader than the scaffold concentration profiles.
One mathematical constraint imposed by the model is

of particular note: in our model, a crucial reaction for
the formation of synaptic receptor domains is the stabi-
lization of a scaffold molecule at the membrane by two
other scaffold molecules already present at the membrane
(see Table I). Gephyrin scaffold molecules are indeed
thought to form both dimers and trimers on the neural
membrane, in the natural conditions in which synaptic
receptor domains are observed [9]. However, if trimer-
ization of gephyrin molecules is prevented, no glycine re-
ceptor domains (or only very small ones) appear [14], in
agreement [29] with our reaction-diffusion model. Sim-
ilarly, the reaction-diffusion model of synaptic receptor
domains predicts that no stable domains of receptors
and scaffolds appear if stabilizing receptor-scaffold inter-
actions, such as the (transient) binding of glycine recep-
tors by gephyrin scaffolds at the membrane, are disabled.
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Moreover, our model predicts that receptor aggregation
trails behind [29] scaffold aggregation in time during re-
ceptor domain formation (Fig. 1(b)). This indeed ap-
pears to be in agreement with experimental observations
[78, 79]. The corollary to this model prediction—namely,
that a loss of scaffolds precedes a decrease in the receptor
population—is also consistent with recent in vivo exper-
iments [80].
While we find that the gross features of synaptic re-

ceptor domains obtained from our mathematical model
and observed in the corresponding minimal experimen-
tal system [29] are in agreement with synaptic recep-
tor domains in neurons, a quantitative description of
the self-assembly and plasticity of synaptic receptor do-
mains in neurons will necessitate consideration of the
full complexity of the synaptic apparatus [2, 4, 8, 10].
In particular, mature synapses involve interactions be-
tween thousands of proteins, interactions between pre-
and postsynaptic domains, and, possibly, an interplay
between membrane geometry and the formation and dy-
namics of synaptic receptor domains. Such additional
layers of complexity do not, in principle, invalidate the
reaction-diffusion mechanism for pattern formation dis-
cussed here, which has been successfully employed to un-
derstand the spontaneous emergence of ordered molecule
distributions in a variety of highly complex biological sys-
tems [45–47, 60, 61, 70–77] (see Appendix D for a discus-
sion of possible model extensions and modifications).

C. Open questions

In our model, molecular domains emerge from the com-
bined presence of ‘activator’ scaffold molecules, which
bind themselves as well as receptors, and receptors, which
act as ‘inhibitors’ due to their steric repulsion. Would the
converse scheme, in which scaffolds play the role of in-
hibitors and receptors play the role of activators, provide
an alternate candidate model? Experimental results [1–
4, 9–14] and quantitative reasoning suggest arguments
both ways.
The observation that receptors are less numerous than

scaffolds in domains, by about an order of magnitude
[8], suggests that steric repulsion may be more signifi-
cant for scaffolds than for receptors (and, indeed, we also
included steric repulsion between scaffolds in our model).
Furthermore, the fact that bound receptor-scaffold com-
plexes can be ferried from the cytoplasm to the mem-
brane suggests that receptors may act as activators by
tending to ‘pin’ scaffolds at the membrane; indeed, re-
ceptors can spend an appreciable time at the membrane
in the absence of scaffolds, while the reverse may not be
true. These remarks tend to a picture in which receptors
play the role of activators and scaffolds that of inhibitors,
at odds with our model. However, scaffolds are known
to be autocatalytic, as required for ‘activators’, and do-
mains disappear if their trimerization is prevented. By
contrast, as putative ‘activators’ receptors would have to

be autocatalytic via indirect reactions, and it is not ob-
vious that these would yield a Turing instability. Finally,
one would need νs > νr if receptors were to play the role
of activators, which is not validated by experiments.

Yet, it may be possible to devise an alternate model,
in which receptors stabilize scaffolds, rather than the re-
verse, and which is also consistent with the basic exper-
imental phenomenology of RSDs; we relegate the inves-
tigation of such a ‘converse model’ to a later study. We
note, however, that a model which goes some length in
this direction is discussed in Ref. [22]. There, domain
evolution is not governed by a reaction-diffusion mecha-
nism, but rather by a convection-aggregationmechanism.
It bares some similarities to models of phase separation
through diffusion and clustering [81, 82], in which, gener-
ically, domains continue to coarsen and have no stable
characteristic size. Thus, the respective roles of the dif-
ferent molecular species and the stability of domains in
such models may have to be considered with some care.

