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The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a
moderate amplitude AC voltage is quantified. The diffuse charge dynamics are modeled via the
Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these
equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye
layer thickness and AC frequency. Here, the perturbation expansion in voltage proceeds in powers
of Vo/(kBT/e) where Vo is the amplitude of the driving voltage and kBT/e is the thermal voltage
with kB as Boltzmann’s constant, T as the temperature, and e as the fundamental charge. We show
that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies
greater than the RC frequency of Debye layer charging, D/λDL, where D is the ion diffusivity,
λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is
predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric
deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This
leads to the voltage dependence of the current in the external circuit arising from the odd orders of
voltage. For instance, the first nonlinear contribution to the current is O(V 3

o ) which contains the
expected third harmonic but also a component oscillating at the applied frequency. We use this to
compute a generalized impedance for moderate voltages, the first nonlinear contribution to which
is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance
at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In
contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt
from the bulk to the Debye layer.

I. INTRODUCTION

The dynamics of electrolyte solutions exposed to
an applied or induced time-dependent electric poten-
tial is exploited in desalination and deionization[1–4],
microfluidics[5–8], and the manipulation of colloidal
particles[9–12] and biological cells[13, 14], among other
applications. The abundant historical work indicates
diffuse charge dynamics of electrolytes is well under-
stood for applied potentials below the thermal voltage,
kBT/e, where kB is the Boltzmann constant, T is tem-
perature, and e is the fundamental charge (see [15] and
references therein). For reference, kBT/e ≈ 25 mV at
T = 298 K. For instance, the majority of work in elec-
trokinetics over the last century has considered fluid flow
or particle motion driven by weak applied potentials,
V < kBT/e[16], for which the equilibrium diffuse screen-
ing layer, or “Debye layer,” around a charged surface
or particle is only slightly perturbed. In contrast, mod-
ern applications such as AC, induced-charge, or second-
kind, electro-osmotic pumps [17–21], and electrochemical
supercapacitors[22, 23] use time-dependent potentials on
the order of a few volts, well above the thermal volt-
age. The relative scarcity of theoretical treatment for
such larger voltages creates a need to study diffuse charge
dynamics in this regime, where the Debye layer can be
driven strongly out of equilibrium.

Perhaps the simplest model system for which nonlin-
ear diffuse charge dynamics can be analyzed is a dielec-
tric solvent containing a symmetric, binary, monovalent
electrolyte between two perfectly blocking (non-reactive)

V(t)

FIG. 1: (Color online) Ions are initially uniformly
dispersed in a dielectric liquid between two perfectly
blocking electrodes. A voltage V (t) = Vo cos(ωt) is
applied across the cell and charge transport occurs

normal to the electrode surface.

electrodes a distance 2L apart (figure 1). A voltage is
applied across this electrochemical cell and the ions form
Debye layers near the electrodes to screen the resulting
surface charge. For the purposes of the present paper,
we take this voltage to be V (t) = Vo cos(ωt), where Vo is
the voltage amplitude, ω is the frequency, and t is time.
For dilute solutions, the characteristic size of the Debye
layer is given by the Debye length, λD =

√

εkBT/2e2n0,
where ε is the dielectric permittivity of the solvent and
n0 is the initial (uniform) ion number density.

The Poisson-Nernst-Planck (PNP) equations for point-
sized, non-interacting ions are conventionally used to
model the charge transport in this system. These equa-
tions are nonlinear and cannot be solved analytically, in
general. For small voltages, V (t) < kBT/e, the equa-
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tions can be linearized and analytical solutions can be
derived[15]. Solutions to the linearized PNP equations
are useful in electrochemical impedance spectroscopy
(EIS), which is a technique used to measure electrical
properties of a charge carrying system such as capaci-
tance and conductivity[24].

EIS is primarily based on the assumption that an os-
cillating voltage V (t) = Vo cos(ωt) will generate a cur-
rent, I(t), through an external circuit that is linear in
the voltage amplitude, Vo. An impedance is then defined
as Z = V (t)/I(t) and will be a function of frequency
only. The linearized PNP equations can be used to de-
rive analytical formula for the impedance[24–26]. Ex-
pressed as a complex number, the real (in-phase) part
of the impedance corresponds to the resistive nature of
the electrolyte via its conductivity; the complex (out-of-
phase) part corresponds to the capacitive nature of the
Debye layers and the dielectric solvent. At large volt-
ages, Vo > kBT/e, the diffuse charge dynamics are no
longer linear; hence the current contains harmonic over-
tones and its amplitude is not linearly proportional to
Vo[25–28]. Thus, larges voltages are typically avoided
when measuring impedance.

A handful of works have focused on the nonlinear re-
sponse of electrolytes to AC voltages. Freire et al. [26]
numerically solved the PNP equations and showed that
the electrolyte response becomes increasingly linear as ω
increases, regardless of Vo. That is, as ω increases for a
fixed Vo, the external current eventually loses harmonic
overtones and simply oscillates with the frequency of the
driving voltage. Olesen et al.[27] examined the long-time
periodic response to a voltage oscillating near the RC
frequency, ω ≈ D/λDL, where D is the diffusivity of the
ions. They solved the PNP equations numerically and
also performed asymptotic analysis in the thin-Debye-
layer limit λD/L → 0. They define a “weakly-nonlinear”
regime where the electroneutral bulk electrolyte (outside
the Debye layers) retains a uniform “neutral salt” con-
centration (total ion concentration), and the nonlinear
response is driven solely by the nonlinear capacitance
of the Debye layers. Schnitzer and Yariv[28] derived an
asymptotic current-voltage relationship for this regime
as Vo → ∞. Olesen et al.[27] also analyzed “strongly-
nonlinear” response at very large voltages. Here, there
is significant ion depletion adjacent to the Debye layers,
which leads to “AC capacitive desalination” as a net flux
of salt is transferred from the bulk to the Debye layer dur-
ing an oscillation period. Furthermore, at such large volt-
ages the Debye layers can attain a non-equilibrium struc-
ture, characterized by the periodic growth and shrinkage
of transient space-charge layers.

