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We consider percolation and jamming transitions for particulate systems exposed to compression. For the

systems built of particles interacting by purely repulsive forces in addition to friction and viscous damping, it

is found that these transitions are influenced by a number of effects, and in particular by the compression rate.

In a quasi-static limit, we find that for the considered type of interaction between the particles, percolation and

jamming transitions coincide. For cohesive systems, however, or for any system exposed to even slow dynamics,

the differences between the considered transitions are found and quantified.

PACS numbers: 45.70.-n, 83.10.Rs

I. INTRODUCTION

The dense systems of particles interacting by either purely

repulsive potentials, such as dry granular particles, or by both

repulsive and attractive ones, such as wet granulates, appear

virtually everywhere, from nature to a variety of applications

bridging the scales from nano to macro. The structure of

the force field by which the particles interact may be very

complex, in particular on meso-scales where this force field

is nonuniform and forms force networks. These networks

are of relevance not only to granular systems, but to many

other ones, such as foams and colloids. Their properties have

been recently explored using a variety of different approaches,

ranging from theoretical and computational ones based on ex-

ploring local structure of force networks [1], networks type of

approaches [2, 3], and topological methods [4–6].

While percolation has been considered for dense particu-

late systems [7–10], much more is known about static and or-

dered lattice-based systems [11, 12], for which two types of

percolation are discussed – rigidity and connectivity percola-

tion [13, 14]. However, lattice models do not account for non-

linear effects at particle contacts, such as friction and viscous

damping, or for dynamics, so it is unclear whether the results

obtained for lattice systems apply to particulate ones [14]. For

the latter, the connection between percolation (connectivity)

and jamming (rigidity) transitions was discussed recently for

both non-cohesive and cohesive frictionless systems, and it

was found (for the systems considered) that these two tran-

sitions in general differ [9, 10]. However, these conclusions

were reached by considering rather specific interaction mod-

els (over-damped dynamics), and the question whether they

hold in general, and whether they also follow from the models

commonly used to simulate physical granular particles, is still

open.

In this paper, we discuss the relation between percolation

and jamming for frictional and frictionless particles in two

spatial dimensions, both with and without cohesion. We con-

sider slowly compressed systems that go through percolation

and jamming and discuss how these transitions depend on

the system properties. The motivation for considering com-

pression is that it is a simple protocol that avoids the com-

plexities associated with shear, and allow us to focus the dis-

cussion. However, consideration of any dynamics, including

compression, naturally leads to the questions related to the

rate-dependence of the results, and, as we will see, to new

insight into percolation and jamming transitions for evolving

particulate systems.

The paper is organized as follows. In Sec. II we present

the simulation techniques. In Sec. III we present out findings,

first for purely repulsive systems in Sec. III A, and then for

cohesive ones in Sec. III B. Section IV is devoted to summary,

conclusions, and future outlook.

II. SIMULATIONS

We perform discrete element simulations using a set of cir-

cular particles confined in a square domain, using a slow-

compression protocol [4, 5], augmented by relaxation as de-

scribed below. Initially, the system particles are placed on a

square lattice and are given random velocities; we have ver-

ified that the results are independent of the distribution and

magnitude of these initial velocities. The discussion related

to possible development of spatial order as the system is com-

pressed can be found in [5], and the issue of spatial isotropy

of the considered systems is considered later in the text.

In our simulations gravity is not considered, and the diame-

ters of the particles are chosen from a flat distribution of width

rp. System particles are soft inelastic disks and interact via

normal and tangential forces, including static friction, µ (as

in [4, 5]). The particle-particle (and particle-wall) interactions

include normal and tangential components. The normal force

between particles i and j is

Fn
i, j = knxn− γnm̄vn

i, j (1)

