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Many organisms form colonies for a transient period of time to withstand environmental pressure.
Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across
disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are
still poorly understood. Starting from a kinetic description of motile and interacting cells we derive
a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are
estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation
of multiple colonies with sizes consistent with experimental observations. Finally, we show how
the changes in the cell to cell interactions lead to the dissolution of the bacterial colonies. The
successful application of kinetic theory to a complex far from equilibrium systems such as formation
and dissolution of living bacterial colonies potentially paves the way for the physical quantification
of the initial stages of biofilm formation.

I. INTRODUCTION

Colony formation is a pervasive phenomenon in living
systems and is crucial for the survival of many species [1–
6]. One of the well-known examples where colony for-
mation is essential are biofilms. A bacterial colony can
grow from a single cell via multiple cell divisions [1, 5].
However, there is another mechanism, which relies on
successive encounters of individual, motile bacteria, as
also occurring in the initial stages of biofilm formation.
This scenario of a kinetic formation of colonies domi-
nates over proliferation if individuals are highly motile
and their encounters drive the assembly of cells on a time
scales much shorter than the characteristic cell division
time. N. gonorrhoeae or N. meningitidis on biotic or
abiotic substrates such as glass [7], plastic (Fig. 1(a)) or
epithelial tissue [3] are prototypical examples for such a
scenario. Motility of these and many other bacteria origi-
nates from long and thin filaments, called pili, which grow
out the cell, attach to a substrate, retract and thereby
actively pull the cell forward [8–11]. Pili are also used to
mediate attractive displacements between cells [7, 11–13]
with a characteristic interaction scale given by the mean
pili length. Colonies begin to form within thirty min-
utes, which is significantly smaller than the characteris-
tic cell division time-scale (N. gonorrhoeae: approx. 3
h [14]). Bacterial colonies are in general reversible struc-
tures. Under certain conditions, for example the lack
of nutrients or oxygen, they can dissolve and re-colonize
their surroundings [15–17]. Specifically, N. meningitidis
and N. gonorrhoeae bacterial colonies have been shown
to dissolve by effectively lowering the strength of the pili-
mediated interaction [16, 17].

However, so far, the physical mechanisms governing
the formation and dissolution of bacterial colonies are
poorly understood. Since motility and interactions are
driven by active retractions of pili, fundamental concepts
from equilibrium statistical mechanics are in general not
applicable. The inherent non-equilibrium nature of this
system suggests to consider a kinetic approach reminis-
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FIG. 1. (color online) (a) N. gonorrhoeae colonies three
hours after sedimentation on a plastic substrate. (b) Typi-
cal snapshot of state obtained from a numerical solution to
Eq. (2a) at large time scales.

cent of the Boltzmann equation, which has been success-
fully employed to describe the order-disorder transitions
in several active systems far from equilibrium [18–28].

Here we propose a kinetic description as a general
framework of how living colonies form and dissolve, which
keeps track of the length scales and the specific proper-
ties of the interactions between individuals. By a coarse-
graining procedure we derive the corresponding hydro-
dynamic equation and find an ordering instability for
a choice of parameters relevant to N. gonorrhoeae. It
belongs to a class of instabilities, where the diffusion
constant is negative and originates from attractive pili-
mediated interactions. As most of the parameters can be
estimated based on available data for N. gonorrhoeae, we
analytically compute the corresponding phase-diagram
and the characteristic colony size that is consistent with
experimental observations.

Our theory can also be used to compare the effects of
different cell-cell interactions and investigate their inter-
play. We show that pili interactions are more effective
regarding clustering than cell adhesion. Moreover, when
both interactions keep the cells together in the colony, a
more efficient and robust way to dissolve the colony is
to lower the strength of pili-mediated interactions. This



2

suggests that pili play an essential role not only in cell
motility and assembly, but also in the dissolution of ma-
tured colonies. Our results demonstrate that kinetic the-
ory can be applied to quantify the process of colony for-
mation in living systems and is able to provide insights
about the underlying physical mechanisms.