Some aspects of our model will have to be explored in
greater detail or extended. While we find, indeed, that
the time scale of emergence and stabilization of synaptic
domains corresponds to the experimental time scale, this
result is surprising in that these very long time scales
emerge from relatively simple reaction-diffusion equa-
tions that contain only short time scales. One would
like to gain a more thorough understanding of the way in
which collective long time scales emerge in the pattern-
ing process. Furthermore, the reaction and diffusion rates
used in our simulations are difficult to measure directly
and, for the most part, only broad ranges for these pa-
rameters are available from experiments. Indeed, experi-
ments address quantities such as the turnover of receptors
on the membrane; the time scale associated with the lat-
ter may reflect the concatenation of a large number of
chemical reactions. By contrast, in the reaction-diffusion
model of synaptic receptor domains ‘bare’ rates are used,
which correspond to individual chemical reactions. New
experiments will be necessary to extract microscopic time
scales and, possibly, new theory will be required to re-
late these to the effective time scales currently measured
in experiments. Similarly, while the diffusion properties
of synaptic receptors, such as the glycine receptors con-
sidered here, have been experimentally characterized in
some detail [3, 9–11, 14, 27], the corresponding data on
scaffold diffusion, which is needed for a quantitative de-
scription of RSDs, is less complete.

Finally, throughout we have focused on a mean-field
description of RSDs, and we ignored the molecular noise
induced by the underlying reaction and diffusion pro-
cesses. As described in Appendix A, noise can be incor-
porated systematically into our reaction-diffusion model
and, indeed, the low copy number of receptors and scaf-
folds in RSDs suggests [8] that noise may play an impor-
tant role in the formation and stability of RSDs. Previous
theoretical work [83, 84] has shown that molecular noise
can have intriguing effects on reaction-diffusion patterns,
and even stabilize the self-assembly of reaction-diffusion
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domains against perturbations in the reaction or diffu-
sion rates. Thus, complementary to the rapid molecular
turnover we focused on here, molecular noise may also
help to stabilize RSDs against molecular perturbations.
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Appendix A: Lattice model of receptor and scaffold

reaction and diffusion dynamics

Following similar steps as in previous work on lattice
models in population biology [56–58], we derive Eqs. (1)
and (2) from a lattice model of reaction and diffusion
dynamics. In this model, the system is discretized so
that reactions only occur between molecules which si-
multaneously occupy a lattice site (membrane patch)
(i, j), while receptor and scaffold molecules are allowed to
hop randomly from one lattice site to a nearest-neighbor
site. We denote the hopping rates of receptors and scaf-

folds at site (i, j) by D
(R)
i,j /τR and D

(S)
i,j /τS , respectively.

Reaction and diffusion processes are only permitted if
the resultant lattice configuration satisfies the condition
0 ≤ Ri,j + Si,j ≤ 1 at all lattice sites, where Ri,j/ǫ and
Si,j/ǫ denote the occupation numbers of receptor and
scaffold molecules at site (i, j), and we have introduced
the normalization constant ǫ so that the maximum par-
ticle number per lattice site is equal to 1/ǫ. A more
complicated crowding condition, 0 ≤ ARi,j +BSi,j ≤ 1,
in which receptors and scaffolds are weighed differently
according to two constants A and B, would be possible,
too, but would raise the number of parameters in the
model. For the sake of simplicity, we set A = B = 1.
For the sake of simplicity, also, we consider a square lat-
tice, but all considerations are readily extended to other
lattice symmetries.
The lattice model described above is Markovian and,

hence, completely characterized by the occupation num-

bers R(t) = (R1,1(t), R1,2(t), . . . , RL,L(t)) and S(t) =
(S1,1(t), S1,2(t), . . . , SL,L(t)) at time t for a lattice of size
L × L. The dynamics of the model are governed by a
set of coupled master equations [85] for the probabili-
ties that the configurations are R and S at time t. The
central quantities in this formulation are WN (N;m), the
transition rates for switching from a configurationN to a
configuration N+m, where N = R or N = S. Following
the approach developed in Refs. [85–88], we transform
these master equations into the more tractable lattice
Langevin equations

dRi,j

dt
= K

(R;1)
i,j + η

(R)
i,j , (A1)

dSi,j

dt
= K

(S;1)
i,j + η

(S)
i,j , (A2)

where K
(R,S;1)
i,j are the first moments of the transition

rates WR and WS , and the η
(R,S)
i,j are Gaussian noises

that have zero mean and covariance

〈η
(N)
i,j (t1) η

(N)
k,l (t2)〉 = K

(N ;2)
i,j;k,l δ(t1 − t2) , (A3)

for N = R or N = S, where K
(N ;2)
i,j;k,l are the second mo-

ments of the transition rates, and δ(x) is the Dirac-delta
function. The transition moments are defined as

K
(N ;1)
i,j (N) =

∫
mi,j WN (N;m) dm , (A4)

K
(N ;2)
i,j;k,l(N) =

∫
mi,j mk,l WN (N;m) dm . (A5)

On a formal level, Eqs. (A1) and (A2), together with
Eqs. (A3)–(A5), completely specify our lattice model.
The rules of our lattice model enter the Langevin equa-

tions (A1) and (A2) through the expressions for WR and
WS . Each of these transition rates is a sum of contribu-
tions due to diffusion and reactions. The transition rates
for the diffusion processes take the form