In this work, we consider electrolyte dynamics under
an AC field with amplitude Vo ∼ 1 − 10kBT/e, at arbi-
trary Debye layer thickness λD/L and across a wide range
of frequencies ω. We refer to this as the “moderately non-
linear” regime of diffuse charge dynamics, to distinguish

our work from the articles mentioned above. Notably, the
thin-Debye-layer limit λD/L ≪ 1 is commonly assumed
in mathematical analysis of electrolyte dynamics. How-
ever, this can be violated in nano-scale electrochemical
systems, where the electrode separation 2L approaches
the Debye length λD: e.g., in nanometer wide thin-layer
cells used to probe fast electron-transfer kinetics [29]. We
use a complex Fourier series to decompose the electrolyte
dynamics into its component harmonics and a perturba-
tion expansion in voltage for the Fourier coefficients. A
similar approach was recently utilized by Bandopadhyay
et al.[30]; however, their expansion stopped at O(V 2

o ).
We proceed to O(V 3

o ), which is necessary to predict a
nonlinear current response for a symmetric, binary elec-
trolyte. We also derive a first approximation to a voltage
dependent impedance that is O(V 2

o ).
The paper is organized as follows: in section 2 we

present the mathematical model to calculate the mod-
erately nonlinear dynamics. In section 3, we present the
results for the ion dynamics and external current. In sec-
tion 4, we calculate a voltage-dependent “impedance” as
the current first becomes nonlinear in Vo. Conclusions
are offered in section 5.

II. MATHEMATICAL MODEL

We consider the prototypical situation (figure 1) of two
parallel, perfectly blocking electrodes separated by a di-
electric solvent containing an ideal solution of monova-
lent, point-like charge carriers. We assume that the elec-
trodes are spaced sufficiently close such that the charge
transport persists perpendicular to the electrode surface.
The one dimensional PNP equations are

ε
∂2φ

∂x2
= −ρ = −e(n+ − n−), (1a)

∂nr

∂t
= −∂jr

∂x
= D

[

∂2nr

∂x2
+ r

e

kBT

∂

∂x

(

nr
∂φ

∂x

)]

. (1b)

Equation (1a) is Poisson’s equation describing the elec-
trostatic potential, φ, in response to the ionic charge den-
sity, ρ, which undergoes changes in time and space ac-
cording to the ion flux balance (1b), where nr is the ion
number density of cations (r = +) and anions (r = −), t
is time, x is the position across the cell, and jr is the ion
flux.
We supplement the governing equations with the fol-

lowing boundary conditions:

φ(x = ±L, t) = ±Vo cos(ωt), (2a)

jr(x = ±L, t) = −D

[

∂nr

∂x
+ r

e

kBT
nr

∂φ

∂x

]

±L

= 0, (2b)

specifying that the electrode surface potential is equal to
the applied potential (2a) and no ion flux through the
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electrodes (2b). By using these boundary conditions, we
seek to find the steady periodic response as opposed to
suddenly applying an AC voltage to a previously unaf-
fected system. Note that from (2a), the total applied
potential across the cell is 2Vo.
We non-dimensionalize as follows: position (x) with

half the cell width (L), electrostatic potential (φ) with
thermal voltage (kBT/e), ion density (nr) with the uni-
form ion density (of a single species) prior to the applica-
tion of a voltage (n0), time (t) with the RC time for De-
bye layer charging (λDL/D)[15], and frequency (ω) with
the RC frequency. Recall that λD =

√

εkBT/2e2n0 is the
Debye length. The non-dimensional governing equations
are then

∂2φ

∂x2
= −n+ − n−

2ǫ2
, (3a)

∂nr

∂t
= ǫ

[

∂2nr

∂x2
+ r

∂

∂x

(

nr
∂φ

∂x

)]

, (3b)

where ǫ = λD/L and all quantities in (3) and onward,
unless stated otherwise, are dimensionless. The corre-
sponding non-dimensional boundary conditions are

φ(x = ±1, t) = ±Vo cos(ωt), (4a)
[

∂nr

∂x
+ rnr

∂φ

∂x

]

±1

= 0, (4b)

where Vo = Vo/(kBT/e) is the dimensionless applied volt-
age amplitude.
For small amplitude voltages, Vo < 1, it is typical to

express φ and nr as complex valued functions of ω that
depend linearly on Vo:

φ(x, t) = φ
(0)
0 + Voφ

(1)
1 (x)eiωt, (5a)

nr(x, t) = n
(0)
0 + Von

(1)
r,1(x)e

iωt, (5b)

where Voφ
(1)
1 and Von

(1)
r,1 are complex valued O(Vo) per-

turbations. Here, we assume that the electrodes do not
carry a “native” surface charge; hence, the equilibrium

potential is φ
(0)
0 = 0, and the equilibrium ion density is

uniform, n
(0)
0 = 1. In (5), the notation is that the nu-

merical subscripts and parenthetic superscripts indicate
to which harmonic and which order of voltage the quan-
tity corresponds, respectively. The harmonics in (5) are
0 - steady and 1 - first, or fundamental. While this is
evident in (5) we explicitly state it here to be consistent
with later notation.
This approach works because at O(Vo) the nonlinear

term in (3b) degenerates to a coupling of Voφ
(1)
1 with n

(0)
0

and oscillates at eiωt. More specifically, as long as O(V2
o )

terms can be neglected, there is no multiplication of com-
plex functions and only terms oscillating at eiωt will be
present. Here, the real part is the physically meaning-
ful portion since the applied voltage is Vo cos(ωt). When

