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We investigate stochastic models of particles entering a channel with a random time distribution.
When the number of particles present in the channel exceeds a critical value N , a blockage occurs
and the particle flux is definitively interrupted. By introducing an integral representation of the
n-particle survival probabilities, we obtain exact expressions for the survival probability, the distri-
bution of the number of particles that pass before failure, the instantaneous flux of exiting particle
and their time correlation. We generalize previous results for N = 2 to an arbitrary distribution of
entry times and obtain new, exact solutions for N = 3 for a Poisson distribution and partial results
for N ≥ 4.
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I. INTRODUCTION

A stream of particles flowing through a channel may
be slowed or blocked if the number of particles present
exceeds the carrying capacity of the channel. This phe-
nomenon is widespread and spans a range of lengthscales.
Typical examples include vehicular and pedestrian traf-
fic flow, filtration of particulate suspensions and the flow
of macromolecules through micro- or nano- channels. A
specific, comic book, example of the first category is a
bridge that collapses if the combined weight of the vehic-
ular traffic exceeds a threshold. In filtration, experimen-
tal data of the fraction of grains retained by a filter mesh
can be explained by assuming that clogging may occur
when two or more grains are simultaneously present in
the same vicinity of a mesh hole, even though isolated
grains are small enough to pass through the holes [1]. A
biological example is provided by the bidirectional traffic
in narrow channels between the nuclear membrane and
the cytoplasm [2].

The totally asymmetric simple exclusion effect process
(TASEP) provides a theoretical approach to these phe-
nomena. The TASEP is a lattice model with a stochastic
dynamics where particles hop randomly from site to site
in one direction with the condition that two particles can-
not occupy the same site at the same time [3, 4]. At the
two extremities of the finite lattice, particles are inserted
and removed with two different rates. The model and its
extensions provide quantitative descriptions of the cir-
culation of cars and pedestrians [5–10]. In this model
blockage due the channel is not possible. The dynamics
of the process is controlled by the entering and exiting
fluxes and exclusion effects. The so-called bridge models
consider two TASEP processes with oppositely directed
flows, but allow exchange of particles on the bridge [11–
15]. At the microscopic level active motor protein trans-
port on the cytoskeleton has been modeled by a TASEP
[16, 17].

Recently, some of the present authors [18, 19] intro-

duced a class of continuous time and space stochastic
models that are complementary to the TASEP approach
in that the blockage is due to the limited carrying capac-
ity of the channel (and not the exclusion effect between
particles). In these models particles enter a passage at
random times according to a given distribution. In the
simplest concurrent model particles move in the same di-
rection and an isolated particle exits after a fixed transit
time τ but if N = 2 particles are simultaneously present,
blockage occurs. If the particle entries follow a homoge-
neous Poisson process all properties of interest, including
the survival probability, mean survival time and the flux
and distribution of exiting particles can be obtained ana-
lytically. The model has a connection to queuing theory
in that it is a generalization of an M/D/1 queue, i.e. one
where arrivals occur according to a Poisson process, ser-
vice times are deterministic and with one server. This
queue has many other applications including, for exam-
ple, trunked mobile radio systems and airline hubs [20–
22].

Opposing streams, where blockage is triggered by the
simultaneous presence of two particles moving in differ-
ent directions can be treated within the same framework
[18]. Inhomogeneous distributions of entering particles
can be treated analytically [23]. It is also possible to
obtain exact solutions for when the blockage is of finite
duration, rather than permanent [24]. In this case, for
a constant flux of incoming particles the system reaches
a steady-state with a finite flux of exiting particles that
depends on the blockage time τb.