Wd = W
(1)
d +W

(2)
d +W

(3)
d +W

(4)
d , (A6)

in whichW
(k)
d , with k = 1, 2, 3, or 4, denote the transition

rates for hopping from site (i, j) to the sites (i±1, j±1).
We have

W
(k)
d (N;m) =

1

4τN

∑

i,j

E
(k)
i,j D

(N)
i,j δ (mi,j + ǫ) δ (mi±1,j±1 − ǫ)

∏

(p,q) 6=(i,j),(i±1,j±1)

δ (mp,q) , (A7)

where the summation extends over all lattice sites and the exclusion condition E
(k)
i,j is

E
(k)
i,j = Ni,j [1− (Ri±1,j±1 + Si±1,j±1)] , (A8)

and Ni,j = Ri,j or Ni,j = Si,j . Substituting Eq. (A7) into Eq. (A6) and using Eq. (A4), we calculate the first moment



15

of the hopping rates of receptors or scaffolds constrained by the bounds 0 ≤ Ri,j + Si,j ≤ 1 as

K
(d;1)
i,j = −

ǫ

4τN

(
D

(N)
i,j Ni,j [1− (Ri+1,j + Si+1,j)] +D

(N)
i,j Ni,j [1− (Ri−1,j + Si−1,j)]

+D
(N)
i,j Ni,j [1− (Ri,j−1 + Si,j−1)] +D

(N)
i,j Ni,j [1− (Ri,j+1 + Si,j+1)]

)

+
ǫ

4τN

(
D

(N)
i+1,jNi+1,j +D

(N)
i−1,jNi−1,j +D

(N)
i,j−1Ni,j−1 +D

(N)
i,j+1Ni,j+1

)
[1− (Ri,j + Si,j)] (A9)

for Ni,j = Ri,j or Ni,j = Si,j . The above expression provides a direct microscopic interpretation of the nonlinear
diffusion terms in Eqs. (1) and (2): The first (negative) term in Eq. (A9) arises from the random hopping of particles
away from site (i, j), whereas the second (positive) term corresponds to transitions onto site (i, j). Also note from
Eq. (A9) that our formulation of diffusion conserves the particle number, and that the number of receptors or scaffolds
per lattice site cannot decrease below zero or increase beyond 1/ǫ. Rearranging Eq. (A9) we find

K
(R,d;1)
i,j =

ǫ

4τR

[
(1−Ri,j − Si,j)∆

2
(
D

(R)
i,j Ri,j

)
+D

(R)
i,j Ri,j

(
∆2Ri,j +∆2Si,j

)]
, (A10)

K
(S,d;1)
i,j =

ǫ

4τS

[
(1−Ri,j − Si,j)∆

2
(
D

(S)
i,j Si,j

)
+D

(S)
i,j Si,j

(
∆2Ri,j +∆2Si,j

)]
, (A11)

in which the discrete second derivative operator

∆2Ni,j = Ni−1,j+Ni,j−1−4Ni,j+Ni+1,j+Ni,j+1 (A12)

acts on all indices (i, j) in Eqs. (A10) and (A11). For
a single particle species with a constant diffusion rate
the above expressions would simply reduce to a discrete
Laplacian operator with square symmetry acting on Ri,j

or Si,j . This is of course to be expected for unbiased
random hopping. (With a bias in the hopping rates one
would obtain a discrete version of the Burgers equation
[89].) Expressions of the second moments for random
hopping with thresholds 0 ≤ Ri,j + Si,j ≤ 1, which cap-
ture the effects of diffusive noise in Eqs. (A1) and (A2),
can be obtained by following similar steps as above. As
an alternative to the continuum approach we focus on in
this article, particle-based approaches [90, 91] could be
used to quantify steric effects on the diffusion of individ-
ual receptors and scaffolds.
The transition rates for the chemical reactions in our

reaction-diffusion model take the generic form

Wc (N;m) =
∑

i,j

Ri,j δ (mi,j ± ǫ)
∏

(k,l) 6=(i,j)

δ (mk,l) ,

(A13)
in which Ri,j incorporates the details of the specific reac-
tion under consideration. For instance, for the reaction
Rb +R+ S −→ 2R+ S we have

Ri,j = α1[1− (Ri,j + Si,j)]Ri,jSi,j , (A14)

where α1 is the reaction rate associated with Rb + R +
S −→ 2R + S, with analogous expressions for all other
reactions in Table I [92, 93]. From Eqs. (A4) and (A5),
the first and second moments associated with Eq. (A13)
are

K
(N,c;1)
i,j = ±ǫRi,j , (A15)

K
(N,c;2)
i,j = ǫ2Ri,j , (A16)

which determine the parts of the lattice Langevin equa-
tions (A1) and (A2) describing the reactions in our
reaction-diffusion model.
Using the above expressions of the transition moments

associated with diffusion and reaction processes, we ob-
tain simplified versions of the lattice Langevin equa-
tions (A1) and (A2) by introducing the continuous fields
r(x, y, t), s(x, y, t), and Dr,s(x, y, t):

F (i±n, j±m, t) =

∞∑

k,l=0

(
∂k+lf

∂xk∂yl

)∣∣∣∣
(i,j)

(±a n)k

k!