II. KINETIC MODEL FOR BACTERIAL
COLONY FORMATION

Our kinetic description is formulated in terms of the
particle density f(r, t). We restrict ourselves to two-
dimensional colonies forming on a planar substrate [29]
which do not give rise to swarms or swirls (see e.g. [22]).
Therefore, the spatial coordinates r ∈ R2 suffice as dy-
namical variables. In the absence of interactions cells are
assumed to move across the substrate by pili-mediated
displacements as in case of N. gonorrhoeae or N. menin-
gitidis, leading to a diffusive behaviour at large length
and time-scales [30]. Interactions enter the kinetic de-
scription via “collision rules”. A collision rule R maps
the pre-collision coordinates to the post-collision posi-
tions by means of the delta-functions δ(·). The corre-
sponding kinetic equation is:

∂tf(r, t) = Cmot(r, t) + Cint(r, t), (1a)

where Cmot describes the cell motility across the substrate

Cmot(r, t) =

∫
dr′ [Kr′→rf(r′, t)−Kr→r′f(r, t)] (1b)

and Cint accounts for the cell-cell interactions

Cint(r, t) =
1

2

∫
dr1

∫
dr2W�(|r12|)f(r1, t)f(r2, t) (1c)

× [δ (R1(r1, r2)− r) + δ (R2 (r1, r2)− r)− 2δ (r2 − r)] .

Kr→r′ denotes the transition kernel to move from r to r′

by a retraction event of an individual pilus. We assume
that retraction events are independent and that the cor-
responding rate is isotropic, with a characteristic length
scale given by the pili length `pi. There is experimen-
tal evidence that the pili lengths are distributed expo-
nentially [30]. Therefore, we consider for the transition
kernel

Kr→r+b = K0/(2π`
2
pi) exp (−|b|/`pi), (1d)

with K0 denoting the attachment rate of pili to the sub-
strate and b = r′ − r is the displacement resulting from
an individual pilus retraction.
W�(|r12|) characterizes the isotropic kernel for colli-

sions between cells with |r12| = |r1 − r2| denoting the
relative cell-cell distance. For pili-mediated attractive
displacements, we consider the following collision rule:

(r1, r2)→ (R1,R2) = (r1 − ar12, r2 + ar12) , (1e)

where a ∈ [0, 1/2] is a measure for the strength of the
attractive interaction. For a = 1/2, cells are maximally

attracted and displaced to the center-of-mass coordinate
R12 = (r1 + r2) /2 between the collision partners, while
for a = 0, cells diffuse freely without interacting. Due
to the exponential distribution of the pili lengths, the
interaction rate is

W� ≡ Wpi(|r12|) = γW0/(2π`
2
pi) exp (−|r12|/`pi), (1f)

where `pi sets the characteristic length scale for the at-
tractive interaction and W0 denotes the interaction rate.
Since pili-mediated cell-cell interactions are intrinsically
stochastic [8, 9], we introduce a non-dimensional num-
ber, γ, accounting for the number of successful binding
and retraction events to the total number of pili-cell en-
counter events.

III. DERIVATION OF HYDRODYNAMIC
EQUATION

The isotropy of the interaction rates allows us to in-
tegrate Eq. (1) over the center-of-mass coordinates R12

leading to non-local terms [see Appendix A]. These terms
are related to the length scales of the interactions and re-
semble a phenomenological description for the assembly
of active bundles [32–34]. Since cell colonies typically ex-
hibit sizes noticeably beyond the interaction length scale,
the non-local integrands can be removed by expanding
the particle density f with respect to the spatial coor-
dinates [18, 22]. Truncation of this expansion amounts
to coarse-graining beyond the interaction length scale.
To obtain a well-defined set of hydrodynamic equations
for the dynamics of bacterial colonies with pili-mediated
interactions we truncate at the fourth order [see Ap-
pendix B for details]:

∂tρ(r, t) = α(ρ)∇2ρ(r, t)− β1 |∇ρ(r, t)|2 + κ(ρ)∇4ρ(r, t)

+ β2
[
∇2ρ(r, t)

]2 − β3 [∇ρ(r, t)] · ∇3ρ(r, t),(2a)

where ρ = f · `2pi is the dimensionless density and the
kinetic coefficients are

α(ρ) = G− β1 ρ(r, t) , (2b)

κ(ρ) = − (β2 + β3) ρ(r, t) , (2c)

β1 = aāc̃2 , (2d)

β2 = a2ā2c̃4/4 , (2e)

β3 =
(
aā3 + āa3

)
c̃4/6 , (2f)

where ā = 1 − a. Note that all βi > 0. The numerical
constants c̃k are given in Table I. In Eq. (2a), we rescaled
coordinates by the pili length `pi, i.e. r→ r · `pi, leading
to a rescaling of time t → t · `2pi/(W0γ). We introduce
the dimensionless parameter,

G =
D

γW0
, (2g)

with D = 3K0`
2
pi denoting the single cell diffusion con-

stant. G is reminiscent of the inverse Péclet number and
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k 0 1 2 3 4
c̃k,pi 1 0 3 0 45
c̃k,ad 1 0 1

2
0 3

4

TABLE I. The numerical numbers c̃k [as defined in Ap-
pendix B, Eq. (B6)] corresponding to pili-mediated interac-
tions and adhesion [refer to Eq. (1f) and Eq. (7) for the re-
spective collision kernels].

can be interpreted as a measure for the rate of diffusive
particle transport relative to the frequency of interac-
tions. In other words, given a time period between two
successive collisions, G quantifies how much distance is
traveled (on average) by diffusion with respect to the
mean free path.

