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Deciphering mysteries of the structure-function relationship in cortical folding has emerged as 
the cynosure of recent research on brain. Understanding the mechanism of convolution 
patterns can provide useful insight into the normal and pathological brain function. However, 
despite decades of speculation and endeavors the underlying mechanism of the brain folding 
process remains poorly understood. This paper focuses on the three-dimensional 
morphological patterns of a developing brain under different tissue specification assumptions 
via theoretical analyses, computational modeling, and experiment verifications. The living 
human brain is modeled with a soft structure having outer cortex and inner core to investigate 
the brain development. Analytical interpretations of differential growth of the brain model 
provide preliminary insight into the critical growth ratio for instability and crease formation of 
the developing brain followed by computational modeling as a way to offer clues for brain’s 
postbuckling morphology. Especially, tissue geometry, growth ratio, and material properties of 
the cortex are explored as the most determinant parameters to control the morphogenesis of a 
growing brain model. As indicated in results, compressive residual stresses caused by the 
sufficient growth trigger instability and the brain forms highly convoluted patterns wherein its 
gyrification degree is specified with the cortex thickness. Morphological patterns of the 
developing brain predicted from the computational modeling are consistent with our 
neuroimaging observations, thereby clarifying, in part, the reason of some classical 
malformation in a developing brain.     ۷. Introduction        

Brain development and related cerebral convolution have been fascinating research topics for 
more than a century [1-3]. The grooves in the convoluted brain are called sulci and the ridges 
between them are called gyri. The outer layer of the brain is composed of folded gray matters, 
called the cortex, which is in turn made up of neuronal cell bodies and other support materials. 
The subcortex, or inner core, consists mostly of the white myelinated sheaths of neuronal axons 
[4]. Brain development is a sequence of complicated and convoluted processes starting from 
the growth of neuronal tubes, followed by neuronal proliferation, glial cell proliferation, 
neuronal migration and differentiation, axonal wiring, synaptogenesis, and myelination.  

However, a comprehensive understanding of how those processes interactively accomplish the 
brain development still remains to be elucidated [5-7]. During the development, the cerebral 
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cortex experiences a noticeable expansion in volume and surface area accompanied by 
tremendous tissue folding [8,9]. Although there have been extensive studies on the brain 
folding over the past several decades, the mechanism of cortical folding is still ambiguous and 
debatable [10]. The most famous hypotheses in this area are related to the roles of radial 
growth, internal tension in neuronal fibers, and differential expansion of the cortex [10,11]. 
However, there are some evidences from experimental observations which contradict the first 
two hypotheses [10,12]. In the differential growth hypothesis, the outer layer of the brain is 
assumed to grow at a faster rate than the inner layer, acting as the driving mechanism of 
cortical folding [13]. Mismatch between growth rates of the layers engenders residual stresses 
which have been observed in a growing brain [14] and are believed to play a crucial role in the 
brain morphogenesis. Based on the differential growth hypothesis, several theoritical and 
computational studies have been conducted to reveal, in part, the cortical folding 
phenomenon, for example; buckling of an elastic surface on an elastic foundation [15], 
continuum mechanics-based model of growth [16], and 2D and 3D computational models 
[12,17,18]. In most previous studies related to the elastic buckling models of the brain, the 
elastic modulus of the outer layer was much higher than the core in order to produce buckling 
patterns which were not consistent with experimental observations [15,16]. In fact, the elastic 
modulus of the outer layer of cortex is not significantly different than that of inner regions of 
the brain [19-21]. A computational model of cortical convolution [18] suggested that without 
any additional assumption, the simple mechanical property of the cortex and differential 
growth is sufficient to produce cortical folding, which has been proven by other studies [11,13].  