The purpose of this article is to explore the properties
of the concurrent flow models for any distribution of en-
try times and when the threshold for blocking is N > 2.
In addition to the applications described above, this gen-
eralized model may also be relevant for internet attacks,
in particular denial of service attacks (DoS) and a dis-
tributed denial of service attacks (DDoS) where criminals
attempt to flood a network to prevent its operation [25–
27].
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Unfortunately, the method used to solve the models for
N = 2 [18, 24] applies only to a Poisson distribution and
cannot be used even in this case for N > 2. In section
II A, we develop a new approach providing formal exact
expressions of the key quantities describing the kinetics
of the model. In section II B, as a first application, we
recover the results of the model N = 2 that were first
obtained by using a differential equation approach [18].
In section II C, we present a complete solution when the
entry time distribution is poissonian for N = 3. In sec-
tion II D we consider the case of general N . In section III
we investigate the time correlation for N = 2 and N = 3,
and we further explore the model by studying the corre-
lations between the arrival times of the particles. We also
explore the connection with the equilibrium properties of
the hard rod fluid.

II. CONCURRENT FLOW MODEL

A. Definition and Quantities of Interest

We assume that at t = 0 the channel of length L is
empty. The first particle enters at a time t0 that is dis-
tributed according to a probability density function ψ(s).
The entry of subsequent particles is characterized by the
inter-particle time ti, i > 0 between the entry of parti-
cle i and i + 1. We assume that the ti are distributed
according to ψ(s) and uncorrelated. The total elapsed

time is then t = t0 +
∑n−1
i=1 ti + t′ when n particles have

entered and t′ is the time elapsed after the entry of the
last particle.

If unimpeded by the presence of another particle, a
particle exits after a transit time τ > 0. Blockage occurs
when N particles are present in the channel at the same
time, which occurs if ti+ti+1+· · ·+ti+N−2 < τ (see Fig.1
for the case N = 3). The behavior of the model depends
on the recent history, more specifically the entry times of
the particles that are still in the channel. The probability
that no particle enters in the interval [0, t] is 1−ψc(t) with

ψc(t) the cumulative distribution ψc(t) =
∫ t
0
ψ(s)ds.

The simplest case is a homogeneous Poisson process
where the probability density function of particle entry
times is ψ(t) = λe−λt where λ is the rate (sometimes
called the intensity).

The key quantities describing the process are the prob-
ability that the channel is active at time t, namely the
survival probability, ps(t), the average blocking time 〈t〉
(where the bracket indicates an average over realizations
of the process), the number of particles that have ex-
ited the channel at time t, 〈m(t)〉, and the instantaneous
particle flux j(t).

The survival probability can be expressed as the sum
over all n-particle survival probabilities q(n, t), i.e. the
joint probability of surviving up to t and that n particles

v λ v

FIG. 1. (Color online) Concurrent flow model N = 3. Parti-
cles enter the left hand side of a channel of length L randomly.
Top: two particles cross and exit the channel in a time τ . Bot-
tom: If a third particle enters while the two previous particles
are still in the channel, a blockage occurs instantaneously.

have entered the passage during this time,

ps(t) =
∞∑
n=0

q(n, t). (1)

For general N and n > N − 1, q(n, t) can be expressed
as:

q(n, t) =

∫ ∞
0

· · ·
∫ ∞
0

[
n−1∏
i=0

dtiψ(ti)

]∫ ∞
0

dt′(1− ψc(t′))n−N+1∏
j=1

θ

(
N−2∑
m=0

tj+m − τ

) δ(t− n−1∑
i=0

ti − t′
)
,

(2)

where θ(x) the Heaviside step function. The first n inte-
grals correspond to the arrival of n particles in the chan-
nel, with time intervals ti, the integral over t′ imposes
that no particle enters after particle n. The Heaviside
functions account for the constraint that no consecutive
sequence of N particles can be simultaneously in the
channel, i.e. in a time interval smaller than τ and the
δ function imposes that the observation time t is equal
to the sum of the time intervals ti plus t0 and t′.