An equation similar to Eq. (2a) but phenomenolog-
ically constructed appeared in the context of laminar
flames and propagation of concentration waves referred
to as Kuramoto-Sivashinsky equation [35, 36]. It has
also been pointed out as an appropriate framework to
study instabilities in growing yeast colonies [6]. How-
ever, Eq. (2a) is distinctively different because the ki-
netic coefficients depend on density [Eqs. (2b) and (2c)].
Moreover, Eq. (2a) exhibits an alleged similarity to the
Cahn-Hilliard equation studied in the context of liquid-
liquid demixing [37]. Though both equations have terms
of similar orders in O(∇ρ), they are fundamentally dif-
ferent with respect to the saturation of droplet or colony
growth. The Cahn-Hilliard equation exhibits an insta-
bility of the homogeneous state, which saturates because
the effective diffusion constant in front of the Laplace
operator decreases to zero. Eq. (2a) also exhibits an in-
stability but it saturates due to a different mechanism as
discussed in the next section.

IV. COLONY FORMATION DUE TO
PILI-MEDIATED INTERACTION

A. Onset and saturation of colony formation

Eq. (2a) becomes unstable for α(ρ) < 0 marking a crit-
ical density, ρc = G/β1. For ρ0 > ρc, the homogenous
state of density ρ0 is unstable. The instability enhances
small density modulations around the homogenous den-
sity ρ0 with a dispersion relation w(q) = −α(ρ0)q2 −
κ(ρ0)q4. ρc depends on the non-dimensional parameter
G and the interaction strength a, ρc = G/(aāc̃2). We
find that ρc decreases for stronger attractive interactions,
a→ 1/2, and smaller values of G; see Fig. 4(a,b).

The instability is opposed by fluxes related to the spa-
tial curvature of the density field, which can be qualita-
tively understood by splitting the flux j in

∂tρ = −∇ · j (3a)

into three contributions:

j = jinst + jcu + j∇cu . (3b)
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FIG. 2. (color online) (a,b) Critical density ρc as a function
of the non-dimensional parameter G and interaction strength
a. Each line separates the parameter space, where colonies
develop or the system remains homogeneous. In (b), three
values of interaction strength a are displayed: (0.5, 0.25, 0.1)
=(solid, dashed, dash-dotted), and (c) depicts three values
of G: (0.1, 0.2, 0.5)=(solid, dashed, dash-dotted). (c) Illus-
tration of how the instability is balanced: For initial densi-
ties ρ(t = 0) > ρc, the ‘instability flux’ jins drives the emer-
gence of a spatially inhomogeneous density profile. Depend-
ing on the location along the density profile, the ‘curvature
flux’ jcu and/or the ‘gradient curvature flux’ j∇cu acts against
the ‘instability flux’ jins and thereby balances the instabil-
ity. (d) Maximal density minus minimal density, ρmax−ρmin,
as a function of time t, where ρmax(t) = maxrρ(r, t) and
ρmin(t) = minrρ(r, t), for numerical solutions to Eq. (3) with
and without ‘curvature flux’ jcu.

jinst = −α(ρ)∇ρ denotes the ‘instability flux’ which acts
for α < 0 like negative diffusion thus driving particles
to the center of a density spot [see Fig. 4(c) for an illus-
tration]. There the instability current is opposed by the
‘curvature flux’, jcu = −β2(∇2ρ)∇ρ, and the ‘gradient-
curvature flux’, j∇cu = (β2 + β3)ρ∇(∇2ρ). Both are di-
rected outwards of the density spot since curvature is
negative and increases.

B. Numerical Analysis

Our findings on the instability and its saturation can
be scrutinized by numerically [38, 39] solving Eq. (2a).
A representative snapshot of a state at large time-scales
is shown in Fig. 1(b), which appears to be similar to
N. gonorrhoeae colonies three hours after sedimentation
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FIG. 3. (color online) (a,b) Maximal density minus minimal density, ρmax − ρmin, as a function of time t, where ρmax(t) =
maxrρ(r, t) and ρmin(t) = minrρ(r, t). In (a) we divide through the mean density, ρ0 = L−2