Recently, it has been shown that morphological abnormalities related to the cortex of the 
developing brain can be demonstrated by the mechanical model [22]. For example, 
Lissencephaly, which literally means "a smooth brain," is a rare brain formation disorder caused 
by imperfect neuronal migration characterized by the absence of normal convolutions in the 
cerebral cortex which [23-25]. A mechanical model with thick cortex and reduced growth in the 
cortical layer can identify specifications of this malformation [22]. Another example of brain 
abnormality is Polymicrogyria which surface of the brain normally has many folds. Either the 
whole surface (generalized) or parts of the surface (focal) can be affected [23,26]. A model with 
thin cortex and reduced growth in subcortical layer can mimic Polymicrogyria [22]. There are 
few reports on the 3D computational understanding of the brain morphology and its link to 
brain malformation. Therefore, study and research in this area is worthy of pursuit and may 
open new windows to diagnosis, treatment and therapy of severe disorders. The aim of this 
work is to investigate the growth and instability of a growing (cortex and core) 3D brain model, 
introduce a way to find the criteria for instability and gyrification, and link the gyrification 
patterns and their hinge types to the brain geometry and material property. Computational 
simulations are also performed in order to compare with the results from the analytical 
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approach and to predict secondary morphological patterns of the growing brain model. Finally, 
experimental observations are presented to validate the simulation results.  ۷۷. Methods 

We use an analytical model to establish a primary intuition into crease formation of the 
developing brain and determine the critical growth for the onset of folding. Nevertheless, the 
analytical method cannot predict the evolution of cortical complex convolution after the critical 
point. Therefore, following the critical growth of the brain model, non-linear finite element 
models based on finite differential growth are employed to investigate the secondary 
morphological folds of the growing brain. Here we briefly introduce the  the concept of each 
approach.   

A. Analytical Method 

A three-dimensional (3D) spherical model consisting of bilayer soft tissue (Fig. 1a) is constructed 
to explore the mechanism of cortical folding. The outer layer of the model represents the 
developing cortical plate of the brain (cortex) and the inner layer is considered as the core of 
the brain which is a simple organization of the subplate, intermediate zone and ventricular 
zone. Typically, cerebral cortex is a thin layer (2–4 mm)[10] in contrast to the core usually with 
a thickness of 50 mm. As mentioned in the Introduction section, the differential growth theory 
assumes that the cortex grows at a faster rate than the core of the brain, which is considered as 
the driving mechanism of cortical folding. Figure 1 provides the biological support of our 3D 
brain model. Flowchart in the Fig. 1(d)  summarizes  the mechanism of the diffrential growth 
from a biological viewpoint. Generally, radial glial cells (RGCs) with lower levels of Trnp1 can 
generate basal progenitors (BPs), also known as intermediate progenitors (IPCs), and basal 
radial glial cells (bRGCs). BPs can produce neurons while bRGCs provide additional guiding 
structures inducing faster neuron migration and finally resulting in considerable radial and 
lateral expansion, i.e. the convex folding pattern suggested in Refs [27,28]. Hence, the 
distribution difference of RGCs, at the cell level, regulates the cortical plate expansion by 
controlling the amount of migrating neurons. Based on the abovementioned biological 
mechanism, we can consider the outer layer of our model (cortex) grows faster than the inner 
layer (core) in our brain model.   
We investigate the deformation, instability and gyrification of a cortex-core spherical brain 
model within the framework of finite elasticity. We use spherical coordinate systems; ࢄ ൌ ሺܴ, ,߆ ࢞ ሻ for the reference configuration andߔ ൌ ሺݎ, ,ߠ ߮ሻ for the grown and current 
configuration, Fig. 2. 
Following the theory of multiplicative decomposition [29] , the deformation gradient, ࡲሺࢄሻ, is 
decomposed to a growth tensor ࡳሺࢄሻ indicating the addition of materials, and an elastic 
deformation tensor ሺࢄሻ describing pure deformation resulting from stresses:  
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ࡲ    ൌ . ࡳ (1)
where ࡲ ൌ ߲࢞ ⁄ࢄ߲ . The growth tensor maps a stress-free reference configuration to a grown 
stress-free state, and then the elastic deformation tensor maps the grown state to a stressed 
current state, Eq.(1). Although both ࡳ and  tensors may be incompatible deformations, their 
multiplication, ࡲ, should be a compatible deformation [29].  