O(V2
o ) terms cannot be neglected, the coupling of com-

plex functions (e.g., φ
(1)
1 eiωt and n

(1)
r,1e

iωt) manifests as
additional harmonic modes in the electrolyte response.
AtO(Vo), the fundamental mode (first harmonic) dom-

inates the overall response but as Vo increases, the higher
order harmonics need to be taken into account. The so-
lution for this oscillating system can therefore be written
as a Fourier series, which for g(x, t) = φ(x, t) or nr(x, t)
is

g(x, t) = a0(x)+

∞
∑

k=1

ak(x) cos(kωt)+bk(x) sin(kωt), (6)

where ak and bk are real functions of ω. Here, a0 is just
the stationary (k = 0) contribution. Equation (6) can be
rewritten using complex functions via Euler’s formula,
eiz = cos(z) + i sin(z). The result is a complex Fourier
series,

g(x, t) = a0(x) +

∞
∑

k=1

Ak(x)e
kiωt + Bk(x)e

−kiωt, (7)

where Ak = (ak − ibk)/2 and Bk = (ak + ibk)/2 are com-
plex conjugates. Note that the sum in (7) is of complex
conjugates and is therefore real valued. Thus, we can
express the solutions to (3) as

φ(x, t) = φ0(x) +
∞
∑

k=1

φk(x)e
kiωt + φ−k(x)e

−kiωt, (8a)

nr(x, t) = nr,0(x) +

∞
∑

k=1

nr,k(x)e
kiωt + nr,−k(x)e

−kiωt,

(8b)

where the “coefficients”, φk and nr,k, are complex valued
functions of ω while φ0 and nr,0 are real valued. A nega-
tive subscript (−k) denotes the complex conjugate of the
corresponding positive subscript (k), and the dependence
on Vo is implicit in the coefficients.
Substitution of (8) into (3) yields an infinite set of cou-

pled nonlinear ordinary differential equations. Without
giving the full expression, we can address the primary
difficulty of the resulting set of equations. The nonlinear
term in (3b) (nr∂φ/∂x) results in doubly infinite sums
through the coupling of terms containing ekiωt with e−qiωt

where k and q are any positive integers. The result is
terms which look like

∞
∑

k=1

∞
∑

q=1

nr,k+qφ−qe
kiωt +

∞
∑

q=1

nr,qφ−q, (9)

for example. This arises due to the fact that there are an
infinite number of positive integers k and q such that (k+
q)− q = k and q+ (−q) = 0. Hence, the kth harmonic is
dependent upon all other harmonic modes q, even those
for which q > k. The series must therefore be truncated
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at a suitable harmonic. We can alleviate ourselves of the
doubly infinite sums by expressing the Fourier coefficients
φk and nr,k as power series in Vo. We give the form of the
power series later but it is instructive to first demonstrate
how it arises from the nonlinearity of (3b).

First, φk and nr,k contain a linear dependence on Vo

from (5) which we denote as φ
(1)
1 and n

(1)
r,1 . Recall that

a parenthetic superscript indicates the order of Vo the

quantity applies to. The coupling of Von
(1)
r,1e

iωt with

Voφ
(1)
1 eiωt produces terms which are O(V2

o ) and oscillate
at the second harmonic, e2iωt. We also obtain the corre-
sponding complex conjugates. Furthermore, the coupling

of Von
(1)
r,1e

iωt with Voφ
(1)
−1e

−iωt also results in O(V2
o ) terms

but they are non-oscillatory, or stationary. The O(V2
o )

terms for φ (and similarly for nr) are thus V2
oφ

(2)
2 e2iωt,

V2
oφ

(2)
−2e

−2iωt, and V2
oφ

(2)
0 . These terms are coupled to

other O(V2
o ) terms but also to O(Vo) and O(1) terms.

Coupling with O(Vo) yields terms which are O(V3
o ) and

oscillate at e3iωt and eiωt (through coupling with a term
oscillating at e−iωt). As we show later, O(V3

o ) is the first
nonlinear contribution to the current. Thus, we truncate
our series here and write the expansions as

φ(x, t) = φ
(0)
0 + Vo

(

φ
(1)
1 eiωt + φ

(1)
−1e

−iωt
)

(10a)

+ V2
o

(

φ
(2)
2 e2iωt + φ

(2)
0 + φ

(2)
−2e

−2iωt
)

+ V3
o

(

φ
(3)
3 e3iωt + φ

(3)
1 eiωt

+ φ
(3)
−1e

−iωt + φ
(3)
−3e

−3iωt
)

+O
(

V4
o

)

,

and

nr(x, t) = n
(0)
r,0 + Vo

(

n
(1)
r,1e

iωt + n
(1)
r,−1e

−iωt
)

(10b)

+ V2
o

(

n
(2)
r,2e

2iωt + n
(2)
r,0 + n

(2)
r,−2e

−2iωt
)

+ V3
o

(

n
(3)
r,3e

3iωt + n
(3)
r,1e

iωt

+ n
(3)
r,−1e

−iωt + n
(3)
r,−3e

−3iωt
)

+O
(

V4
o

)

,

which can be rearranged to show how the Fourier coef-
ficients in (8) depend on voltage. For example, for the
potential from (10a),

φ0(x) = φ
(0)
0 + V2

oφ
(2)
0 + V4

oφ
(4)
0 + · · · , (11a)