ri, j = |ri, j|, ri, j = ri − r j, n = ri, j/ri, j

where vn
i, j is the relative normal velocity. The amount of com-

pression is x = di, j − ri, j, where di, j = (di + d j)/2, di and

d j are the diameters of the particles i and j. All quanti-

ties are expressed using the average particle diameter, dave,

as the lengthscale, the binary particle collision time τc =
2π

√

dave/(2gkn) as the time scale, and the average particle

mass, m, as the mass scale. m̄ is the reduced mass, kn (in

units of mg/dave) is set to a value corresponding to photoe-

lastic disks [15], and γn is the damping coefficient [16]. The

parameters entering the linear force model can be connected

to physical properties (Young modulus, Poisson ratio) as de-

scribed e.g. in [16].
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We implement the commonly used Cundall-Strack model

for static friction [17], where a tangential spring is intro-

duced between particles for each new contact that forms at

time t = t0. Due to the relative motion of the particles, the

spring length, ξ evolves as ξ =
∫ t

t0
vt

i, j (t
′) dt ′, where vt

i, j =

vi, j −vn
i, j. For long lasting contacts, ξ may not remain parallel

to the current tangential direction defined by t= vt
i,j/|v

t
i,j| (see,

e.g,. [18]); we therefore define the corrected ξ′ = ξ−n(n ·ξ)
and introduce the test force

Ft∗ =−ktξ
′− γtm̄vt

i, j (2)

where γt is the coefficient of viscous damping in the tangen-

tial direction (with γt = γn). To ensure that the magnitude of

the tangential force remains below the Coulomb threshold, we

constrain the tangential force to be

Ft = min(µ|Fn|, |Ft∗|)Ft∗/|Ft∗| (3)

and redefine ξ if appropriate.

Cohesive forces are modeled using the approach outlined

in [19], and are considered to arise from the capillary bridges

that form when particles get in contact. The functional form

of this force is given by

Fb = 2πRγcosθ/(1+ 1.05ŝ+ 2.5ŝ2) (4)

where ŝ = s
√

R/V and s = ri j − (di + d j)/2 (taken to be ≥ 0)

is the particle separation. Here, 1/R = 1/2(1/d1+1/d2) [20]

(for simplicity we do not account here for polydispersity and

use d1 = d2 = 1 in dimensionless units), and V is the volume

of a capillary bridge between particles. In the present work we

assume that all capillary bridges are of the same volume. For

contact angle, θ, we use θ = 12◦, comparable to the value for

(deionized ultra-filtered) water and (clean) glass [21]. For the

surface tension, γ, we use the value corresponding to water, 72

dyn/cm, scaled appropriately. The critical separating distance,

sc, at which a bridge breaks is given by

sc = (1+θ/2)(V 1/3/R+V 2/3/R2) (5)

Here, sc could be thought of as a measure of the strength of

cohesion; larger sc leads to more pronounced cohesive effects.

Our simulations are carried out by slowly compressing the

domain, starting at the packing fraction 0.63 and ending at

0.90, by the moving walls built of monodisperse particles with

diameters of size dave placed initially at equal distances, dave,

from each other. The wall particles move at a uniform (small)

inward velocity, vc, equal to v0 = 2.5 · 10−5 (in the units of

dave/τc), or a fraction of it, as we explore the influence of com-

pression speed. Due to compression and uniform inward ve-

locity, the wall particles (that do not interact with each other)

overlap by a small amount. When the effect of compression

rate is explored, vc is decreased, or the compression stopped

to allow the system to relax. In order to obtain statistically

relevant results, we simulate a large number of initial config-

urations (typically 20), and average the results. Due to the

compression being slow, we do not observe any different be-

havior close to the domain boundaries compared to the rest of

the domain.
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FIG. 1: (Color online) An example of a reference system for

different force thresholds at ρ = 0.9 (see Supplementary

Material in [4] for animations).

We integrate Newton’s equations of motion for both the

translational and rotational degrees of freedom using a 4th or-

der predictor-corrector method with time step ∆t = 0.02. Our

reference system is defined by N = 2000 polydisperse par-

ticles (rp = 0.2), with kn = 4 · 103, en = 0.5, µ = 0.5, and

kt = 0.8kn [22]; the (monodisperse) wall particles have the

same physical properties. Larger domain simulations are car-

ried out with up to N = 20,000 particles. If not specified oth-

erwise, cohesion is not included.