Without loss of generality, we assume that growth takes place only in the cortex of our brain 
model. For an isotropic growth, the growth tensor can be characterized by ࡳ ൌ  ݃ where ,ࡵ݃
(݃  1) is a constant and ࡵ is a unit tensor; for a tangential growth we consider there is no 
growth in the radial direction. Due to the spherical symmetry of our model, the elastic 
deformation tensor can be expressed for the isotropic growth as:  ൌ ݀݅ܽ݃൫ߣ, ,ఏߣ ߣ        ఝ൯ߣ ൌ ݃ିଵ߲ݎ/߲ܴ, ఏߣ ൌ ఝߣ ൌ ݃ିଵ(2) ܴ/ݎ 

and for the tangential growth as:  ൌ ݀݅ܽ݃ሺߣ, ,ఏߣ ߣ     ఝሻߣ ൌ ,ܴ߲/ݎ߲ ఏߣ ൌ ఝߣ ൌ ݃ିଵ(3) ܴ/ݎ 

   
In general, the elastic deformation of a living soft tissue yields a small amount of volume 
change; therefore, the nonlinear response of the living tissue can be described by an isotropic 
incompressible hyperelastic material. The incompressibility of the material implies that the 
determinant of the elastic deformation tensor should be equal to unit, i.e. det ൌ 1. Here, to 
ensure incompressibility and hyperelasticity, a simple and common isotropic nonlinear neo-
Hookean constitutive relationship is implemented 

 ܹ ൌ 2ߤ ሺߣଶ  ఏଶߣ  ఝଶߣ െ 3ሻ (4) 

 

 where μ  is the shear modulus, and ߣ  ఝߣ and  ߣ ,  are the radial and tangential principal 

stretches. Therefore, Cauchy stress ࣌ can be related to the strain energy function by 

࣌  ൌ  ߲ܹ߲ െ  (5) ࡵ

where  is the hydrostatic pressure and ۷ is a second-order unit vector. Mechanical equilibrium, 
without any body force, enforces the governing equation as: 

ݒ݅݀  ࣌ ൌ 0 (6)

where “div” stands for the divergence operator in the current configuration. Due to the 
symmetry of our brain model, the deformation field after growth only depends ܴ, ݎ ൌ  .ሺܴሻݎ
For simplicity, we assume that a fixed boundary condition is applied at  ܴ ൌ ܣ ൌ  in our 2/ܥ
brain model as shown in Fig. 2.  
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In order to find the critical growth ratio for instability, we follow  the approach from our 
previous study on the crease formation of a biological tube due to growth in a confined 
environment [30]. Creases typically happen at the surface of a soft material without any hard 
skin in which an initially smooth surface forms a self-contacting shape with a sharp ridge or sulci 
[31]. The critical condition for the onset of crease formation in a compressed neo-Hookean soft 
material is  

ߣ    ⁄ఏ,ఝߣ  2.4        (7) 
 

 where ߣ is the ratio of the principal stretch in the radial direction while ߣఏ,ఝ are the ratio of 

the principal stretches in the circumferential directions. This principle has been derived from a 
comparison of  the elastic energy between in a creased body and  in a smooth body [32]. In our 
bilayer brain model, the cortex grows faster than the core which acts as a confinement on the 
cortex. Mismatch between the growth rates of the cortex and core may induce compressive 
stresses. When this compressive stress exceeds a critical value, creases are expected to occur 
on the free surface of our model [30].  

B. Numerical Method 

After onset of instability in a developing brain model, in order to predict the secondary 
morphological change, computational models based on a non-linear finite element are carried 
out to complement the investigation from the analytical method. Both the cortex and core of 
the brain model are considered as hyperelastic neo-Hookean materials and the growth is 
mimicked via thermal expansion [33,34]. Self-contact property is added on the free surface of 
the cortex to reproduce the contact phenomenon while avoiding mesh penetration. A spherical 
hole is placed in the center of the model and a fixed boundary condition is applied. Since this 
fixed boundary is far enough from the surface of the cortex, its influence on the deformation 
pattern of the model can be negligible. Dynamic-Explicit solver in the commercial software 
Abaqus [35], which is suitable for large deformation, nonlinear, and quasi-static problems, is 
implemented to perform the secondary morphological changes in the brain model. Both the 
cortex and core of the brain model are meshed by a 3D stress, 8-node linear brick C3D8R 
element type with linear and quadratic viscosity of 0.06 and 1.2 in the dynamic step, 
respectively. Morphological patterns after instability in the brain model are not guaranteed to 
be exactly symmetric although the initial configuration is symmetric [36,37]. Robustness studies 
conclude that as long as the mesh size is small enough the qualitative features of the brain 
model do not depend on mesh size. The morphological pattern of the brain model also does not 
depend on the absolute value of shear moduli of the cortex and core but on the ratio of shear 
moduli. With the condition of incompressibility and Eq. (2), the growth rate of the cortex (݃) for 
the isotropic growth case can be estimated from the volume ratio of the deformed system, ܸ, 
to the undeformed system, ܸ, ݃௦ଷ ൌ ܸ/ ܸ. 
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۷۷۷. Results 