φ1(x) = Voφ
(1)
1 + V3

oφ
(3)
1 + V5

oφ
(5)
1 + · · · , (11b)

φ2(x) = V2
oφ

(2)
2 + V4

oφ
(4)
2 + V6

oφ
(6)
2 + · · · , (11c)

etc, where φ
(0)
0 = 0. The power series can more generally

be written as

φk(x) =

∞
∑

v=0

φ
(2v+k)
k (x)V2v+k

o , (12a)

φ−k(x) =

∞
∑

v=0

φ
(2v+k)
−k (x)V2v+k

o , (12b)

and an analogous series for the ion densities, nr,±k. The
moderately nonlinear expansions (10) can be written con-
cisely as

φ(x, t) = φ
(0)
0 +

∞
∑

v=1

Vv
o

(

v
∑

l=0

φ
(v)
v−2le

(v−2l)iωt

)

, (13a)

nr(x, t) = n
(0)
r,0 +

∞
∑

v=1

Vv
o

(

v
∑

l=0

n
(v)
r,v−2le

(v−2l)iωt

)

. (13b)

From the pattern in (10), or equivalently the series in
(13), it is apparent that the odd orders of voltage con-
tain only odd harmonics while the even orders of voltage
contain only even harmonics. Note that the sums in (10)
are all real valued since a complex quantity is always
present with its complex conjugate. Also, note that the
stationary terms are always real valued quantities.

Substitution of (13) into (3) yields a set of linear differ-
ential equations. We present here the explicit statements
of the governing equations up to O(V3

o ) for ekiωt, where
k ≥ 0. The equations for k < 0 are obtained by taking
the complex conjugate. The resulting O(Vo) equations
for eiωt are

d2φ1
1

dx2
= −

n
(1)
+,1 − n

(1)
−,1

2ǫ2
, (14a)

d2n
(1)
r,1

dx2
=

iω

ǫ
n
(1)
r,1 − r

[

n
(0)
0

d2φ
(1)
1

dx2

]

, (14b)

dn
(1)
r,1

dx
+ r

[

n
(0)
0

dφ
(1)
1

dx

]

= 0, at x = ±1 (14c)

φ
(1)
1 = ±1

2
, at x = ±1. (14d)

The O(V2
o ) equations have e

2iωt and stationary contribu-
tions. The e2iωt equations are

d2φ
(2)
2

dx2
= −

n
(2)
+,2 − n

(2)
−,2

2ǫ2
, (15a)

d2n
(2)
r,2

dx2
=

2iω

ǫ
n
(2)
r,2 − r

d

dx

[

n
(0)
0

dφ
(2)
2

dx
+ F

(2)
r,2

]

, (15b)

dn
(2)
r,2

dx
+ r

[

n
(0)
0

dφ
(2)
2

dx
+ F

(2)
r,2

]

= 0, at x = ±1, (15c)

φ
(2)
2 = 0, at x = ±1, (15d)
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which are forced by,

F
(2)
r,2 = n

(1)
r,1

dφ
(1)
1

dx
. (15e)

The stationary equations are

d2φ
(2)
0

dx2
= −

n
(2)
+,0 − n

(2)
−,0

2ǫ2
, (16a)

d2n
(2)
r,0

dx2
= −r

d

dx

[

n
(0)
0

dφ
(2)
0

dx
+ F

(2)
r,0

]

, (16b)

dn
(2)
r,0

dx
+ r

[

n
(0)
0

dφ
(2)
0

dx
+ F

(2)
r,0

]

= 0, at x = ±1, (16c)

φ
(2)
0 = 0, at x = ±1, (16d)

which are forced by,

F
(2)
r,0 = n

(1)
r,1

dφ
(1)
−1

dx
+ n

(1)
r,−1

dφ
(1)
1

dx
. (16e)

The O(V3
o ) equations contain both e3iωt and eiωt con-

tributions. The e3iωt equations are

d2φ
(3)
3

dx2
= −

n
(3)
+,3 − n

(3)
−,3

2ǫ2
, (17a)

d2n
(3)
r,3

dx2
=

3iω

ǫ
n
(3)
r,3 − r

d

dx

[

n
(0)
0

dφ
(3)
3

dx
+ F

(3)
r,3

]

, (17b)

dn
(3)
r,3

dx
+ r

[

n
(0)
0

dφ
(3)
3

dx
+ F

(3)
r,3

]

= 0, at x = ±1, (17c)

φ
(3)
3 = 0, at x = ±1, (17d)

which are forced by,

F
(3)
r,3 = n

(1)
r,1

dφ
(2)
2

dx
+ n

(2)
r,2

dφ
(1)
1

dx
, (17e)

and the eiωt equations are

d2φ
(3)
1

dx2
= −

n3
+,1 − n3

−,1

2ǫ2
, (18a)

d2n3
r,1

dx2
=

iω

ǫ
n
(3)
r,1 − r

d

dx

[

n
(0)
0

dφ
(3)
1

dx
+ F

(3)
r,1

]

, (18b)

dn
(3)
r,1

dx
+ r

[

n
(0)
0

dφ
(3)
1

dx
+ F

(3)
r,3

]

= 0, at x = ±1, (18c)

φ
(3)
1 = 0, at x = ±1, (18d)

which are forced by,

F
(3)
r,1 = n

(1)
r,1

dφ
(2)
0

dx
+ n

(1)
r,−1

dφ
(2)
2

dx
+ n

(2)
r,2

dφ
(1)
−1

dx
+ n

(2)
r,0

dφ
(1)
1

dx
.