For 0 ≤ n ≤ N − 1 there is no constraint on the par-
ticle time interval so the probability q(n, t) is expressed
as the joint probability of n independent and identically
distributed events,

q(n, t) =

∫ ∞
0

[
n−1∏
i=0

dtiψ(ti)

]∫ ∞
0

dt′(1− ψc(t′))

δ

(
t−

n−1∑
i=0

ti − t′
)

(3)

and

q(0, t) = 1− ψc(t). (4)

Once the q(n, t), and hence ps(t), are known we can
obtain several useful quantities. The probability density
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function of the blocking time, f(t) is simply related to
ps(t) [28]

f(t) = −dps(t)
dt

. (5)

Defining the Laplace transform as f̃(u) =
∫∞
0
dte−utf(t),

one infers

f̃(u) = 1− up̃s(u). (6)

The mean blocking time is given by

〈t〉 =

∫ ∞
0

dt tf(t) = p̃s(0). (7)

The instantaneous flux of particles exiting the channel
can be obtained by noting that, if a particle exits the
channel at time t, at most N − 1 particles can enter the
channel between t and t − τ if no blockage is to occur.
Since blockage is irreversible the flux tends to 0 when the
time increases, j(∞) = 0 for all value of N . The total
flux is given by the sum

j(t) =

∞∑
n=1

j(n, t), (8)

where j(n, t) is the partial flux where a particle exits the
channel at time t such that the channel is still open and
n particles have already entered, for n ≥ N

j(n, t) =

∫ ∞
0

dt′(1− ψc(t′))
∫ ∞
0

[
n−1∏
i=0

dtiψ(ti)

]
n−N+1∏

j=1

θ

(
N−2∑
m=0

tj+m − τ

) δ(t− n−1∑
i=0

ti − t′
)

[δ(t′ − τ) +

N−2∑
k=1

(δ(t′ +

k∑
w=1

tn−w − τ))], n ≥ N.

(9)

The condition that a particle exits at time t is ex-
pressed in terms of δ functions. The last line of the
above equation corresponds to different situations. The
isolated delta function corresponds to a single particle in
the channel, while the sum corresponds to the presence
of N − 1 particles with the first one exiting (which was
the first to enter). For n < N blocking is not possible,
so Eq.(9) is replaced by one without the Heaviside func-
tions.

Finally, the number of particles that have exited at
time t can be obtained by integrating over the particle
flux

〈m(t)〉 =

∫ t

0

dt′j(t′). (10)

We can also obtain the distribution of particles exit-
ing the channel. Let h(m, t) denote the probability that

blockage occurs in the interval (0, t) and that m particles
have exited during this time. Its time evolution is given
by

dh(m, t)

dt
=

∫ ∞
0

m+N−1∏
i=0

dtiψ(ti)

m∏
j=1

θ

(
N−2∑
p=0

tj+p − τ

)

θ(τ −
N−1∑
p=1

tm+p)δ(t−
m+N−1∑
i=0

ti), m ≥ 1.

(11)

The upper part of the right hand side corresponds to
the event where m+N particles have entered at time t,
and there was no blockage involving the first m+N − 1
particles. The second Heaviside function corresponds to
the constraint that the last N particles are blocked in the
channel, with the N +mth particle entering at time t.

One can check that

〈m(t)〉 =

∞∑
m=0

mh(m, t) =

∫ t

0

j(t′)dt′. (12)

We now consider the specific cases N = 2 and N = 3.

B. Explicit Solution for N = 2

Since each Heaviside function in Eq.(2) depends on
only one variable, the multiple integrals can always be
calculated. Taking the Laplace transforms of Eq.(2) and
Eq.(3), one obtains

q̃(n, u) = ψ̃(u)(
1

u
− ψ̃c(u))

[∫ ∞
τ

dt e−utψ(t)

]n−1
. (13)

Using Eq.(1) and ψ̃c(u) =
˜ψ(u)
u , we obtain the Laplace

transform of the survival probability.

p̃s(u) =

∞∑
n=0

q̃(n, u)

=
1− ψ̃(u)

u

(
1 +

ψ̃(u)

1−
∫∞
τ
e−utψ(t)dt

)
. (14)

Therefore, the mean time of blockage is

〈t〉 = t̂

[
1 +

1∫ τ
0
ψ(t)dt

]
, (15)

where t̂ = ψ̃′(0) =
∫∞
0
dt tψ(t) is mean inter parti-

cle time. To interpret Eq.(15) we note that ψc(τ) =∫ τ
0
ψ(t)dt gives the probability that two consecutive par-

ticles are separated by a time smaller than τ .
The integral representation of the n-particle survival

probabilities approach presented in section II A allows us
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FIG. 2. (Color online) Mean time of blocking 〈t〉 as a function
of the intensity, λ, for a Gamma distribution for α = 2, 3, 4
(from bottom to top), from numerical simulation (circles) and
Eq.(15) (full lines). Dotted lines correspond to the asymptotic
behavior, Eq.(17).