(±am)l

l!
,

(A17)
for F = R, S, D(R,S) and f = r, s, Dr,s, respec-
tively, where a is the lateral lattice spacing. Employing
Eq. (A17) and setting νr,s = ǫa2/4τR,S , the deterministic
parts of Eqs. (A1) and (A2) are, to lowest order, equiv-
alent to the reaction-diffusion model in Eqs. (1) and (2).
The continuum limit of the first moment of the reac-
tion processes in Eq. (A15) thereby yields [92, 93] terms
consistent with the standard formalism of chemical dy-
namics [40–47], while the first moments of receptor and
scaffold diffusion yield the generalized diffusion currents
in Eqs. (3) and (4). In particular, in agreement with
previous studies of similar lattice models [56–58] we find
that, if receptors and scaffolds are both present, steric re-
pulsion between receptors and scaffolds yields non-linear
contributions to the mean-field diffusion currents as in
Eqs. (3) and (4).

Appendix B: Reaction kinetics for receptor-scaffold

aggregation

In this appendix we provide a detailed discussion of
how the mathematical conditions in Eqs. (17)–(19), to-
gether with the basic experimental phenomenology of in-
teractions between glycine receptors and gephyrin scaf-
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folds [3, 8–11], motivate the reaction schemes in Table I.
First, consider the polynomial F = F (r, s) in Eq. (1).
The lowest-order reaction in which receptors are acti-
vated by scaffolds is the first-order reaction Rb + S −→
R + S. For (r, s) = (r̄, s̄) to be a nontrivial fixed
point, this ‘activation’ (adsorption at the membrane) of
r must be compensated by ‘inhibition’ (desorption from
the membrane) [40–47]. The lowest-order reaction which
decreases r while respecting 0 ≤ r ≤ 1 is R −→ Rb.
Thus, the most basic expression of F is given by

F (r, s) = b
r̄

s̄
Es

︸ ︷︷ ︸
Rb+S−→R+S

−br︸︷︷︸
R−→Rb

, (B1)

which is equivalent to the receptor reaction kinetics for
model A in Eq. (13). (Recall that E = (1 − r − s)/(1 −
r̄ − s̄).) Below each term in Eq. (B1) we have indicated
the corresponding chemical reaction. Equation (B1) is
easily extended to include additional reactions.

To determine G = G(r, s) we assume that receptor
molecules do not actively remove scaffold molecules from
the cell membrane, but passively inhibit s through steric
constraints. The lowest-order reaction through which s
activates its own production is Sb + S −→ 2S. To en-
sure that (r, s) = (r̄, s̄) is indeed a non-trivial fixed point,
this reaction must be balanced by a reaction depleting s.
However, it is not possible to choose this reaction at first
(or second) order such that the conditions 0 ≤ s ≤ 1
and s22 > 0 are both satisfied, where the latter condition
mandates that, consistent with the basic phenomenology
of gephyrin [3, 9–11], scaffolds stabilize other scaffolds
around the homogeneous fixed point (r, s) = (r̄, s̄). At
second order, there are two possible reactions that acti-
vate s: Sb + S + R −→ 2S + R and Sb + 2S −→ 3S.
For the first of these reactions, one again finds upon ex-
panding G(r, s) that this reaction cannot be balanced by
a reaction depleting s at first or second order such that
0 ≤ s ≤ 1 and s22 > 0.

But the reaction Sb + 2S −→ 3S can activate s while
satisfying Eqs. (17)–(19). The lowest-order inhibiting
processes associated with Sb + 2S −→ 3S are S −→ Sb

and Mb+S −→ Sb+Mb, respectively. The expression of
G obtained with the first of these inhibiting reactions is

G(r, s) = −µs︸︷︷︸
S−→Sb

+
µ

s̄
Es2

︸ ︷︷ ︸
Sb+2S−→3S

, (B2)

which can satisfy s22 > 0 as well as s21 < 0 so that scaf-
folds are inhibited by receptors (but see the discussion in
Sec. IVA). The reaction Mb + S −→ Sb +Mb, however,
yields s21 > 0 if the steric constraint affects a tempo-
rary adsorption of species Mb at the membrane. But
one can clearly include additional reactions which ensure
that s21 < 0. To low order, this is achieved by including
(transient) dimerization of scaffolds [3, 9], which extends

the reaction kinetics to

G(r, s) = −βs︸︷︷︸
S−→Sb

+(β − µ)Es︸ ︷︷ ︸
Sb+S−→2S

+
µ

s̄
Es2

︸ ︷︷ ︸
Sb+2S−→3S

, (B3)

where we have assumed that β > µ. Equation (B3) is
equivalent to the expression of G for model A in Eq. (14).
Model B in Table I is obtained by combining the recep-

tor reaction kinetics in Eq. (B1) with the scaffold reaction
kinetics in Eq. (B2):

FB(r, s) ≡ FA(r, s) , (B4)