III. RESULTS

A. Purely repulsive systems

Figure 1(a) shows an example of the reference system at

ρ = 0.90, with the particles color-coded according to the to-

tal normal force, normalized by the average normal force,

Fn/ < F > (we focus only on the normal forces in the present

work). If the system contains a set of particles in contact that

connects top/bottom or left/right wall, then there is contact

percolation. We will also consider force percolation by focus-

ing on the particles sustaining force larger than a given force

threshold and ask how the percolation properties are influ-

enced by a nonvanishing threshold. As an example, Fig. 1(b)

(a) The percolation probability,

P(ρ, F̄).
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(b) The percolation force threshold,

F̄p, and the coordination number, Z.

FIG. 2: (Color online) Reference system, averaged over 20

realizations.
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shows the same system as in Fig. 1(a) with force threshold

F̄ = 1. While the system shown in Fig. 1(a) clearly percolates

(contact percolation), it is not immediately obvious whether

the system shown in Fig. 1(b) does.

In describing percolation properties, we use the following

quantities, all based on averaging over multiple realizations:

P(ρ, F̄), the percolation probability; F̄p, the percolation force

threshold, defined by P(ρ, F̄p) = 0.5; and Pc(ρ), the contact

percolation probability, defined as Pc(ρ) = P(ρ,0). In addi-

tion, we will use Z, the coordination number, measuring av-

erage number of contacts per particle; a sharp increase of the

Z curve is typically associated with the jamming transition,

see, e.g. [23]. We note that the listed quantities also depend

on the number of particles, N, and on the compression speed,

vc; this dependence will be discussed later in the paper. For

the simplicity of notation, we do not include this dependence

explicitly in the notation.

Figure 2(a) shows P(ρ, F̄), for the reference system. We

see that, starting at ρ ≈ 0.77, there is a percolation transition;

note that if we vary F̄ and keep ρ fixed, this transition is rather

sharp for large ρ’s and more spread out for ρ ∈ [0.77,0.81].
To describe various transitions that take place as the system is

compressed, we define: ρJ , at which jamming, defined here

as the ρ at which the Z curve has an inflection point, takes

place (later in the text we also show that at ρJ rapid increase

in pressure (measured at the domain boundaries) occurs, sup-

porting this definition of ρJ); and ρp, at which contact perco-

lation, defined as Pc(ρp) = 0.5 occurs. Figure 2(b) shows Z

and F̄p; we find from the data shown that ρJ ≈ 0.79 (the verti-

cal dashed line in the figure). Note that just below ρJ , there is

a strong force network that percolates, as shown by large F̄p.

The dominant maximum of F̄p calls for consideration of an-

other transitional ρ at which this maximum occurs: however,

we find that this transition is always sandwiched between ρp

and ρJ , so we will not discuss it in more details here.
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FIG. 3: (Color online) Reference system: the percolation

probability, Pc, and Z.

Figure 3(a) shows Z and Pc for the reference system. While

there is some noise in the results, one can still obtain an ac-

curate value for ρp ≈ 0.776. [For this, and all other results

involving ρp and ρJ , uncertainty of the results is such that the

results are accurate up to three significant digits: for ρJ we

use standard error to estimate uncertainty, and for ρp we esti-

mate the range over which 0.4 ≤ Pc(ρ)≤ 0.6.] Therefore, the
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FIG. 4: (Color online) Influence of system size on ρp and ρJ

for fixed compression rate and for fixed compression speed.

results for our reference system suggest that ρp < ρJ , and the

question is whether this finding is robust with respect to the

changes of the system parameters and of the protocol used.

Before proceeding, we note that although there are some dif-

ferences between realizations, for all of them we find consis-

tently (for the considered system) that ρp and ρJ differ by a

nonvanishing amount.