∫
drρ(r, t), where L is the system

size (here we used L = 20). Note that for all numerical runs, ρ is conserved. For the numerical results (a-d) we used a = 0.5,
G = 0.1 and consider pili-mediated interactions (c̃2 = 3/4), implying a critical density of ρc = 2/15 = 0.133̄ (see main text for
the analytic expression of the critical density). (a) Consistently, realizations with ρ > ρc exhibit an instability, i.e. ρmax − ρmin

grows as a function of time, whereas for ρ0 < ρc, weak initial spatial perturbations around ρ0 decay exponentially. The
growth roughly follows an exponential with a speed strongly dependent on the difference of ρ0 to the critical density: The
larger this difference, the faster the initial growth speed. Please note that for densities slightly above the critical threshold
(e.g. ρ0 = 0.2), the instability grows too slowly to capture the long time behavior. However, for large enough densities (e.g.
ρ0 = {0.4, 0.6, 1.0}), ρmax − ρmin clearly indicates a saturation. (b) The behavior at very large time-scales is very hard to
capture numerically: Interestingly, if the system has developed to a single colony, ρmax − ρmin becomes flat (see ρ0 = 0.4 and
snapshot (c)). If there are two or more colonies in the system (e.g. ρ0 = {1.0} and snapshot (d)), ρmax − ρmin still changes as
a function of time, though very weakly.

on a plastic substrate [Fig. 1(a)]. Using parameter val-
ues consistent with the experimental system we observe
multiple colonies developing quickly for densities above
the critical value. We checked numerically that for all
parameter values lying within the ‘colony phase’ of the
analytic phase diagram [Fig. 4(a,b)] give rise to the for-
mation of colonies. After the onset of the instability,
colonies exponentially grow with a growth speed that is
higher the larger the difference of the homogeneous den-
sity ρ0 to the critical density ρc; see Fig. 3(a,b). Thus,
for ρ0 ↘+ ρc, we observe a colony growth rate decreas-
ing to zero; a phenomena reminiscent of ‘critical slowing
down’ in phase transitions [40]. Subsequent to the initial
growth, there is regime, where colonies grow only very
slowly [Fig. 4(d), solid red line] and vanishes when there
is only a single colony left in the system [see Fig. 3(c,d)].
The slow growth is due to a weak interaction between the
colonies via some evaporation-condensation mechanism
qualitatively reminiscent of Ostwald-ripening in liquid-
liquid phase-separation [37]. Interestingly, at the onset
of the instability the non-linear ‘curvature flux’ jcu van-
ishes suggesting that it might play an essential role for
developed colonies at large time-scales. Running the sys-
tem without curvature flux, jcu = 0 in Eq. (3), we find
that the subsequent ripening is absent leading to a stable
state consisting of multiple colonies [see Fig. 4(d), dashed
line]. This implies that interactions between colonies is
driven by the ‘curvature flux’, while the ‘gradient curva-
ture flux’ suffices for the saturation.

C. Estimation of quasi-stationary colony size

Based on this insight we can analytically estimate the
colony size at the time when the system crosses to the
very slow ripening regime [vertical line in Fig. 4(d)] by ne-
glecting the ‘curvature flux’, jcu = β2 (∇2ρ)∇ρ in Eq. (3).
Note that the ‘curvature flux’ also vanishes after lin-
earization of Eq. (3) around ρ0 with ρ = ρ0 +δρ. Assum-
ing quasi-static conditions, j = 0, leads to

0 =
[
α(ρ0) + κ(ρ0)∇2

]
∇δρ. (4)

Within this quasi-static approximation there are two sta-
tionary states: The homogenous density field ρ = ρ0 with
∇ρ = 0 and an inhomogeneous state (∇ρ 6= 0) that sup-
ports periodic solutions suggesting the coexistence of sev-
eral colonies. Since our simulations indicate that droplets
are of very similar size when the system crosses from the
fast initial growth to the slow ripening phase (see video
material), let us approximate the droplet size distribu-
tion to be infinitely narrow and extract a single length
scale, referred to as quasi-stationary colony size ξ. Writ-
ing ∇ → iq and ξ = π|q|−1, one finds for ∇ρ 6= 0:

ξ2(ρ0) ' π2 κ(ρ0)

α(ρ0)
. (5)

For large densities, ρ� ρc, one gets

ξ(ρ0 →∞) ' π
√
β2 + β3
β1

, (6)

which gives approximately 5 pili-length for a = 0.5; a
value that is consistent with N. gonorrhoeae [Fig. 1(a)].
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FIG. 4. (color online) (a,b) Critical density ρc as a function
of the non-dimensional parameter G and interaction strength
a for pili-mediated interactions (blue) and adhesion (red).
In (a), three values of interaction strength a are displayed:
(0.5, 0.25, 0.1)=(solid,dashed,dash-dotted), `pi ≈ 2 · `ad and
in (b), G = 0.1.