to consider distributions other than the poissonian. In
particular, we study the Gamma distribution,

ψ(t) =
λαtα−1e−λt

Γ(α)
(16)

where α is a shape parameter. For α = 1 this reduces to
the poissonian case. For α > 1 the maximum of the dis-
tribution occurs at a finite time rather than t = 0. This
may be more appropriate for the description of traffic
flow where there is a gap between successively arriving
particles. The mean time of blocking is equal to

〈t〉 =
α

λ

(
1 +

Γ(α)

Γ(α)− γ(τ, α)

)
, (17)

where Γ(α) and γ(α, x) are the Gamma and incomplete
Gamma functions, respectively. When λτ < 1, one ob-
tains

〈t〉 =
1

λ

α!

(λτ)α
. (18)

Figure 2 shows 〈t〉 versus λτ for α = 2, 3, 4. One observes
an excellent agreement between simulation data (circles)
and the exact formula, Eq.(17). As expected, the mean
time 〈t〉 diverges when λ goes to zero. The asymptotic
behavior, Eq.(18) provides a good approximation of sim-
ulation data when λτ < 1.

By taking α = 1 in the Gamma distribution, which
corresponds to a homogeneous Poisson process, the mean

time of blockage is given by

〈t〉 =
2− e−λτ

λ(1− e−λτ )
, (19)

a result previously obtained by using a master equation
for the time evolution of the q(n, t) [18].

The mean flux j(t) can be obtained by using Eqs.(8,9)

j(t) =

∞∑
n=1

∫ ∞
0

dt′(1− ψc(t′))
∫ ∞
0

[
n−1∏
i=0

dtiψ(ti)

]
n−1∏
j=1

θ (tj − τ)

 δ(t− n−1∑
i=0

ti − t′
)

[δ(t′ − τ)].

(20)

The multiple integral can be factorized and the flux is
given by :

j(t) =

∞∑
n=1

∫ ∞
0

dt0ψ(t0)

∫ ∞
0

dt′(1− ψc(t′))
[∫ ∞

τ

dtψ(t)

]n−1

δ

(
t−

n−1∑
i=0

ti

)
[δ(t′ − τ)]. (21)

In Laplace space, the summation over n can be per-
formed and j̃(u) is given by

j̃(u) =
(1− ψc(τ))e−uτ ψ̃(u)

1−
∫∞
τ
e−utψ(t)dt

. (22)

With a Poisson distribution ψ(t) = λe−λt, we have

j̃(u) =
λe−(u+λ)τ

u+ λ(1− e−(u+λ)τ )
. (23)

By taking the inverse Laplace transform, the mean flux
j(t) can be expressed as a series

j(t) = λe−λt
∞∑
n=1

[
1

n!
(λ(t− (n+ 1)τ))nθ(λ(t− (n+ 1)τ))

]
,

(24)
as obtained previously by using a master equation ap-
proach [19].

No particle exits the channel between 0 and τ ; indeed,
the flux is obviously equal to 0 in this interval and rises
instantaneously to a maximum, jmax = λe−λτ which it-
self is maximum when λ = 1

τ , and then decreases to 0.
For a Gamma distribution with an integer value of α,

the Laplace transform of the flux can be obtained explic-
itly, but increasing α it rapidly leads to lengthy expres-
sions.

Figure 3 displays the time evolution of the mean flux
j(t) for different values of λ and α = 3. In all cases,
the flux becomes nonzero for t > τ , corresponding to the
exit of a first particle. For λτ ≥ 1, j(t) displays a strong
maximum at a time tm slightly larger than τ and decays
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FIG. 3. (Color online) Mean flux j(t) as a function of time for
a Gamma distribution with α = 3 and for different values of
λ (τ = 1). The solid lines show the exact expression, Eq.(22)
and the circles show simulation results.

to 0. For λτ = 0.5, the maximum of the flux is shifted
to a time tm ' 3τ and the typical decay time is around
100τ . For λτ = 0.25, j(t) increases up to a quasi-plateau
and the typical decay time is larger than 1000τ , which
corresponds to a physical situation where a large number
of particles exit the channel before the definitive clogging.
Note that for a given value of λ the flux is much larger
than for a Poisson distribution. However, it approaches
zero for sufficiently long times with a characteristic time
equal to the mean blocking time.