GB(r, s) = µ
s

s̄
(Es− s̄) . (B5)

We note that scaffold molecules must necessarily be ac-
tivated by a second-order reaction while F in Eq. (B1)
only involves reactions up to first order, which motivates
the inclusion of reactions of the same order in F as in
G, and vice versa. For model A this yields model A′ in
Table I,

FA′(r, s) = −b
(
r −

s

s̄
Er̄
)
+m

s

s̄
E (r − r̄) , (B6)

GA′(r, s) = GA(r, s) , (B7)

where m is a constant, while for model B we obtain
model B′ in Table I,

FB′(r, s) = −b
(
r −

s

s̄
Er̄
)
+m

r

r̄
(Es− s̄) , (B8)

GB′(r, s) = −β (s− Es̄) + µ
s

s̄
(Es− s̄) . (B9)

Finally, combining the various reactions included in
models A, A′, B, and B′, we arrive at model C in Table I:

FC(r, s) = −br︸︷︷︸
R−→Rb

+m1Er̄︸ ︷︷ ︸
Rb−→R

−
(
m1 +m2

s̄

r̄

)
Er

︸ ︷︷ ︸
Mb+R−→Mb+Rb

+bE
r̄

s̄
s

︸ ︷︷ ︸
Rb+S−→R+S

+
m2

r̄
Ers

︸ ︷︷ ︸
Rb+R+S−→2R+S

, (B10)

GC(r, s) = −βs︸︷︷︸
S−→Sb

+βE s̄︸ ︷︷ ︸
Sb−→S

−µEs︸ ︷︷ ︸
Mb+S−→Sb+Mb

+
µ

s̄
Es2

︸ ︷︷ ︸
Sb+2S−→3S

,

(B11)

where m1 and m2 are constants. From a biological per-
spective it is particularly noteworthy that model C in-
cludes endocytosis and insertion of receptor and scaffold
molecules as well as the reactionsMb+R −→ Rb+Mb and
Mb+S −→ Sb+Mb, which correspond to the removal of
receptor and scaffold molecules from the cell membrane
by a bulk molecule Mb or by some alternate molecular
mechanism which involves a temporary increase in the
local crowding of the cell membrane.
We note that model C does not encompass all reactions

up to some specified order. Rather, we constructed model
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C by including all reactions suggested by experimental
observations [3, 9–11]. Model C could be supplemented,
for instance, by reactions such as Sb+S+R −→ 2S+R.
In all our formulations of the reaction kinetics in Table I,
several reactions could be freely added without actually
changing the model. For example, in model C we consider
the reaction Mb + R −→ Rb + Mb in F . The reaction
Rb+R −→ 2R is then automatically included because of
the identity

−Er [α2(1− r̄ − s̄)] + α2(1− r − s)r ≡ 0 , (B12)

where α2 is the reaction rate associated with the reaction
Rb + R −→ 2R. Note, however, that α2 is necessarily
smaller here than the overall reaction rate of Mb+R −→
Rb +Mb.

Appendix C: Simulation of reaction-diffusion

equations

To simulate a given model of the reaction-diffusion dy-
namics, we solved numerically the dimensionless versions
of Eqs. (1) and (2) using the variables

x → x̃ =

√
b

νr
x , y → ỹ =

√
b

νr
y , t → t̃ = b t , (C1)

in terms of which Eqs. (1) and (2) become

∂r

∂t̃
= F̃ + ∇̃

[
Dr(1− s)∇̃r +Drr∇̃s+ Er∇̃Dr

]
,

(C2)

∂s

∂t̃
= G̃+ ν̃s∇̃

[
Ds(1 − r)∇̃s+Dss∇̃r + Es∇̃Ds

]
,

(C3)

where E = 1 − r − s, F̃ = F̃ (r, s; m̃) or, depending on

the model formulation considered, F̃ = F̃ (r, s; m̃1, m̃2),

G̃(r, s) = G̃
(
r, s; β̃, µ̃

)
, and

(
m̃, m̃1, m̃2, β̃, µ̃

)
=

1

b
(m,m1,m2, β, µ) , (C4)

ν̃s =
νs
νr

, ∇̃ =

(
∂

∂x̃
,
∂

∂ỹ

)
. (C5)

Physical dimensions were restored to the solutions of
Eqs. (C2) and (C3) using representative values of νr and
b measured in experiments. In particular, experiments
on the diffusion of glycine receptors [3, 9–11, 14, 27] sug-
gest νr = 10−2 µm2 s−1 as a typical value of the recep-
tor diffusion coefficient, although measurements of νr are
complicated by interactions between receptors and scaf-
folds, as well as crowding in the cell membrane. We used
νr = 10−2 µm2 s−1 for all the calculations described here.
For the rate of receptor turnover, experiments have in-
dicated [3, 9, 10] characteristic time scales ranging from
seconds to hours. These time scales, assuming they are

TABLE II: Approximate receptor reaction rates in Eq. (1)
for various reaction schemes. All rates were estimated to one
significant figure from Eqs. (C6)–(C9) and are quoted in units
of s−1.