D. Biological relevance

In principle, all parameters entering the kinetic de-
scription Eq. (1) can be measured or estimated for living
colonies forming on a substrate and thereby all kinetic co-
efficients in Eq. (2a). In particular, for N. gonorrhoeae,
`pi ≈ 1µm [9, 30] and colony formation is observed for
densities of ρ ≈ 0.2. The attachment rate to the sub-
strate can be obtained from measurements of the single
cell diffusion constant, K0 = D/(3`2pi) ≈ (6s)−1 with

D ≈ 0.5µm2/s [4] and the cell-cell interaction rate can
be roughly estimated from the experimental value of the
mean next neighbour distance and the mean pili-number
per cell to W0/`

2
pi ∼ 5s−1 (see Appendix D for more in-

formation on the estimate). Therefore, a typical value
for the dimensionless parameter for N. gonorrhoeae is
G ∼ 0.1γ−1. Recently, the attachment probability of pili
to a substrate has been determined by fitting a model to
experimental results [9], finding an approximate value of
0.5. We expect a roughly similar, maybe lower value for γ
since successful binding to another cell can be hindered
by other moving cells. So far an appropriate estimate
for the interaction strength a is missing because the syn-
chronous visualization of pili and cell movement is not
feasible for large enough time-scales. Thereby, we con-
sider a as an unknown parameter.

V. COMPETITION OF PILI-MEDIATED AND
ADHESIVE INTERACTIONS

A. Competition during colony formation

The proposed kinetic description, Eq. (1), can also be
used to include other attractive interactions such as ad-
hesion. Since cell-cell adhesion constitutes a local inter-
action on the scale of the cell diameter, an appropriate

weight function is for example a Gaussian of the form

W� ≡ Wad(|r12|/`ad) =W0/(π`
2
ad) exp

(
−r212/`2ad

)
,
(7)

where `ad denotes the characteristic length scale which
is in the order of the cell size. Comparing both inter-
actions we find that pili allow for a significantly more
pronounced affinity for colony formation compared to ad-
hesive interactions, i.e. colonies already form at smaller
initial density of cells [Fig. 4(a,b)]. The reason is that
the pili length distribution exhibits a more pronounced
tail than the localized Gaussian distribution (character-
ized by larger c̃2) and also a larger characteristic length
as for N. gonorrhoeae (`pi > `ad).

B. Colony dissolution

Many bacteria are known to interact simultaneously
by adhesion and pili. It is hypothesized that these bac-
teria are able to switch off either adhesion or the pili-
mediated interaction without affecting their ability to
move [16, 17, 41]. Now we address the question of
whether developed colonies can dissolve by switching off
either one of these interactions. In other words, given
the phase-diagram of a specific bacteria system, we dis-
cuss some possible means of leaving the “colony-phase”
by api → 0 or aad → 0. We now include both interactions
by adding a term for pili-mediated interactions Cint,pi and
a term corresponding to adhesive interactions Cint,ad on
the right hand side of Eq. (1a), i.e. Cint = Cint,pi +Cint,ad.
In addition to the already introduced different length
scales `pi and `ad, we also distinguish the correspond-
ing interaction strengths, denoted as api and aad (values
for adhesion and pili-mediated interactions are denoted
as c̃k,ad and c̃k,pi). We rescale coordinates, density and
time by the adhesive interaction length `ad (or cell size),
i.e. r→ r·`ad, f → f/`2ad ≡ ρ and t→ t·`2ad/W0, thereby
introducing a ratio of these length scales, ε = `pi/`ad.
For the case where cells interact with both adhesive and
pili-mediated interactions, we find the following effective
diffusion constant [further coefficients see Appendix C]:

α(ρ) = G− ρ
(
aadāad c̃2,ad + apiāpi c̃2,pi γ ε

2
)
. (8)

Setting this equation equal to zero marks a critical den-
sity

ρ∗c(aad, api) =
G

aadāad c̃2,ad + apiāpi c̃2,pi γ ε2
(9)

that depends on the strength of both interactions, aad
and api.