With the application of Eq. (1), along with governing equations and boundary conditions, 
deformation/stress fields, the growth criterion for instability, and the secondary morphology 
can be achieved. These analytical findings combined with the FE models are able to explain 
some unique mechanical characteristics of a developing brain.   

A. Deformation and stress fields 

Based on the Eq. (1) and its extension to the brain model in Fig.2, the deformation field of a 
growing brain model can be determined. For the case of isotropic growth, the growth tensor 
can be characterized by  ࡳ ൌ ݃) ݃ where ,ࡵ݃  1) is a constant and ࡵ is the unit tensor, so ݃ ൌ ݃ఏ ൌ ݃ఝ ൌ ݃. The incompressibility condition implies the determinant of the elastic 

deformation tensor should be equal to unit, det ൌ 1. Therefore, for the isotropic growth of 
the brain model we can have 

ݎଶ߲ݎ    ൌ ݃ଷܴଶ߲ܴ (8)
 

By introducing  ݎӖ ൌ  , ധܴ ൌ ோ , ܤധ ൌ , ܥӖ ൌ  and integrating Eq.(8), the deformation field for 

the core can be derived as 

Ӗଷݎ    ൌ 1  ݃ଷሺ ധܴଷ െ 1ሻ          1  ധܴ  ധܤ (9) 
   

where ݃ is the isotropic growth rate in the core. Following the similar way and the continuity 
condition at the interface of the cortex and core, we can have the deformation field of the 
cortex as follows   

Ӗଷݎ    ൌ 1  ݃ଷሺܤധଷ െ 1ሻ  ݃௦ଷሺ ധܴଷ െ ധଷሻܤ ധܤ           ധܴ   Ӗ (10)ܥ
   

where ݃௦ is the isotropic growth rate of the cortex. Without loss of generality, we assume that 
growth takes place only in the cortex, so ݃ ൌ 1, and Eq. (10) can be simplified as 

ҧଷݎ    ൌ 1  ݃௦ଷሺ തܴଷ െ 1ሻ          1  തܴ  ҧܥ (11)
   

where ݎҧ ൌ  , തܴ ൌ ோ and ܥҧ ൌ . To find the normalized deformed outer radius of the cortex, ܿҧ ൌ , we should substitute the normalized initial outer radius of the cortex, ܥҧ, into Eq. (11).  

Figure 3(a) depicts the normalized outer radius of the cortex after deformation under different 
isotropic growth rates. The initial thickness for the cortex is 2 (ܶ ൌ ܥ െ  and the initial outer (ܤ
layer radius of the cortex (C) is 50 units [12]. ܿҧ is a normalized value with  ܿҧ ൌ ܿ ⁄ܤ , where ܤ is 
the initial undeformed inner radius of the cortex showed in Figure 2.  
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From Figure 3(a) it can be clearly noticed that there is a very good agreement between the 
theoretical analysis and the finite element (FE) result for the deformation field of our brain 
model. From the FE model, after a critical growth rate the model loses stability and reaches to 
an irregular configuration. However, theoretical analysis cannot predict the evolution of cortical 
complex convolutions after the critical point for instability.  

Figure 3(b) shows the normalized tangential stress (the ratio of the tangential stress to the 
shear modulus of the cortex) of the models under three different thicknesses of the cortex. We 
fix the isotropic growth rate of the cortex as ݃௦ ൌ 2 in all three models. Results point out that 
due to the growth of the cortex considerable compressive stresses are engendered through the 
cortex thickness. The thinner the cortex in the brain model is, the higher the compressive stress 
is. Also this compressive stress may play a crucial role in the instability of our brain model since 
several previous studies have shown that this kind of compressive stress in the free surface of 
soft materials leads to the formation of creases [30,32,33,36]. Before that, we need to answer 
what the critical growth rate of the cortex is for instability.   