Regarding the system parameters, we start by discussing

the influence of polydispersity, measured by rp, and friction

coefficient, µ. Table I shows the results for ρp and ρJ, and

we observe that both ρp and ρJ are monotonously decreasing

functions of these two parameters; in particular the results for

ρJ are consistent with the ones from literature (see [4] and the

references therein). The finding that is perhaps more relevant

for the present discussion is that the difference between ρp

and ρJ remains as rp and µ are varied.

Next we discuss the influence of system size; note that this

issue has been discussed extensively in the context of random

percolation (see e.g. [11]). Here, the context is more com-

plicated since the system considered is dynamic, and one has

to decide on coupling of relevant spatial and temporal scales.

We have considered two scenarios for the systems of differ-

ent size: one where the rate of the change of ρ is kept con-

stant, and the one where the compression speed (vc) is fixed.

While the details of the results vary depending on the choice

of the scenario, we find that the difference between ρp and

ρJ remains non-zero (and typically increases as a function of

L) for the both scenarios and for the system sizes defined by

L = 50, 75, 100, 150: Figure 4 shows the dependence of ρp

and ρJ behavior on the system size using two aforementioned

protocols. Figure 4(a) shows results for the fixed compression

rate; the compression velocity, vc, is increased with L so that

the rate vc/L is constant. Figure 4(b) shows ρp,ρJ when we

keep vc constant as L increases. For both protocols – fixed

compression rate and speed – we observe increased difference

between ρp and ρJ as L is increased.

Since the reference system is exposed to a nonvanish-

ing compression rate, there is also the question of rate-

dependence, as already alluded above. To explore this issue,

we carry out simulations with progressively smaller speed of

compression, using vc = v0/10,v0/20 and v0/50. We find that

the Pc transition becomes sharper as vc decreases, indicating
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µ

0.0 0.1 0.2 0.3 0.4 0.5

ρJ 0.827 0.812 0.802 0.797 0.796 0.789

ρp 0.815 0.799 0.792 0.784 0.781 0.776

rp

0.0 0.1 0.2 0.3 0.4

ρJ 0.804 0.797 0.789 0.7834 0.782

ρp 0.786 0.784 0.776 0.771 0.766

vc/v0

0.0 0.02 0.05 0.1 1.0

ρJ 0.798 0.799 0.798 0.792 0.789

ρp 0.798 0.794 0.791 0.786 0.776

TABLE I: Influence of µ, rp and vc on ρp and ρJ for a

continuously compressed system (the parameters not

specified correspond to the reference case).

that ρp is affected by vc; in general, for a fixed ρ, the parti-

cles are less likely to percolate for smaller vc and therefore

ρp increases as vc decreases. Both ρp and ρJ are shown in

Table I. While both ρ’s increase as vc decreases, the crucial

finding is that the difference between them becomes smaller

for slower compression. The question remains whether ρp and

ρJ collapse to a single value in the limit vc → 0. To answer

this, we consider a modified protocol such that we interject

relaxation steps in our compression (we reference this proto-

col by vc = 0). More precisely, after compressing the system

by δρ = 0.001, we check whether there is a percolating clus-

ter. If not, we proceed with compression; if yes, the system

is relaxed until percolation disappears, and then the system is

further compressed. We carry out this procedure until such

ρp that percolating cluster does not disappear after relaxation

(for all considered simulations, the system always percolates

above ρp found using relaxation protocol, or in other words,

percolation is never found to disappear as a system is further

compressed). Figure 3(b) shows Pc and Z for the relaxed sys-

tem, suggesting much smoother and sharper evolution of Pc

through ρp. Table I shows that for the reference system and

vc = 0, ρp and ρJ collapse to the same point, within the avail-

able accuracy. We have reached the same finding for the other

systems listed in Table I, including monodisperse frictionless

system - while this particular system is known to show differ-

ent behavior due to partial crystallization [4], it still leads to

ρp = ρJ . We have also verified that the finding ρp = ρJ still

holds when different system sizes are considered.