(18e)

The no-flux boundary conditions (14c), (15c), (16c),
(17c), and (18c) are equivalent to the statement that the
total number of ions at any order of voltage remains con-
stant. Mathematically, this takes the form

∫ 1

−1

n
(v)
r,kdx =

{

2 ; v = 0
0 ; v ≥ 1,

(19)

where v is the order of voltage. This form of the no-flux
condition is needed to solve equations (16) since the gov-
erning equations (16b) are the derivatives of the bound-
ary conditions (16c). Thus one of the boundary condi-
tions (16c) are redundant. Reformulating (16c) into (19),
it is possible to derive a new set of governing equations
for the stationary O(V2

o ) terms:

ǫ2
d2φ

(2)
0

dx2
=φ

(2)
0 +

1

2
(I+ + I−)−

1

2

∫ 1

−1

φ
(2)
0 dx (20a)

− 1

4

∫ 1

−1

(I+ + I−) dx,

n
(2)
r,0 =− rφ

(2)
0 − rIr + r

1

2

∫ 1

−1

φ
(2)
0 dx + r

1

2

∫ 1

−1

Irdx,

(20b)

where,

Ir =

∫ x

−1

F
(2)
r,0 dx̄, (20c)

This set of equations has thus been reduced to a single

integro-differential equation (20a) for φ
(2)
0 . Once (20a) is

solved, n
(2)
r,0 is easily computed from φ

(2)
0 .

Thus far we have claimed that the electrolyte dynam-
ics are linear so long as Vo < 1, while for Vo > 1 the
response is voltage dependent. This is not precisely the
case, though Vo < 1 does ensure linearity. We can ob-
tain a useful frequency-dependent criteria for linearity

by considering the linear ion density perturbation Von
(1)
r,1

from (5). When Vo|n(1)
r,1 | ≪ n

(0)
0 , the nonlinear term in

(3b) can be linearized since nr ≈ n
(0)
0 . Physically, this

means that the extent of the ion motion is sufficiently
small that the perturbation to the equilibrium distribu-
tion is negligible. From the analytic solutions obtained
by substitution of (5) into (3), it can be shown that the
above inequality is satisfied when[26]

Vo ≪ Vc =

∣

∣

∣

∣

1

β2
+

iω

β
coth

(

β

ǫ

)∣

∣

∣

∣

, (21)

where β =
√
1 + iωǫ. This gives a frequency-voltage re-

lationship for linearity where, for a given ω, the ion per-
turbation is small if Vo is less than the critical voltage,
Vc.
Figure 2 is a plot of the dimensionless applied voltage

in excess of the thermal voltage, Vo − 1, against ω with
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FIG. 2: Plot of voltage amplitude in excess of thermal
voltage, Vo − 1, versus the driving frequency, ω. The

solid line is the critical voltage Vc for linearity predicted
by (21) and the dotted line indicates the RC frequency.
As the driving frequency increases, a larger voltage
amplitude is required to yield a nonlinear response.

the linear and nonlinear regions separated by the solid
line created by Vc. The vertical dotted line separates the
plot into frequencies above or below the RC frequency.
It is clear that Vo ≤ 1 always results in a linear response,
and as frequency increases, the voltage needed to observe
nonlinear effects increases.
The physical effect of increasing frequency can be un-

derstood in terms of ion motion. At low frequencies, the
ions have time to move in response to the applied voltage
and begin to form Debye layers at the electrode surfaces.
The developing Debye layers are what ultimately give rise
to the nonlinearities in the charge dynamics. As the fre-
quency increases, the ions are only able to move a short
distance before the voltage has reversed and they must
move in the opposite direction, precluding the formation
of Debye layers. Therefore, although there is a greater
driving force at large Vo, there exists a frequency beyond
which the dynamics will be linear in Vo.
Equations (14), (15), and (17)-(20) were solved using

the MATLAB bvp4c solver. It is a finite difference scheme
utilizing the three stage Lobatto 3a collocation method.

III. RESULTS

A. Harmonic Profiles

We begin with general observations regarding the elec-
trostatic potential and ion densities that will aid subse-
quent analysis. First, at O(Vo) and O(V3

o ), the ion den-

sities are equal and opposite (e.g. n
(1)
+,1 = −n

(1)
−,1) (figure

3a and 3e). This is not surprising since the electrolyte is
symmetric with equal ionic diffusivities. A consequence

of this behavior is that the ion densities for odd orders
of voltage are anti-symmetric about x = 0.
The second, more interesting, observation is that the

ion densities and electrostatic potential for O(V2
o ) are

not only symmetric, but also φ
(2)
2 = φ

(2)
0 = 0, n

(2)
+,2 =

n
(2)
−,2, and n

(2)
+,0 = n

(2)
−,0 (figure 3b and 3c). At this order,

the voltage on the electrode is “squared” which leads
to an identical charge on each and no electric field in
the electrolyte. However, the ions still migrate due to
the electromigrative forcing originating from the O(Vo)

dynamics, F
(2)
r,2 = n

(1)
r,1dφ

(1)
1 /dx. This symmetric motion

corresponds to the adsorption of neutral salt (total ion
concentration) leading to a depletion of neutral salt in
the bulk electrolyte as can be seen in figures 3b and 3c.
Olesen et al. [27] predicted this adsorption of salt in

the context of a “strongly nonlinear” regime in which os-
cillating diffusion layers could almost completely deplete
the salt concentration outside the Debye layers. They
referred to this effect as “AC capacitive desalination.”
Remarkably, they showed that despite the oscillatory na-
ture of the driving voltage, there is a time-averaged salt
adsorption into the Debye layers. We demonstrate that
this “steady” desalination of the bulk electrolyte also oc-
curs at moderately large voltages. Our analysis indicates
neutral salt adsorption occurs first at O(V2

o ) and, in gen-
eral, at all even orders of voltage.