B. Instability and secondary deformation 

Previous section has revealed that a compressive stress can be  built up on the free surface of 
the cortex, thereby possibly resulting in creases [32]. Following Eqs. (7), (8), and (11), we can 
find the critical growth rate of the cortex for the case of isotropic growth 

   ݃௧ ൌ ሾ1 ሺ1 െ ⁄ҧଷሻܥ7/12 ሿଵ/ଷ        (12)
 

For the case of tangential growth, the critical growth rate for the cortex is  

  

   ݃ଷ௧ܥҧଷ െ 2.4݃ଶ௧ሺܥҧଷ െ 1ሻ െ 2.4 ൌ 0         (13) 
 

Figure 4 depicts the results from Eqs. (12) and (13), in which the critical growth rate depends on 
the initial geometry of the model, especially the thickness of the cortex.  

As shown in Figure 4, with respect to the isotropic growth case, beyond a critical value of the 

outer radius of the cortex, ܥҧ ؆ 1.2, instability does not occur no matter what the growth ratio 
of the cortex to core is. Similar phenomenon has been observed experimentally in a bilayer 
tissue model [37]. In other words, it means that a growing brain with a thick cortex is more 
stable than one with a thin cortex. With the decrease of the cortex thickness, the critical growth 
ratio for instability decreases, and ݃  1.34  is required to start instability for a brain model 
with a very thin cortex which means from the analytical viewpoint the cortex should grow at 
least 1.34 times faster than the core to generate cortical folding. In contrast, with respect to the 
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case of the tangential growth, instability always happens in the brain model once it reaches the 
critical growth irrespective of the thickness ratio of the cortex to core. In the model with a thin 
cortex, the critical growth ratio for starting instability in both tangential and isotropic growth 
cases are very close to each other as shonw in Figure 4. Also we have made a comparison of the 
critical growth ratio in the cortex for instability between the results from analytical methods 
and FE models, which shows a good agreement with each other. .  

Beyond instability, we can carry out a series of non-linear FE models with different thicknesses 
and material properties of the cortex and core to capture the morphological evolution of the 
brain model during the gyrification process. For the sake of computational efficiency and based 
on the symmetry of our brain model, a half spherical model is adopted in our FE analysis. For 
example, Figure 5 shows the morphological evolution of the brain model during the gyrification 
process with a set of special parameters, ܥҧ ൌ 50/48 ൎ 1.042 and μ௧௫/μ ൌ 2. It can be 
observed that after a critical growth ratio the brain model starts to deviate from the spherical 
shape as depicted in Figure 5(a), indicating the model loses its stability and enters a new 
configuration with developed folds. With the continuation of growth, folds start to become 
more convoluted and go deeper inside the brain. Simulation results indicate that the 
gyrification pattern from our brain model is very similar to the real brain, although it should be 
kept in mind that the real gyrification of the brain is a sequence of complicated processes which 
starts from the growth of neuronal tubes, followed by neuronal proliferation, glial cell 
proliferation, neuronal migration and differentiation, axonal wiring, synaptogenesis, and 
myelination [5].  