In order to study the impact of both interactions for
dissolution of colonies we choose the parameters (ε, γ)
relevant to N. gonorrhoeae. Fig. 5(a) shows ρ∗c(aad) as a
function of aad for api = 0.5 and G = 0.1, while Fig. 5(b)
depicts ρ∗c(api) as a function of api for aad = 0.5 and
G = 0.5, both for several values of γ. For a given γ,



6

cr
it
ic
a
l
d
en
si
ty
ρ
∗ c
(a

a
d
)

adhesive strength aad

0

0.1

0.2

0.3

0 0.25 0.5

dissolution

dissolution

colonies

homogeneous

(a)

not possible

cr
it
ic
a
l
d
en
si
ty
ρ
∗ c
(a

p
i)

pili int. strength api

0

0.1

0.2

0.3

0 0.25 0.5

dissolution

colonies

homogeneous

(b)

FIG. 5. (color online) Critical density ρ∗c(aad, api)/G as a
function of (a) adhesive strength aad (with api = 0.5) and
(b) pili-mediated interaction strength api (with aad = 0.5).
In both plots, G = 0.1 and each solid line corresponds to
γ ∈ {0.4, 0.3, 0.2} from top to bottom. Black line corresponds
to γ = 0.3. The horizontal black dashed line (plotted only
for γ = 0.3 in (a)) marks the dissolution boundary: Below,
dissolution (red arrow) is possible, above not. Blue shaded
areas correspond to the “colony-phase”.

there are two qualitatively distinct regimes for the case
where adhesive interactions are switched off [Fig. 5(a)]:
For small enough ρ∗c below the “dissolution boundary”
(horizontal dashed line), colonies can dissolve by switch-
ing off the adhesive interaction (aad → 0) and is indi-
cated by the red arrows. However, above the dissolution
boundary, colonies cannot dissolve. Interestingly, choos-
ing the parameters relevant to N. gonorrhoeae gives a
rather small density regime, where colonies can dissolve,
rendering the dissolution scenario through switching off
adhesion as a non-robust mechanism. This is in stark
contrast to the scenario of switching off pili-mediated in-
teractions [Fig. 5(b)]: For a given γ, dissolution is pos-
sible for all experimental densities in the “colony-phase”
by lowering the pili-interaction strength, api → 0. These
findings suggest that switching off pili-mediated interac-
tions is a more robust mechanism for the dissolution of
bacterial colonies than switching off adhesion.

VI. CONCLUSION

To summarize, the formation of living colonies is in-
vestigated using a hydrodynamic equation derived from
a kinetic description, where most of the parameters can
be estimated from experimental data for N. gonorrhoeae
bacteria. Our results demonstrate that kinetic theory can
be successfully used to describe complex far from equi-
librium systems such as formation and dissolution of liv-
ing bacterial colonies. Applications of this theory could
pave the way for the physical quantification of the initial
stages of biofilm formation. Though biological reasons
for colony formation are specific to each system there
are qualitative similarities [1–6]: Colonies form due to
encounters with nearby individuals giving rise to struc-
tures of a characteristic size determined by the intra-

species interactions and the environment. These similar-
ities suggest that our kinetic description might be applied
to other colony-forming systems while the kinetic coeffi-
cients in the resulting hydrodynamic equation may dif-
fer for each system. Further open questions concern the
role of cell division and stochastic fluctuations in living
colonies [42].

Appendix A: Coordinate change due to isotropy of
interaction kernel

Using the collision rule (see Eq. (2), main text; and
Fig. 6),

(r1, r2)→ (R1,R2) = (r1 − a r12, r2 + a r12) , (A1)

the gain term C+ can be written as:

C+ =

∫
dr1

∫
dr2W�(r1, r2) f(r1, t)f(r2, t)

× 1

2

(
δ ((r1 − a · r12)− r) + δ ((r2 + a · r12)− r)

)
.

(A2)

The equation above can be rewritten in terms of relative
coordinates r12 = r1− r2 and center-of-mass coordinates
R12 = (r1 + r2)/2, i.e. r1 = R12 + r12/2 and r2 = R12 −
r12/2 (see Fig. 6):

C+ =
1

2

∫
dr12

∫
dR12W�(|r12|)

× f(R12 + r12/2, t)f(R12 − r12/2, t)

×
[
δ

(
R12 + r12

(
1

2
− a
)
− r

)

+ δ

(
R12 + r12

(
−1

2
+ a

)
− r

)]
.

(A3)

Due to the isotropy of the collision kernel the integration
over the center-of-mass coordinates can be performed,
finding

C+ =
1

2

∫
dr12W�(|r12|)

[
f(r + ar12, t)f(r− ār12, t)

+ f(r− ar12, t)f(r + ār12, t)

]
,

(A4)

where ā = 1 − a. The equation above can be further
simplified for example for the case a = 1

2 :

C+ =

∫
dr12W�(|r12|)f(r + r12/2, t)f(r− r12/2, t).

(A5)
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Similar manipulations can be performed for the loss term:

C− =

∫
dr1

∫
dr2W�(|r12|) f(r1, t)f(r2, t) δ (r2 − r)

=

∫
dr12

∫
dR12W�(|r12|) δ (R12 − (r12/2 + r))

× f(R12 + r12/2, t)f(R12 − r12/2, t)

= f(r, t)

∫
dr12W�(|r12|) f(r + r12)

≡ f(r, t)

∫
dr12W�(|r12|)f(r− r12).