We also consider the probability, h(m, t), that blockage
occurs in the interval (0, t) and that during this time m
particles exit the channel. The time evolution of this
function is given by

dh(m, t)

dt
=

∫ ∞
0

m+1∏
i=0

dtiψ(ti)

m∏
j=1

θ (tj − τ)

θ(τ − tm+1)δ(t−
m+1∑
i=0

ti). (25)

Two particles have to be in the channel for the system to
block, so the interval between two consecutive particles
has to be less than τ (the θ function). The previously
entering particles exited the channel without blockage.

Taking the Laplace transform we obtain for m ≥ 0

h̃(m,u) =
ψ̃(u)

u

∫ τ

0

ψ(t′)e−ut
′
dt′
[∫ ∞

τ

dtψ(t)e−ut
]m

.

(26)

The probability that the channel is blocked can be ex-
pressed as the sum over partial probabilities h(n, t),
namely h(t) =

∑∞
m=0 h(m, t). By using Eq.(26), one

infers lim
t→∞

h(t) = lim
u→0

uh(u) = 1, as because block-

age is certain to occur, a result valid for any distri-
bution ψ(t). Finally, we note the following sum rule,∑
n≥0(qs(n, t) + h(n, t)) = 1 - all configurations of the

process are either blocked or unblocked.

For the Poisson process, an explicit expression can be
obtained

h̃(m,u) =
λm+2

u(λ+ u)m+2

[
1− e−(λ+u)τ

]
e−(λ+u)mτ .

(27)

Performing the Laplace inversion we obtain h(m, t) as
obtained previously [19]. As expected, h(m, t) is equal
to zero for t < mτ corresponding to the minimum time
necessary for m particles to exit the channel. For the
Gamma distribution with α = 2 we obtain

h̃(m,u) =
1

u(u+ λ)2(m+2)
(e−(u+λ)τmλ2(m+2)

(1 + (u+ λ)τ)m(1− e−τ(u+λ)(1 + (u+ λ)τ))).
(28)

For the Gamma distribution, we plot in Fig. 4 the
time evolution of h(m, t) as a function of time with m =
0, 1, 2 for α = 2 and λ = 2. As expected, h(m, t) = 0
for t < mτ , which can be explained by the fact that
the minimum time for having a configuration where m
particles exit the channel must be at least larger than
mτ . Similarly, the transient time associated with h(m, t)
increases with m, and corresponds to rare events when
m increases.

C. Explicit Solution for N = 3

For the first three partial probabilities, there is no con-
straint and one easily obtains that q(0, t) = 1 − ψc(t),
and for i = 1, 2 the probabilities are given in terms of

the Laplace transforms q(i, u) =
(

1−ψ̃(t)
u

)
ψ̃(u)i. For

a Poisson process, one recovers that q(0, t) = e−λt,

q(1, t) = λte−λt and q(2, t) = (λt)2

2 e−λt. For n > 2,
Eq.(2) becomes

q(n, t) =

∫ ∞
0

dt′(1− ψc(t′))
∫ ∞
0

n−1∏
i=0

dtiψ(ti)

×
n−2∏
j=1

θ(tj + tj+1 − τ)δ(t−
n−1∑
i=0

ti − t′). (29)

The constraint, imposed by the θ function, requires that
the sum of two consecutive time intervals be less than τ .
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FIG. 4. (Color online) The probability h(m, t) as a function
of time for a Gamma distribution with α = 2, λ = 2 and
m = 0, 1, 2, 3, 4 (from top to bottom). The full curves show
the exact expression, Eq. (28) and circles show simulation
results.