C. Effect of cortex thickness 

Figure 4 has showed that the thickness of the cortex is a crucial parameter in the determination 
of critical growth ratio for instability in a growing brain model. Therefore, it can be expected 
that the cortex thickness exerts a positive effect on the morphological patterns of the brain 
after instability. With this regard, Figure 6 shows the morphological evolution dependency on 
the thickness of the cortex in the brain model. The left column of Figure 6 for the thin cortex 
ܥ/ܶ) ൌ 1/50) shows the formation of numerous small gyri and sulci after instability on the 
brain model. Recently, it has been shown that morphological abnormalities related to the 
cortex of the developing brain can be demonstrated by the mechanical model [22]. In the 
polymicrogyria malformation, the surface of the brain normally has many folds and the cortex 
thickness is thinner than one in a healthy brain. Either the whole surface (general) or parts of 
the surface (local) can be affected [23,26], as seen in Figure 2 of the reference [38]. Another 
evidence which may prove a thinner cortex leads to more creases  is central sulcus, a primary 
somatosensory cortex which roughly consists of Brodmann areas #1, 2 and 3, and visual cortex 
[39]. The central sulcus and the primary visual cortex are the thinnest parts in the cortical 
region of the human brain [40]. By visual observation, central sulcus might be one of the 
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deepest sulci in brain and primary visual cortex has the most complicated folding patterns 
among all cortical cortex regions [41-43]. On the other hand, for the start of instability in the 
model with thick cortex a larger critical growth ratio is needed. As shown in right column of 
Figure 6, for the case with a thick cortex ሺܶ/ܥ ൌ 3/50ሻ, the number of folds is less than the 
normal one and the thickness of gyri is higher. This phenomenon has been observed in 
Lissencephaly, a malformation of the brain resulting in a thicker cortex than normal [23,24], as 
seen in Figure 1 of the reference [44]. These results show that cortex thickness has a crucial 
effect on the healthy development of the brain.  

D. Effect of material properties 

In addition to the geometrical parameters, the material property of the brain model may also 
play a vital role in the convolution pattern of the brain. In previous analytical derivations we 
assumed that the material properties of the cortex and core are the same or in some FE models 
the cortex is two times stiffer than the core. However, until now it is still very difficult to 
characterize brain matter mechanical properties accurately, because characterization of brain 
tissue is highly dependent on the definitions, tools, and procedures used [19]. The shear moduli 
of the cortex (grey matter) and core (white matter) have been reported differently in various 
studies [17,22,45,46]. Therefore, there is no firm and proven data for the relative material 
properties between grey and white matter. Hence, we want to show morphological evolution 
sensitivity to the relative shear modulus between the cortex and core rather than the absolute 
magnitude of shear moduli. Figure 7 shows the evolution of a developing brain with different 
material properties for the cortex and the core under the same geometric configuration, ܶ/ܥ ൌ 2/50. Shear modulus ratio of cortex to core is considered to be 1, 2, and 4. Result shows 
difference between the shear moduli of the cortex and core has a great influence on the 
patterns of the developing brain model after instability. The brain model with a small shear 
moduli ratio prefers to develop creases first after instability; however, when the shear moduli 
ratio is large, the brain model prefers to wrinkle first and then develop creases. This finding 
reveals that, for the formation of creases in the brain, the shear moduli of the cortex and the 
core should be close to each other. This result shows that a change of the stiffness in the cortex 
or core of the brain caused by abnormalities or disorders may lead to a change in the pattern of 
the formation of gyri and sulci.  ۷܄. Discussions 

By the measurement in the real brain, we observe the same dependency of gyri thickness on 
the cortex thickness. Figure 8(a) is a neuroimage from the real adult brain with different special 
areas which show different cortical thicknesses. Dashed line in the Figure 8(b) connects the gyri 
thickness to the cortical thickness in the mentioned areas. It can be seen that the area with 
thick cortex (such as pre-central gyrus) forms thick or large gyri while the area with thin cortex 
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(such as post-central gyrus) forms thin or small gyri. This trend was observed in the FE model 
results, see Figure 6. 

As can be inferred from Figure 8(b), gyri thickness is closely related to the cortex thickness. If 
gyri thickness in the FE models is roughly calculated and compared with the wave length of a 
buckling stiff layer on a soft substrate from a theoretical viewpoint, a similar trend and results 
are observable. The wavelength ߣ of the wrinkling pattern predicted by linear buckling theory is λ ൌ 2πtሾµ/3µୱሿଵ/ଷ, where ݐ is the thickness of the film and µ and µୱ are the shear moduli of 
the film and substrate respectively [47]. From a theoretical viewpoint there is a linear 
relationship between wavelength (in the FE models referred as gyri thickness) and thickness of 
the film which is the same as the result of the FE models. Our results also reveal that a linear 
relationship may be considered between amplitude of gyri and cortical thickness, as from a 
theoretical view the amplitude of the wrinkles varies linearly with the thickness of film [48].  