B. Nonlinear Current

We now calculate the overall current through the sys-
tem, I(t) = dQ/dt, where Q is the total charge on
the electrode surface normalized by AεkBT/eL, where
A is the surface area of the electrode in contact with
electrolyte. Using Gauss’s law, I(t) can be related
to φ, and the dimensionless current (normalized by
AεDkBT/eλDL2) is I(t) = −∂2φ/∂x∂t|x=−1[31]. The
current can be expanded in the same form as (10) where
it is clear from the above explanation that the O(V2

o )

contribution is zero since φ
(2)
k = 0. In fact, the station-

ary term φ
(2)
0 cannot contribute to the current regardless

of electrolyte symmetry since it lacks a time dependent
co-factor (see (10)). More generally, for a symmetric elec-
trolyte, all even orders of voltage will have zero electro-
static potential and be non-contributing to the overall
current.
The relationship between current and voltage can be

visualized from a Lissajous plot, which is a parametric
mapping of current versus voltage, each normalized by
their respective maximums. The more closely the re-
sulting curve resembles a line, the more in-phase the
current and voltage are. Likewise, a perfectly out-of-
phase (but linear in Vo) current results in a circular
curve. Physically, the out-of-phase circular curves are
achieved through the capacitance of either the Debye lay-
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FIG. 3: Total individual harmonic modes of electrostatic potential (solid line), positive ion density (dashed line),
and negative ion density (dotted line) for ω = 0.01, ǫ = 0.025, and t = 0 throughout the cell. Symbols in (a)-(c) are
used to show data that is hidden behind other lines; they indicate electrostatic potential (a), positive ion density (b)
and (c). The odd harmonics (a), (d), and (e) are anti-symmetric about x = 0 and the ion densities are equal and
opposite. In (a), the dimensionless negative ion density is equal to the electrostatic potential. The even harmonics
(b) and (c) are symmetric and the ion densities are equal due to the symmetry of the electrolyte. An interesting

result of this symmetry is that the even harmonics of the potential are uniformly zero.

ers (ω ≪ 1) or the dielectric solvent (ω ≫ 1) and the most
in-phase curves represent a relative balance between con-
duction of ions and capacitive charging (ω ∼ 1).

Using the idea of Pipkin diagrams from rheology[32],
we make a diagram of Lissajous plots for a range of volt-
ages and frequencies (figure 4 for ǫ = 0.025 and figure
5 for ǫ = 0.25). The axes on each individual Lissajous
plot range from −1 to 1 while the axes values for the to-
tal diagram are explicitly labeled. The solid and dashed
lines are results from our moderately nonlinear expan-
sion (10) and, for comparison, a full numerical solution
to the PNP equations, respectively. (Numerical solution
obtained using a finite difference method via the MAT-
LAB pdepe solver.) The color is a visual measure of the

linearity of the response:

f =

[

∫ T/2

0

(

I(1)
)2

dt
∫ T/2

0

(

I(1) + V2
oI

(3)
)2

dt

]1/2

, (22)

where T = 2π/ω is the period of oscillation. For 0.9 <
f ≤ 1, the response is primarily linear and the result-
ing Lissajous plot is circular at low and high frequencies;
becoming ellipitcal at moderate frequencies. Nonlinear
response is signified by a distortion of the Lissajous plot
from circular or elliptical - especially at low frequencies.
The lowest value for f in figure 4 is 0.53. Including higher
order terms in voltage and frequency would likely reduce
this value further so it is a conservative measure of lin-
earity.
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FIG. 4: (Color online) Pipkin diagram for ǫ = 0.025. On each plot, the horizontal axis is voltage and the vertical
axis is current, both scaled to be in the range [-1, 1]. The solid lines are the result from our moderately nonlinear
expansion and the dashed lines are numerical solutions to the PNP equations. The frequency, ω, increases to the
right and the total applied voltage difference increases down. Linear response dominates at low voltages and for

frequencies ω > 1. As the conditions approach the lower left portion of the figure, the Lissajous curve distorts from
the elliptical shape typical of linear response. The color is based upon the linearity fraction, f , defined in equation
(22) with two distinct regions: f=[1, 0.9] the color changes from green to yellow; f=[0.9, 0.53] the color changes
from yellow to red and a linear theory captures relatively little of the dynamics. Also labeled on the color bar is

f = 0.77, which is the value corresponding to 2Vo = 6 and ω = 0.01.

Most apparent from figure 4 is that the responses which
are most nonlinear are those at high voltages and low
frequencies. This is not surprising given the relationship
between ω and Vo in (21) for linear response (see also
figure 2). What is notable about figure 4 is it suggests
the current response is essentially linear for ω > 1. This
could allow use of linearizing approximations and tradi-
tional models of EIS even for large driving voltages. Us-
ing large voltages would be advantageous for eliminating
noise in measurements of current.

Regarding the validity of our moderately nonlinear ex-
pansions (10), we see excellent agreement with the full
numerical solution for all ω up to 2Vo = 6 and for all
ω > 1 for 2Vo > 6, where f = 0.77 in the former and
the dynamics are predominately linear in the latter. For
2Vo > 6 and ω < 1, we still capture the qualitative fea-

tures of the current. This highlights the usefulness of
(10) in describing a moderately nonlinear response.