Contributions to F Model A Model B′ Model C

R −→ Rb 1× 10−1 8× 10−1 1× 10−1

Rb −→ R 0 0 2× 10−3 E

Mb +R −→ Rb +Mb 0 0 1E
Rb + S −→ R + S 1× 10−1 E 1× 10−1 E 1× 10−1 E

Rb +R+ S −→ 2R + S 0 2× 10E 2× 10E

related directly to the rates entering our model, yield val-
ues of b ranging from b = 10−1 s−1, which we used for
Figs. 2, 3(a), 4, and 5, to b = 10−4 s−1, which we used
for Figs. 3(b) and 3(c).
Various experiments have indicated [3, 9–11, 13, 14, 27]

that νs ≪ νr for synaptic receptors and scaffolds and,
hence, ν̃s ≪ 1. In our simulations we used values of
ν̃s in the range (0.01, 0.05). In the absence of precise,
quantitative measurements of νs, we chose phenomeno-
logical values ν̃s ≪ 1 which satisfied the mathematical
constraint in Eq. (19) for a given formulation of the reac-
tion kinetics. Similarly, we used values of the dimension-
less reaction rates consistent with Eqs. (17) and (18), and
the available experimental data on receptor and scaffold
reaction kinetics [3, 9–11]. The patterns in Fig. 2 were
obtained using the (dimensionless) parameter values

(β̃, µ̃, ν̃s) = (7, 0.7, 0.05) , (C6)

(m̃, β̃, µ̃, ν̃s) = (7, 0.7, 1.2, 0.05) , (C7)

(m̃1, m̃2, β̃, µ̃, ν̃s) = (0.4, 10, 0.5, 0.7, 0.02) (C8)

for panels (a), (b), and (c), respectively. The results in
Fig. 3 were obtained with

(β̃, µ̃, ν̃s) = (7, 0.7, 0.01) , (C9)

(m̃1, m̃2, β̃, µ̃, ν̃s)

=
(
1.2× 103, 1× 104, 5× 102, 7× 102, 0.02

)
, (C10)

(m̃1, m̃2, β̃, µ̃, ν̃s)

=
(
4× 102, 1× 104, 5× 102, 7× 102, 0.02

)
(C11)

for panels (a), (b), and (c), respectively. The patterns in
Figs. 4 and 5 were obtained with model C using the pa-
rameter values in Eq. (C8). For illustration, Tables II
and III provide estimates of the dimensional reaction
rates implied by Eqs. (C6)–(C9) for Figs. 2, 3(a), 4, and
5 to one significant figure. The initial conditions for r
and s were randomly distributed in the interval [0, 0.01]
and we set (r̄, s̄) = (0.05, 0.05). We used in our simula-
tions a grid spacing of 0.063 µm and periodic boundary
conditions.
To study the sensitivity of RSD size and stability on

the numerical values of our model parameters we per-
turbed the parameter values for model C in Eq. (C8)
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TABLE III: Approximate scaffold reaction rates in Eq. (2)
for various reaction schemes. All rates were estimated to one
significant figure from Eqs. (C6)–(C9) and are quoted in units
of s−1.

Contributions to G Model A Model B′ Model C

S −→ Sb 7× 10−1 2× 10−1 5× 10−2

Sb −→ S 0 4× 10−3 E 3× 10−3 E

Mb + S −→ Sb +Mb 0 0 8× 10−2 E

Sb + S −→ 2S 7× 10−1E 0 0
Sb + 2S −→ 3S 2E 3E 2E

(used for Figs. 2(c), 4, and 5), and compared the result-
ing sizes of stable RSDs to the RSD domain size obtained
with the model parameterization in Eq. (C8) (Fig. 2(c)).
Our results are summarized in Fig. 6. With the exception
of m̃1, we decreased or increased all model parameters by
10% relative to their values in Eq. (C8). We found that
the size of RSDs depends only weakly on the value of
m̃1 and, to produce an appreciable effect on domain size,
we decreased m̃1 to zero and increased m̃1 to five times
its value in Eq. (C8). The insensitivity of RSD size and
stability on m̃1 can be understood intuitively by not-
ing, from Eq. (B10), that m̃1 only affects the reactions
Rb −→ R and Mb + R −→ Mb + Rb in model C which,
as described above, are not crucial for the activation or
inhibition of increased receptor concentrations. By con-
trast, Fig. 6 shows that perturbations in the value of µ̃
have the strongest effect on domain size among all model
parameters. This can be intuited, from Eq. (B11), by
noting that µ̃ sets the rate for the trimerization of scaf-
folds, Sb + 2S −→ 3S, which, as discussed in Sec. V, is a
crucial reaction for the formation of stable RSDs by the
reaction-diffusion mechanism described here.
For our simulations of pre- and postsynaptic inter-

actions and synaptic activity we set Ds(x, y, t) = 1 in
Figs. 4 and 5(a), and Dr(x, y, t) = 1 in Fig. 5(b). In
Figs. 4 and 5(a) we took the function Dr(x, y, t) to be a
sum of Gaussians in the spatial variables with a threshold
dependence on time,