Another interesting result of convoluted models is the formation of special type of hinges same 
as in the real brain. It has been reported that cortical gyral folding pattern can be effectively 
described by the hinges number [49]. In addition to the number of hinges on gyri, the shape of 
hinge line can also be used to describe the local cortical gyral folding pattern [50]. In the first 
row of Figure 9, we show three different patterns of three hinges in the convoluted models. 
Curves on the convoluted models represent the crest lines in the ‘gyral’ regions. Those three-
hinge patterns can find their counterparts in real cerebral cortical surfaces (see the second row 
of Figure 9). Those cortical surfaces were reconstructed on the boundaries between gray 
matters and white matters obtained based on T1-weighted MRI segmentation from our 
previous study [51]. Similarity between the three-hinge patterns in convoluted models and 
their real-world counterparts can be appreciated by visual examination.  ܄. Conclusion 

In this paper, we have investigated the instability and morphological evolution of a developing 
brain with an integrated analytical and computational methodology. Critical growth ratios for 
instability in the brain model have been derived both analytically and numerically. Results show 
that the thickness of the cortex and the relative material properties of the cortex to core of the 
brain play critical roles in the determination of the secondary morphological patterns of the 
developing brain model. Finally, the present study along with other neuroimaging findings can 
be used as a tool to clarify some malformations in a developing brain.  
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                         (a)                                                 (b)                                                     (c)                                          (d) 

 
FIG. 1 (Color online). (a) An idealized spherical bilayer brain model; (b) and (c) biological foundation of 

neurogenesis we are interested in; (d) flow chart of how Trnp1 regulates the cortical folding pattern. The dashed 
line arrows suggest macro-scale features of the cortex. Abbreviations: aRGC, apical RGC; bRGC, basal RGC; BP, 

basal progenitor; CP, cortical plate; VZ, ventricular zone; SVZ, subventricular zone; SP, subplate; IZ, intermediate 
zone. 
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FIG. 2 (Color online). Growth of a spherical bilayer brain model from the initial configuration to current 

configuration. 
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(a) (b) 
 

FIG. 3 (Color online). (a) Normalized deformation for the outer radius of cortex according to the isotropic growth 
ratios of cortex. Initial thickness of cortex is 2 and initial outer radius of cortex is 50 units. Cortex and core have the 

same material property. (b) Normalized tangential stress (ߪ/μ௦) distribution in the cortex with different 
thicknesses. Isotropic growth ratio for cortex of all models is ݃௦ ൌ 2.   
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FIG. 4 (Color online). Critical growth ratio for starting instability for isotropic and tangential growth of cortex. ܥҧ is 
the normalized value as defined ܥҧ ൌ ܥ ⁄ܤ , where ܥ and  ܤ are the initial unreformed inner and outer radius of 

cortex.   
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FIG. 5 (Color online). Morphological evolution steps for a growing bilayer spherical brain model; (a-f), initial 
thickness of cortex is 2 and initial outer layer of cortex (C) is 50 units. Contour shows displacement (figures are not 

in same scale). 

 

 

 

 

 

 

 

 

 



18 
 

 

 

 

 

 

 

 

FIG. 6 (Color online). Morphological evolution of the growing model with different thickness of cortex, μ௧௫/μ ൌ 2. Time steps from 1 to 3 show gyrification of models step by step (figures are not in same scale). 
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FIG. 7 (Color online). Morphological evolution of the growing model with different shear modulus ratio of cortex to 
core, ሺܶ/ܥ ൌ 2/50ሻ. Time steps from 1 to 3 show gyrification of models step by step (figures are not in the same 

scale). 

 

 

 

 

 

 



20 
 

 

 

 

 

 

 

 

 

 

(a) (b)
FIG. 8 (Color online). (a) Gyri annotation on adult brain gray matter surfaces, PreCG: pre-central gyrus; PostCG: 

post-central gyrus. (b) Dependency of gyri thickness to the thickness of cortex. Gyral thickness is measured on gray 
matter (cortex) surfaces.  
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FIG. 9 (Color online). First row: Three examples of three hinges on convoluted models; second row: similar gyral 
folding patterns on white matter surface in real brains. Red color regions highlight the crests of gyral regions which 

are based on T1-weighted MRI segmentation (figures are not in the same scale). 

 