Taking the Laplace transform of Eq.(29), one obtains

q̃(n, u) =
ψ̃(u)(1− ψ̃(u))

u

∫ ∞
0

dtψ(t)e−utr(n− 1, t, u),

(30)

where the auxiliary function r(n− 1, t, u) is given by

r(n− 1, t, u) =

∫ ∞
0

n−2∏
i=1

dtiψ(ti)e
−uti

n−2∏
j=1

θ(tj + tj+1 − τ),

(31)

where tn−1 = t. A recurrence relation can be written for
r(n, t, u)

r(n, t, u) =

∫ ∞
max(τ−t,0)

dt′ψ(t′)e−ut
′
r(n− 1, t′, u), (32)

with r(1, t, u) = 1.
Let us introduce the generating function Gr(z, t, u) de-

fined as

Gr(z, t, u) =
∑
n=1

zn−1r(n, t, u). (33)

The explicit form of which is given in Appendix A.
For n = 0, 1, 2 the partial probabilities q(n, t) corre-

spond to those of a Poisson process. For n > 2, by using
the generating function Gr(z, t, u), the Laplace transform
of q(n, t) is given by

q̃(n, u) =
λ

(λ+ u)2

∫ ∞
0

dtλe−(λ+u)t
∂n−2Gr(z, t, u)

∂zn−2

∣∣∣∣
z=0

.

(34)

After some calculation, one obtains

q(3, t) = θ(t− τ)λ3e−λt
[
1
2τ(t− τ)2 + 1

6 (t− τ)3
]

q(4, t) = λ4e−λt
[
θ(t− τ) (t−τ)4

12 − θ(t− 2τ) (t−2τ)4
24

]
.

(35)

By using Eqs.(30) and (33), the Laplace transform of
the survival probability ps(t) is

p̃s(u) =q̃(0, u) + q̃(1, u)+

ψ(u)(1− ψ̃(u))

u

∫ ∞
0

dtψ(t)e−utGr(1, t, u). (36)

By inserting the solution of Eq.(A2), the Laplace trans-
form of the survival probability is given by

p̃s(u) =
λ

(λ+ u)2

[
1 +

u

λ
+A(1, u)

[
1 +

λ

s2
(1− e−s2τ )

]
+ B(1, u)

[
1 +

λ

s1
(1− e−s1τ )

]]
, (37)

where

A(1, u) =
λes2τ (s2 − λ)(s1 + s2)

∆

B(1, u) =
λes1τ (s1 − λ)(s1 + s2)

∆
, (38)

with

∆ = e(s1+s2τ)s1s2(s1 − s2) + λ(s22e
s2τ − s21es1τ ). (39)

From the generating function, Gr(z, t, u), one can also
obtain global quantities, like the mean blocking time
〈t〉 = p̃s(0)

Let g =
√
|1− 4e−λτ | and ν = λτ

2 then, after some
calculation, one obtains for λτ > 2 ln(2)

λ〈t〉 =
2eν sinh(ν) + geλτ

−g − 2 sinh(ν)e−ν + eν (sinh(ν) + g cosh(ν))
+ 1.

(40)
and for λτ < 2 ln(2)

λ〈t〉 =
2eν sin(ν) + geλτ

−g − 2 sin(ν)e−ν + eν (sin(ν) + g cos(ν))
+ 1.

(41)
Fig. 5 shows the mean blocking time 〈t〉 of the models

with N = 2, 3, 4, 5 for a Poisson distribution obtained
by simulation and for N = 2, 3 by using the analytic
expressions. We observe a perfect agreement between
simulation data and exact expressions for N = 2 Eq.(19)
and N = 3 Eq.(40,41). More generally, one observes a
divergence of the mean blocking time as λτ goes to 0
and indeed performing a first-order expansion of Eq.(41)
in λτ gives

〈t〉 ' 2τ

(λτ)3
. (42)
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FIG. 5. (Color online) Mean time of blocking as a function of
the intensity λτ for N = 5, 4, 3, 2, top-to-bottom, from numer-
ical simulation (circles) and Eq.(19) N = 2 and Eqs.(40,41)
N = 3 (full curves) for a Poisson distribution. The inset
compares the asymptotic formula, Eq.(54), with simulation
results.