Dr

(
x̃, ỹ, t̃

)
= 1 + Ã+

∑

i

{
θ
(
t̃− t̃i

)
θ
(
t̃′i − t̃

)

×e−[(x̃−x̃i)
2+(ỹ−ỹi)

2]/l̃+
}
, (C12)

where t̃′i > t̃i and the step function θ (x) is defined by

θ (x) =

{
1 if x ≥ 0 ,

0 if x < 0 ,
(C13)

with an analogous expression for Ds(x, y, t) in Fig. 5(b)

with Ã− = −Ã+. We set ℓ̃+ = 3 for all the simulations

shown in Figs. 4 and 5, Ã+ = 1/5 for Figs. 4(a), 4(b),

and 5, and Ã+ = 1/50 for Fig. 4(c). The results displayed
in Figs. 4(a) and 4(b) were obtained with t1 = 2.7 hrs
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FIG. 6: (Color online) Sensitivity of RSD domain size to per-
turbations in model parameters. Percentage change in RSD
diameter for each of the indicated model parameters, in model
C, using the parameter values in Eq. (C8) as a reference model
parameterization. With the exception of m̃1, all parameters
were decreased (blue) or increased (red) by 10%. The param-
eter m̃1 was decreased to 0 (blue) and increased to five times
its value in Eq. (C8) (red). The initial conditions for r and s

were randomly distributed in the interval [0, 0.1].

and t1 = 0 in the limit t′1 → ∞. The values of t̃i and t̃′i in
Figs. 4(c) and 5 were chosen as indicated in the temporal
profiles of on/off stimulation. The values of the coordi-
nates (x̃i, ỹi) in Eq. (C12) were chosen to correspond to
the spatial positions marked with crosses in Fig. 4. For
Fig. 5, we chose the values of (x̃i, ỹi) to coincide with the
centers of RSDs. The qualitative behavior displayed in
Figs. 4 and 5 is generic to our reaction-diffusion model,
but the quantitative response of RSDs to synaptic activ-
ity depends on the details of the simulation.

Appendix D: Extensions of the reaction-diffusion

model

The reaction-diffusion model of synaptic receptor do-
mains described in the present article is minimal, in the
sense that it considers only two molecular species, re-
ceptors and scaffolds. It is also parsimonious in that it
involves a small number of chemical reactions. Synaptic
domains contain a large number of molecular species and
involve a much longer list of chemical reactions (some of
which possibly poorly described as bulk chemical reac-
tions) [2, 4, 8, 10]. In an approach similar to the one
we employed in this article, it is possible to extend the
reaction-diffusion model to include alternative chemical
species and additional reactions. Here, we describe some
simple examples which represent mild departures from
our original model and, hence, may also yield domain
formation; the detailed study of these extended models
lies beyond the scope of this article.
Measurements have demonstrated that (unbound) re-
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ceptors can diffuse on the cellular membrane [3, 7–
11, 14, 27]; by contrast, when scaffolds are transfected
into a cell, they tend to gather in the cytoplasm in clumps
of different sizes [26, 38]. Thus, it is possible that scaf-
folds cannot diffuse at the membrane if they are unbound
and that receptors, effectively, ‘pin’ them to the mem-
brane. In this picture, one should not consider the con-
centrations of unbound receptors and unbound scaffolds
at the membrane as the relevant variables, but rather the
concentrations of unbound receptors and bound receptor-
scaffold complexes. If we assume that scaffolds are fer-
ried from the cytoplasm to the membrane in the form
of bound complexes (which is known to occur) and, con-
versely, that scaffolds leave the membrane also in the
form of bound complexes, then the relevant models are
formally identical to the models discussed in this arti-
cle. Hence, patterns of stable molecular domains can also
emerge spontaneously when the two interacting species
are receptors and bound receptor-scaffold complexes.
The relevant models start to change, though, when we

relax our fairly constraining assumptions. For example,
if we allow a bound receptor-scaffold complex to unbind
at the membrane, in such a way that the scaffold is re-
absorbed into the cytoplasm while the receptor remains
at the membrane, we obtain new reaction terms. Let us
denote the concentration of bound receptor-scaffold com-

plexes at the membrane by the symbol s̃. If we modify
our model C minimally in order to account for our new
assumptions, we obtain the reaction terms

Fs̃(r, s̃) = aẼ︸︷︷︸
Rb−→R

−br︸︷︷︸
R−→Rb

−cẼr︸ ︷︷ ︸
Mb+R−→Mb+Rb

+dẼs̃︸ ︷︷ ︸
Rb+S̃−→R+S̃

+eẼrs̃︸ ︷︷ ︸
Rb+R+S̃−→2R+S̃

+βs̃︸︷︷︸
S̃−→Sb

+γẼs̃︸ ︷︷ ︸
Mb+S̃−→Sb+Mb

, (D1)