For comparison with the above thin Debye layer (ǫ =
0.025) diagram, figure 5 is a Pipkin diagram for ǫ = 0.25.
The coloring scheme and scale is identical to the one used
in figure 4. Once again, the most nonlinear response is
seen for low frequencies at high voltages and becomes
more linear as frequency increases. One significant dif-
ference is the linearity factor (22) suggests the response
is more linear for all values of Vo plotted since f > 0.82.
Comparing the full numerical solutions for ω = 0.01,
we conclude that the same voltage of 2Vo = 6 is the
largest voltage amplitude for which our expansion has
good agreement. Here, it corresponds to f = 0.93, com-
pared with f = 0.77 for ǫ = 0.025. The Lissajous plots
are also hexagon-like in shape at large voltages which
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contrasts to the “bow-tie”-like shape for ǫ = 0.025. The
apparent lack of this feature in our perturbation analysis
suggests more terms in the voltage expansion are needed
as ǫ increases. Another difference is that for ǫ = 0.25, the
plots are generally more circular than the corresponding
plot for ǫ = 0.025. This is a direct consequence of there
being fewer ions in the electrolyte and hence less in-phase
conduction. Alternatively, the thicker Debye cloud at
larger ǫ results in a diminished frequency gap between
the capacitive response due to the dielectric solvent and
the Debye layer.

To better understand how higher order harmonics
(specifically the third harmonic) effect the current, figure
6 shows how the current response changes with frequency
for a linear (Vo = 0.1, solid) and moderately nonlinear
(Vo = 3, dashed) voltage amplitude. The presence of the
third harmonic, e3iωt, is readily apparent in figure 6 for
ω = 0.01 and results in a “double-peak” in the current
versus time plot and a “bow-tie” in the Lissajous plot.
Also apparent is the lack of a second harmonic which if
non-zero would reduce the size of the second peak.

As the frequency increases, the current shifts to be
more in-phase with the applied voltage and the second
peak starts to diminish. The phase shift is due to a re-
duction in Debye layer capacitance resulting in a rela-
tive increase in in-phase conduction (see explanation for
(21)). The second peak results from the third harmonic
and as ω approaches 1 from low values, higher order har-

monics (φ
(3)
1 , φ

(3)
3 , etc.) become less prominent. That

is, they decrease in amplitude relative to φ
(1)
1 . Since the

second peak is due entirely to the third harmonic, this
necessarily leads to it vanishing. As it diminishes, the
nonlinear current more closely resembles that of the lin-
ear response. The second peak could also be reduced by
the existence of a second harmonic in the case of asym-

metric electrolytes, but φ
(2)
2 = 0 is guaranteed for sym-

metric, point-like electrolytes. Even if φ
(2)
2 6= 0, it would

also diminish in amplitude as ω increases.

Therefore, linear dynamics can result at high voltages
because the higher order harmonic modes decrease in am-
plitude as frequency increases. This results in a reduction
in the extent of ion motion and less capacitive storing in
Debye layers. Since the nonlinear response is a direct con-
sequence of the capacitive storing, the result is increased
linearity in the current response.

Interestingly, the ion densities predicted in figure 3
could lead to unphysical values at sufficiently large Vo

even though each term in (10) is correct, as we show in
figure 7. It is a plot of total cation density for a small
voltage (Vo = 0.1) and two larger voltages (Vo = 1 and
2) at ω = 0.01 and t = 0. For Vo = 0.1, the ion per-
turbation is primarily due to O(Vo) effects and is thus
antisymmetric. For Vo = 1, the total perturbation is un-
equal due to the symmetric O(V2

o ) contribution, giving
rise to an increased density of cations on the negative

electrode (x = −1) compared to the smaller decrease in
density on the positive electrode (x = 1). For Vo = 2, the
asymmetric O(V3

o ) perturbation is now prevalent enough
to significantly affect the ion densities. As a consequence,
the positive electrode has a negative density of cations at
its surface. It is clearly not physically possible to have
negative ion concentrations; however, this does not mean
our approach is incorrect. Again, we emphasize that the
individual contributions in figure 3 are correct. We use a
regular perturbation expansion in Vo which is asymptotic
as Vo → 0 so it is expected to break down at some Vo

greater than unity. In this view, it is remarkable that the
predicted current responses in figure 4 agree well with
numerics at Vo = 3 and ω = 0.01 (and even at larger
voltages, as explained above).

IV. WEAKLY NONLINEAR IMPEDANCE

Electrochemical impedance spectroscopy (EIS) uses an
experimental system such as figure 1 where the electrodes
are sufficiently close such that the charge transport oc-
curs primarily normal to the electrode surface. A time
varying voltage, V (t) = Vo cos(ωt), is imposed resulting
in the charging/discharging of the Debye layers and a cur-
rent response, I(t). Provided that λD ≪ L, the system
is analogous to an equivalent circuit in which the two
Debye layers are described as capacitors in series with
the electrolyte resistance and in parallel is the geometric
capacitance of the cell itself via the dielectric solvent.
It is convenient to express the voltage and current as

complex quantities: V (t) = Voe
iωt and I(t) = I

(1)
1 eiωt.

Then the impedance for a symmetric binary electrolyte,
defined as Z = V (t)/I(t), is given by[26]

Z =
−2ǫ

β2ω2

[

i

β
tanh

(

β

ǫ

)

− ω

]

, (23)

where β =
√
1 + iωǫ. Equation (23) can be used to deter-

mine physical properties of the electrolyte such as con-
ductivity and dielectric permittivity by determining the
limiting behavior of the real and imaginary components
at small and large frequencies[24, 25].
Equation (23) is formally valid when Vo ≪ Vc, i.e.

linear response. When this condition is violated, higher
order harmonic modes must be included in the expression
for I(t). The result is a time dependent “impedance,” if
defined by simply dividing the voltage by the current.
Alternatively, following Olesen et al. [27], we define a
generalized impedance,

Z =

∫ T

0 V (t)e−iωtdt
∫ T

0
I(t)e−iωtdt

, (24)

to capture only those contributions to the current oscil-
lating at the applied frequency. Hence, Z is time inde-
pendent.
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FIG. 5: (Color online) Pipkin diagram for ǫ = 0.25. The solid and dashed lines represent the moderately nonlinear
calculations and the numerical solutions, respectively. The color legend is the same as in figure 4. Also labeled on

the color bar is f = 0.93, which is the value corresponding to 2Vo = 6 and ω = 0.01.