(A6)

Please note that non-local integrands above resemble a
phenomenological description for the assembly of active
bundles [32–34].

Appendix B: Details of coarse-graining and
truncation

Truncating of the non-local distribution function f(r±
ar12) (cf. Eq. (A4) and Eq. (A6)) at the fourth order
leads to

f(r± ar12) = f(r)± a (r12 · ∇) f(r) +
a2

2
(r12 · ∇)

2
f(r)

± a3

6
(r12 · ∇)

3
f(r) +

a4

24
(r12 · ∇)

4
f(r) +O

[
(r12 · ∇)

5
]
,

(B1)

where we omitted the time dependence for reasons of
brevity. Using the truncation above and neglecting

all terms O
[
(r12 · ∇)

5
]

amounts to an explicit coarse-

graining of the system’s dynamics to length scales beyond
the characteristic length scale of the interaction. There-
fore, we will refer to the resulting equation obtained at
the end of this section as hydrodynamic equation.

FIG. 6. Illustration of collision setup and the collision rule
mimicking attractive interactions. (a) The two collision part-
ners have the spatial coordinates r1 and r2, defining a rela-
tive distance r12 = r1 − r2 and a center-of-mass coordinate
R12 = (r1 + r2)/2. (b) The collision given in Eq. (2) [main
text], which maps the pre-collision coordinates (r1, r2) to the
post-collision coordinates (R1 (r1, r2) ,R2 (r1, r2)) [indicated
by green arrows]. For the illustration, a = 0.25.

1. Single cell motility term:

The term modeling the single cell motility across the
substate, Cmot, can be coarse-grained as follows. Defining
the pili-mediated displacement as b = (bx, by) = r′ − r,
and the transition rate Kr→r′ ≡ K(b; r):

Cmot(r, t) =

∫
dr′ [Kr′→rf(r′, t)−Kr→r′f(r, t)]

=

∫
db [K(−b; r + b)f(r′, t)−K(b; r)f(r, t)]

=

∫
db [K(b; r− b)f(r− b, t)−K(b; r)f(r, t)] .

(B2)

Expanding the non-local integrand with respect to the
spatial coordinates and keeping only the highest non-
vanishing order leads to:

Cmot(r, t) =

∫
db

1

2
(b · ∇)

2
[K(b; r)f(r, t)]

=

∫
db

1

2
K(b) (bx∂x + by∂y)

2
f(r, t)

=

∫
db

1

2
K(b)

(
b2x∂

2
x + b2y∂

2
y

)
f(r, t)

=

[∫
dbK(|b|)b2x

] (
∂2x + ∂2y

)
f(r, t)

= D∇2f(r, t),

(B3)

where we assumed that the transition rate does not de-
pend on the spatial coordinates, K(b; r) = K(b), and
that it is an even [43] and isotropic function, K(b) =
K(|b|). Moreover, using K(|b|) = K0

1
2π`2pi

exp (−|b|/`pi)
one obtains the diffusion constant for pili-mediated motil-
ity:

D = K0`
2
pic̃2,pi, (B4)

where c̃2,pi given in Table I and K0 denotes the attach-
ment rate of pili to the substrate. Restricting to the
second order is validated by the Pawula theorem [44].

2. Interaction term

The interaction term Cint can be split in a gain term,
C+, and a loss term, C−.
Gain: Neglecting all terms above the fourth order, we

find for the loss term:

C− = f(r)
[
c0f(r) +

c2
2
∇2f(r) +

c4
24
∇4f(r)

]
, (B5)

where the coefficients are given as

ck =

∫ ∫
dr12,xdr12,y r

k
12,x Wad/pi(r12)

=W0

{
`kad/pi · c̃k if k even,

0 if k odd,

(B6)
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with r12 = |r12| =
√
r212,x + r212,y and c̃k are dimen-

sionless numbers given in Table I for the adhesive(ad)
and pili-mediated(pi) interaction. Note that odd pow-
ers, thereby also mixed gradients such as ∂x∂yf , vanish
since the integral is then an asymmetric function with
respect to the integration over e.g. dr12,x or dr12,x, re-
spectively [45].

Loss: Following similar lines for the source term C+,
and neglecting all contributions above the fourth order
in the spatial derivatives, we find only six non-zero con-
tributions:

C+int = c0 f
2(r) +

1

2
[a2 + ā2]c2 f(r)∇2f(r)− aāc2 |∇f(r)|2

+
1

24
[a4 + ā4]c4 f(r)∇4f(r) +

1

4
a2ā2c4

[
∇2f(r)

]2

− 1

6
[aā3 + āa3]c4 [∇f(r)] · ∇3f(r) .