The mean flux j(t) can be also obtained by using
Eq.(9) and the auxiliary functions r(n, t, u) and it comes
for the Laplace transform j̃(n, u) (for n ≥ 1)

j̃(n, u) =e−uτ ψ̃(u)

(
(1− ψc(τ))

∫ ∞
0

dte−utψ(t)r(n− 1, t, u)

+

∫ τ

0

dtψ(t)(1− ψc(τ − t))r(n− 1, t, u)

)
.

(43)

By summing over n (accounting for the boundary
terms j̃(1, u) and j̃(2, u), the Laplace transform j̃(u) is
expressed as

j̃(u) =e−uτ ψ̃(u)(1− ψc(τ))

∫ ∞
0

dte−utψ(t)Gr(1, t, u)

+ e−uτ ψ̃(u)

∫ τ

0

dtψ(t)(1− ψc(τ − t))Gr(1, t, u)

+ j̃(1, u). (44)

By using Eq.(A3) and the expression of the generating
function Gr(1, t, u), the Laplace transform of the flux can
be expressed as

j̃(u) =
λe−(u+λ)τ

λ+ u

[
A(1, u)

(
es1τ

(
1 +

λ

s1

)
− λ

s1

)
+ B(1, u)

(
es2τ

(
1 +

λ

s2

)
− λ

s2

)]
, (45)

where A(1, u) and B(1, u) are given by Eq.(38).

5 10 15 20
t
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0.2

0.4

0.6

0.8

j(
t)

FIG. 6. (Color online) Mean flux j(t) as a function of time
for a Poisson distribution for λ = 1, 2 (τ = 1). The solid
lines show the exact expression, (inverse Laplace transform of
Eq.(45)) accurately matching simulation results (noisy lines).

Because the right-hand-side of Eq.(45) can be factor-
ized by e−uτ , it implies that j(t) = 0 for t < τ , which
corresponds to the minimum time for a particle to exit
the channel.

The mean flux j(t) is plotted as as function of time
for λ = 1, 2 with a Poisson distribution for λ = 1, 2 (Fig.
6). A discontinuity appears at t = τ where the flux is
maximum j(τ) = λ. At t = τ , the flux is given by

j(τ) = λ(1 + λτ)e−λτ (46)

which corresponds to events where a particle exits be-
tween t and t + dt such that 0 or 1 particle is still in
the channel. The flux decay exhibits a visible cusp at
t = 2τ which corresponds to the non-analytical structure
of the solution. At long times, the flux decays to 0, with
a typical time which becomes larger when λ decreases.

The joint probability h(m, t) can also be obtained with
the function r(n, t, u). For m ≥ 1 its time evolution is
given by

dh(m, t)

dt
=

∫ ∞
0

m+2∏
i=0

dtiψ(ti)

m∏
j=1

θ (tj + tj+1 − τ)

θ(τ − tm+1 − tm+2)δ(t−
m+2∑
i=0

ti). (47)
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FIG. 7. (Color online) Probability distributions h(m, t) versus
time t for a Poisson distribution, for m = 0, 1, 2 (from top to
bottom) and λ = 1. The solid lines correspond to the model
with N = 2 and dashed lines correspond to the model with
N = 3.

Taking the Laplace transform gives

h̃(m,u) =
ψ̃(u)

u

∫ ∞
0

m+2∏
i=1

dtiψ(ti)e
−uti

m∏
j=1

θ(tj + tj+1 − τ)θ(τ − tm+1 − tm+2) (48)

that can be expressed using the function r(n, t, u) as

h̃(m,u) =
ψ̃(u)

u

∫ τ

0

dtψ(t)e−ut∫ τ−t

0

dt′ψ(t′)e−ut
′
r(m+ 1, t′, u). (49)

Figure 7 shows the time evolution of the probability
distributions h(m, t) for a Poisson distribution with λ =
1. The probability that zero or one particle (m = 0, 1)
particle exits is smaller for N = 2 than for N = 3. For
m ≥ 2 the order reverses (e.g. for m = 2, case shown).
This is because, for a given value of λτ , more particles
exit before blockage as N increases.