This finding of collapse of percolation and jamming tran-

sitions appears to be different from the one in [10], where it

was found that ρp and ρJ differ. The source of the differ-

ence seems to be the use of overdamped dynamics in [10];

this effect apparently keeps the particles together and leads to

percolation even for small ρ’s. We find, however, that, within

the particle interaction model considered in the present paper,

based on (constant) coefficient of restitution, en, the finding

ρp = ρJ persists even for very small en ≈ 0, suggesting that

a
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FIG. 5: (Color online) Anisotropy of the stress tensor of

rp = 0.2,µ = 0.5 (squares), rp = 0.0,µ = 0.5 (circles),

rp = 0.2,µ = 0.0 (triangles) and rp = 0.0,µ = 0.0 (thick line)

systems as a function of packing fraction, ρ. Respective

jamming transitions, ρJ,ρ
′
J,ρ

′′
J ,ρ

′′′
J , are depicted by a dashed

line.

the finding reported here is robust, within the framework of

the implemented particle interaction model.

While the findings obtained in quasi-static limit are of main

interest, one should note that in the context of particulate mat-

ter, percolation and jamming transitions typically involve dy-

namics, even if very slow one. Close to ρJ , the relevant time

scales diverge in the limit of infinite system size, and there-

fore, one could expect that for any sufficiently large system,

even very slow dynamics may lead to (arbitrarily small) dif-

ferences between ρp and ρJ . Therefore, it should not be sur-

prising if differences are found between ρp and ρJ for slowly

evolving spatially extended particulate systems.

To close our discussion focusing on repulsive systems, we

discuss whether the implemented compression protocol may

induce an anisotropy, possibly influencing the results. For this

purpose, we compute the stress tensor and the distribution

of the angles of contact between the particles. For brevity,

we consider here only the compression by v0. The stress

anisotropy, τa, is defined by

τa =
σ1 −σ2

σ1 +σ2
(6)

with σ1,σ2 the principal eigenvalues of the Cauchy stress ten-

sor σ, specified by σi j = 1/(2A)∑ck,p
(Fir j +Fjri) as a sum

over all inter-particle contacts ck for all particles p; (wall par-

ticles as well as the contacts of interior particles with the wall

particles are not included here). Here, A is the total area of the

system, ri, r j are the x and y components of the vector point-

ing from the center of particle p towards the particle contact

ck. Fi, Fj denote the x, y components of the interparticle force

at the contact ck.

Figure 5 shows τa as a function of ρ. We depict jamming

transitions, ρJ,ρ
′
J,ρ

′′
J and ρ′′′

J by dashed lines for µ = 0.5,rp =
0.2 (reference system), µ= 0.5,rp = 0.0, µ= 0.0,rp = 0.2 and

µ = 0.0,rp = 0.0, respectively. While far below the jamming

(and percolation) transitions, the anisotropy measured by τa

may be present, close to ρp and ρJ , τa ≪ 1 for all systems

considered, showing that the systems are essentially isotropic

for the packing fractions of relevance here. Above jamming

points, τa is even smaller.
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FIG. 6: (Color online) Distribution of the angles of contacts

for the reference (a), (b) and rp = 0.0, µ = 0.0 system (c),

(d). In these polar plots, the azimuthal coordinate, φ,

corresponds to the angle between the line connecting the

centers of contacting particles and the +x axis, and the radial

one to the probability of observing given φ.

Figure 6 shows the distribution of contact angle, φ, for

the reference system, the parts (a), (b), and for the µ = 0.0,

rp = 0.0 system, the parts (c), (d). Most importantly, this fig-

ure shows symmetric distribution of φ’s. In addition, by com-

paring the results of the reference case with the ones obtained

for monodisperse frictionless, we also observe the influence of

partial crystallization on the latter, for large packing fractions.