(B7)

Gain and loss: Combining gain and loss term, Cint =
C+ − C−, and plugging it in Eq. (1) [main text], leads to
the final hydrodynamic equation:

∂tf(r, t) = D∇2f(r, t)] +
1

2
[a2 + ā2 − 1]c2 f(r, t)∇2f(r, t)

+
1

24
[a4 + ā4 − 1]c4 f(r, t)∇4f(r, t)

− aāc2 |∇f(r, t)|2 +
1

4
a2ā2c4

[
∇2f(r, t)

]2

− 1

6
[aā3 + āa3]c4 [∇f(r, t)] · ∇3f(r, t) .

(B8)

Note that in Eq. (B8) the zeroth order term cancels be-
cause of particle conservation.

As last step, we use the scaling of the kinetic coeffi-
cients, ck = W0`

k c̃k [see Eq. (B6)], with ` ∈ {`ad, `pi}
and the numerical values c̃k given in Table I, and write
Eq. (B8) in a dimensionless form. To this end, we rescale
the coordinates and the density by means of the interac-
tion length `, i.e. r→ r·` and f → f/`2 ≡ ρ. This implies
a rescaling of the time-scale given by t → t · `2/(W0γ);
note that γ = 1 for adhesive interactions. Using the
aforementioned rescalings leads to Eq. (2a).

Appendix C: Kinetic coefficients for adhesion and
pili-mediated interactions

For adhesive and pili-mediated interactions, solely the
effective diffusion constant α(ρ) has been given in the
main text. Reading the coefficients Eq. (2d)–(2f) as func-
tion of the interaction strength a, i.e. βi = βi(a), the
remaining coefficient is listed below:

κ(ρ) = −
[(
β2(aad) + β3(aad)

)

+
(
β2(api) + β3(api)

)
γ ε4

]
. (C1)

The corresponding length scales, interaction strength
and numerical coefficients for adhesion and pili-
mediated interactions are denoted as: `pi, aad, c̃k,ad and
`ad, aad, c̃k,ad, respectively, and ε = `pi/`ad. The rescal-
ings used are described in the main text.

Appendix D: Estimates of parameters for N.
gonorrhoeae

1. Estimate for density ρ0

We considered 20 experimental realizations of N. gon-
orrhoeae bacteria forming colony in a substrate. Af-
ter sedimentation to the plastic surface we calculated
from the corresponding binary images the overall area
fraction covered by bacteria cells, finding φ ≈ 0.1.
The corresponding dimensionless density is then: ρ0 =
φ`2pi/(πRcell) ≈ 0.125 with `pi = 1µm and Rcell = 0.5µm.
Since typically some small three dimensional colonies
have already formed during sedimentation process we ex-
pect that the determined value represents a slight under-
estimation, thereby we use ρ0 = 0.2 in the manuscript.

2. Estimation of W0/`
2
pi

W0/`
2
pi is a measure for the rate of cell-cell encounters

occurring in an area of `2pi. A direct measurement of this
quantity requires the sampling of the cell trajectories on
the time-scale of the cell-cell encounters which is intricate
because bacteria cells get harmed in case of too frequent
light exposure. Therefore, we have to content with a
rough estimate. If we assume that each pilus per cell
acts independently, we can first estimate the rate of a
cell-cell interaction for a single pilus. For intermediate
and large cell densities with respect to the intersection
scales, it is expected that this rate roughly scales with
the number of pili per cell.

The time τ between two interactions using a single
pilus should be roughly given by the time to diffuse
the distance to the next-neighbouring cell `NN, τ ∼
`2NN/(4D), where D = 0.5µm2/s. However, this dis-
tance is reduced by the cell-diameter 2Rcell = 1µm and
two times the typical pili-length 2`pi = 2µm (the fac-
tor 2 is based on very recent experimental observation
that pili-mediated cell-cell interactions occurs via pili-pili
bundling) leading to: τ ∼ (`NN − 2Rcell − 2`pi)

2
/(4D) ≈

2s, where we determined `NN ≈ 5µm from the binary im-
ages directly after sedimentation.

TEM-images have revealed a mean pili number in or-
der of N ∼ 10 [30]. For intermediate and large cell
densities, the overall-interaction rate for for N. gonor-
rhoeae at surface coverage of φ ≈ 0.1 is approximately
W0/`

2
pi ∼ N · (2s)−1 ≈ 5s−1. Thereby, G ≈ 0.1.
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