Gs̃(r, s̃) = αẼ︸︷︷︸
S̃b−→S̃

−βs̃︸︷︷︸
S̃−→Sb

−γẼs̃︸ ︷︷ ︸
Mb+S̃−→Sb+Mb

+δẼs̃2︸ ︷︷ ︸
S̃b+2S̃−→3S̃

, (D2)

where Ẽ = c0 − r − s̃ and a, b, c, d, e, α, β, γ, δ, and
c0 are constants. Chemical reactions are indicated under
corresponding terms in the equations, where the symbols
S̃ and S̃b denote bound receptor-scaffold complexes at
the membrane and in the cytoplasm, respectively. The
last two terms in Eq. (D1) represent the release of a re-
ceptor at the membrane from a bound receptor-scaffold
complex, when the latter unbinds and its scaffold leaves
the membrane. If, furthermore, unbound scaffolds reach
the membrane from the cytoplasm, and then bind to a
receptor at the membrane, the equations acquire addi-
tional terms, as

F ′
s̃(r, s̃) = aẼ︸︷︷︸

Rb−→R

−br︸︷︷︸
R−→Rb

−cẼr︸ ︷︷ ︸
Mb+R−→Mb+Rb

+dẼs̃︸ ︷︷ ︸
Rb+S̃−→R+S̃

+eẼrs̃︸ ︷︷ ︸
Rb+R+S̃−→2R+S̃

−αẼr︸ ︷︷ ︸
Sb−→S̃

+βs̃︸︷︷︸
S̃−→Sb

+γẼs̃︸ ︷︷ ︸
Mb+S̃−→Sb+Mb

−δẼrs̃2︸ ︷︷ ︸
Sb+2S̃−→3S̃

, (D3)

Gs̃(r, s̃) = αẼr︸︷︷︸
Sb−→S̃

−βs̃︸︷︷︸
S̃−→Sb

−γẼs̃︸ ︷︷ ︸
Mb+S̃−→Sb+Mb

+δẼrs̃2︸ ︷︷ ︸
Sb+2S̃−→3S̃

. (D4)

The last four terms in Eq. (D3) result from receptors either unbinding from bound receptor-scaffold complexes or
binding to (unbound) scaffolds, at the membrane.
Analogous model variants can be formulated for the converse case, in which receptors can be found at the membrane

only in their bound form, while scaffolds can be either bound or unbound. While this scenario appears to be less
likely experimentally, it may be interesting on theoretical grounds. Here, in the case in which receptors arrive at
the membrane in their unbound form and leave the membrane by unbinding from receptor-scaffold complexes, the
reaction terms in the model variant become

Fr̃(r̃, s) = aẼs︸︷︷︸
Rb−→R̃

−br̃︸︷︷︸
R̃−→Rb

−cẼr̃︸ ︷︷ ︸
Mb+R̃−→Mb+Rb

+eẼr̃s︸ ︷︷ ︸
Rb+R̃+S−→2R̃+S

,

(D5)

Gr̃(r̃, s) = αẼ︸︷︷︸
Sb−→S

−βs︸︷︷︸
S−→Sb

−γẼs︸ ︷︷ ︸
Mb+S−→Sb+Mb

+δẼrs2︸ ︷︷ ︸
Sb+2S−→3S

−aẼs︸ ︷︷ ︸
Rb−→R̃

+br̃︸︷︷︸
R̃−→Rb

+cẼr̃︸ ︷︷ ︸
Mb+R̃−→Mb+Rb

−eẼr̃s︸ ︷︷ ︸
Rb+R̃+S−→2R̃+S

,

(D6)

where r̃ stands for the concentration of bound receptor-
scaffold complexes, R̃ represents a bound receptor-
scaffold complex, and, here, Ẽ = c0 − r̃ − s.

Our rationale for pointing out these ‘minimal variants’

of model C is that, because they are formally similar to
the original model, they can be analyzed using the gen-
eral framework described in the present article. More
generally, however, one would like to examine models
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with more than two variables. Additional variables are
needed if both unbound and stable bound forms of re-
ceptors or scaffolds can be present at the membrane, and
also if one is to consider other chemical species beyond re-

ceptors and scaffolds. More detailed models with a larger
number of coupled equations would require an extensive
study of the sort we have summarized in this article for
the case of two-variable models.
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[24] K. Czöndör, M. Mondin, M. Garcia, M. Heine,

R. Frischknecht, D. Choquet, J.-B. Sibarita, and O. R.
Thoumine, Proc. Natl. Acad. Sci. U.S.A. 109, 3522
(2012).

[25] A. K. McAllister, Ann. Rev. Neurosci. 30, 425 (2007).
[26] J. Meier, C. Meunier-Durmont, C. Forest, A. Triller, and

C. Vannier, J. Cell Sci. 113, 2783 (2000).
[27] J. Meier, C. Vannier, A. Sergé, A. Triller, and D. Cho-
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