Given that the current is I(t) = VoI
(1)(t) + V3

o I
(3)(t),

it is natural to assume a similar expression for Z is

Z = Z(0) + V2
oZ(2) +O(V4

o ). (25)

This expression provides an approximation to the volt-
age dependence observed in impedance measurements at
large voltages[25–27]. We can express Z in terms of the
components of the electrostatic potential,

Z =
1

iω

[

1

dφ
(1)
1 /dx

− V2
o

dφ
(3)
1 /dx

(dφ
(1)
1 /dx)2

]

. (26)

Figure 8 are plots of Im(Z) and Re(Z) versus ω for
ǫ = 0.025 and 0.25 and Vo = 0.1 and 3. At high
frequency, the imaginary impedances are equal due to
the aforementioned capacitance of the dielectric domi-
nating the response. For small frequencies, however, the
impedances are unequal.
The low frequency impedance increases with increasing

Debye layer thickness. The imaginary part increases due
to a reduction in capacitance and the real part due to an
increased resistance - both due to less ions in the elec-
trolyte. The decrease in Im(Z) with increasing voltage

for both values of ǫ is due to the behavior of the Debye
layer as a nonlinear capacitor. As voltage increases, the
capacitance also increases. Since Im(Z) is inversely pro-
portional to capacitance, it decreases[27]. For ǫ = 0.25,
this decrease is less pronounced than for ǫ = 0.025 be-
cause of the lower ion concentration in the thick Debye
layer case.
From figure 8b, Re(Z) is shown to increase with in-

creasing voltage, for both values of ǫ, which corresponds
to an increase in resistance. This can be attributed di-
rectly to the neutral salt adsorption from the bulk solu-
tion into the Debye layers at O(V2

o ). This causes a re-
duction in conductivity and hence an increase in Re(Z).
Since there are fewer ions in solution in the ǫ = 0.25
case, any ions adsorbed into the Debye layers represent a
greater proportion of the total ion concentration. Hence,
the increase in resistance is greater for ǫ = 0.25.

V. CONCLUSIONS

We have quantified diffuse charge dynamics of a sym-
metric binary electrolyte at moderately nonlinear AC
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FIG. 6: Dependence of current on frequency. Solid lines are linear dynamics (Vo = 0.1), dashed lines are moderately
nonlinear (Vo = 3), and dotted lines are the applied voltage. The “double-peak” visible in (a) and the “bow-tie” in

(d) are due to the third harmonic of current. This harmonic gradually loses amplitude relative to the linear
contribution as frequency increases.
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FIG. 7: Total cation density for ω = 0.01 and t = 0 at
three voltages: Vo = 0.1 (solid), Vo = 1 (dashed), and
Vo = 2 (dotted). As the voltage increases, the ion
density becomes less antisymmetric and for Vo = 2

attains a negative value at x = 1.

voltages. We used a Fourier series expansion in driving
frequency for which the coefficients are expressed as a

perturbation series in voltage amplitude. This approach
allows the evaluation of nonlinearities in terms of both
voltage order and harmonic mode. We find that the odd
voltage orders have antisymmetric ion densities and elec-
trostatic potential profiles. For symmetric electrolytes,
the even voltage orders have ion densities that are sym-
metric and equal while the electrostatic potential is zero.

The symmetry in the O(V2
o ) ion densities represents

“AC capacitive desalination”[27] in which neutral salt
from the bulk solution adsorbs into the diffuse charge
layers near the electrodes. The result is a reduced total
salt concentration in the bulk and an increased resistance.
Moreover, the net, or time averaged, separation of neutral
salt is captured by the steady O(V2

o ) contribution.

We use our expansion to express a voltage dependent
impedance. For low frequencies, we observe the increased
bulk resistance manifesting as an increase in the real part
of the impedance. The imaginary part of the impedance
decreases with voltage due to the increase in Debye layer
capacitance as predicted by Gouy-Chapman theory.

In this work, we considered a binary symmetric elec-
trolyte, for simplicity. Asymmetry could be introduced
through unequal ion valences or diffusivities, which would
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of applied voltage for ǫ = 0.025 and 0.25. The voltages

plotted are Vo = 0.1 (solid) and Vo = 3 (dashed).

require only minor modification to our moderately non-
linear expansions. Such asymmetry would result in a
non-zero O(V2

o ) potential, and hence unequal neutral salt
adsorption and an O(V2

o ) contribution to the current.
In addition, it would be interesting to consider modified
PNP equations that account for ion-size effects [33] and
ion-ion electrostatic correlations [34]. In the former case,
various modified PNP equations including finite-ion-size
effects predict a Debye layer capacitance that only weakly
increases with voltage, in contrast to the exponential
increase of the capacitance from Gouy-Chapman the-
ory. Clearly, ion steric effects would thus dramatically
impact the low-frequency impedance at large voltages.
Finally, future work could also incorporate asymmetri-
cally applied voltages and non-zero native zeta poten-
tials to model asymmetric electrochemical supercapaci-
tors, where the electrodes are made of differing materials.
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