B. Cohesive systems

Here, we discuss the effect of cohesion on percolation and

jamming. We have considered few different ‘strengths’ of

cohesion (specified by the distance, sc), at which capillary

bridges break; for brevity here we present results only for

‘weak’ cohesion, specified by small distance at which cap-

illary bridges break, sc ≈ 0.0028 ≪ 1 (see Sec.II). We focus

on the relaxed reference system. Figure 7(a) shows that the

percolation transition occurs very close to (the starting value)

ρ = 0.63. The Z curve remains at high values for all con-

sidered ρ’s, but we note that there is a kink in the Z curve

at ρ ≈ 0.783. The kink and consecutive increase of Z sug-

gest that the system undergoes a transition. To verify that

this transition corresponds to ρJ , we consider the pressure on

the system walls, Π. Figure 7(c and d) shows this pressure

(force/length, in dimensionless units) for both the reference
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FIG. 7: (Color online) (a), (b) Cohesive relaxed system. (c),

(d) Pressure on the walls, Π, and Z. Dashed lines correspond

to ρJ (and to ρp in (c)); in (a), ρp is shown by dotted line.

system, and for the cohesive one. We see that for the refer-

ence system an increase of Π occurs at ρJ (inflection point of

the Z curve). Figure 7(d) shows that an increase in Π and the

kink in the Z curve occur at the same ρ = ρJ = 0.783.

Clearly, the difference between ρJ and ρp is significant for

the considered cohesive system, consistently with the earlier

work [9]. As expected, we find similar results for the systems

characterized by larger sc (results not shown for brevity). The

strong influence of weak cohesion on the ρp and ρJ suggests

that for any non-vanishing cohesion, one would find differ-

ences between ρP and ρJ , with this differences disappearing

only in the limit of sc → 0. As soon as there is no attractive

force, the difference between ρp and ρJ vanishes even in the

limit of inelastic collisions, en → 0.

One may ask about the origin of the ‘kink’ in the Z curves

for the cohesive system. An intuitive explanation is as fol-

lows: as compression starts, the particles immediately get in

contact, form mini-clusters (consisting of a small number of

particles), leading to rather large Z; due to the presence of co-

hesive forces, relaxation does not lead to breakup of the exist-

ing contacts. Therefore, as long as ρ is small, the mini-clusters

do not break; as ρ grows, however, collisions start separating

particles, leading to breakup of the mini-clusters and decreas-

ing Z. At some point, when ρ becomes sufficiently large so

that all particles are effectively in contact, Z starts growing

again, and at the same ρ, Π starts increasing. To support this

description, Fig. 7(b) shows the number of particles (N) with

2, . . . ,6 contacts (cn). We observe that as ρJ is approached

from below, the cn = 4, 5 curves have negative slope, sug-
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gesting breakup of the clusters (this breakup is presumably

also partially responsible for the positive slope of cn = 2, 3

curves for the same values of ρ); at ρJ these trends reverse.

IV. SUMMARY AND CONCLUSIONS

Percolation and jamming transitions of evolving particulate

systems are non-trivial. We find that these transitions for re-

pulsive particles interacting by a commonly used interaction

model coincide for quasi-static systems; this finding, together

with the results reported in [10], where these transitions are

found to differ for particles following overdamped dynam-

ics, suggests that the considered transitions may be influenced

significantly by the type of interaction between the particles.

Furthermore, our finding is that any, even very slow dynamics

may lead to the differences of the packing fractions at which

percolation and jamming occur. Therefore, in particular close

to jamming, a careful exploration will be needed in order to

distinguish the effects due to dynamics and due to, e.g., the

type of interaction between the particles. In the same vein, we

are also finding that even minor cohesive effects have a strong

influence in particular on percolation transition.

We hope that the present results will encourage carrying out

careful experiments that will quantify further the predictions

regarding the influence that dynamics, cohesion, and the na-

ture of particle interaction have on percolation and jamming.

Our own research will continue in the direction of exploring

the effects of jamming and percolation in three spatial dimen-

sions.
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