D. Partial Solution for N ≥ 4

We have seen that for N = 3 the product of Heavi-
side functions in Eq.(2) leads to a simple recurrence rela-
tion Eq.(32). For N ≥ 4 the task is much more difficult
because one needs to introduce auxiliary functions that
depend on N − 2 time variables. These functions are re-
lated by an integral equation that cannot be converted

to an ordinary differential equation. We therefore pro-
pose an approximate treatment of the dynamics. For the
model where the blockage occurs when N particles enter
the channel between t − τ and t, the first N − 2 partial
probabilities q(i, t) obey differential equations identical
to those of a Poisson process

dq(0, t)

dt
= −λq(0, t) (50)

and

dq(n, t)

dt
= −λq(n, t)+λq(n−1, t), 1 ≤ n ≤ N −1. (51)

For n > N − 1, there is a constraint on the interval
between particles, but for n = N , the time evolution is
simply given by

dq(N, t)

dt
= −λq(N, t)+λ

N−2∑
s=0

(λτ)s

s!
e−λτq(N−1−s, t−τ).

(52)
The gain term reflects the fact that blockage only oc-

curs with N particles, N − 1 terms correspond to the
cases where there may be from 0 to N − 1 particles in
the channel.

For n > N , the dynamics of q(n, t) for n > N can be
approximated as follows

dq(n, t)

dt
= −λq(n, t) + λq(n− 1, t− τ)e−λτ

+ λ

N−2∑
s=1

∫ τ

0

dt1Ks(t1)e−λτqs(n− 1− s, t− τ − t1).

(53)

where we have introduced a kernel Ks(t). We then con-
sider two physical situations. In the first, the last s
particles are assumed to have entered the channel in
an infinitesimal time interval and the kernel is given by

Ks(t) = (λτ)s

s! δ(t). This choice overestimates the survival
probability. N−2 particles can be in the channel (so can
enter between t − τ and t) when a new particle enters.
The other particles enter between time 0 and t− τ . This
fails to take into account some blocking. In the second

case we take Ks(t) = λ (λt)s−1

(s−1)! e
−λt which is proportional

to the probability that s−1 particles enter in (0, t). This
choice underestimates the survival probability. When a
particle enters at time t there may be a maximum of N−2
particles in the channel to avoid blocking. If a particle
arrives at a time t1 between t− τ and t, there may be a
maximum of N − 3 particles between t and t− t1 and no
particle between t− t1 and t− t1 − τ .

Taking the Laplace transform of Eq.(53), we calculate
two different generating functions corresponding to the
two kernels, and the corresponding mean survival times.
These bracket the exact value and for λτ � 1 the two
solutions approach the same limit:

〈t〉 =
(N − 1)!

(λτ)N
. (54)
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To obtain exact results for N ≥ 4 is a challenging
problem. We therefore finish this section by presenting
some numerical results that illustrate the general trends.
The inset of Fig. 5 compares the asymptotic behavior
for mean blocking time, Eq.(54) with simulation results
for N = 2 to N = 5. We observe that the scaling law
provides provides a good description of the process for
λτ ≤ 0.5.

In Fig. 8 we present numerical results for the mean flux
of exiting particles as a function of time. This quantity
acquires a non-zero, maximum, value at t = τ given by

j(τ) = λ

N−2∑
i=1

(λτ)i

i!
e−λτ . (55)

This expression corresponds to events where a particle
exits between t and t+dt such that 0, 1.., N − 2 particles
are still in the channel. For t > τ , we observe a drastic
increase of the characteristic decay time as N increases
(see the lower figure of Fig. 8). For N = 2, j(t) is very
small for t > 3τ , while for N = 7, the flux is almost
constant during two decades. More generally, the decay
occurs on a timescale comparable to the mean time to
blockage, Eq. (54), that diverges rapidly as N increases.

III. CORRELATIONS

A. General Results

Here we investigate how the entrance of new particles
is constrained by the previously entering particles. To
that end, the relevant quantity is the time correlation
function C(t) that represents the density function that
any two particles have a time separation t. C(t) can
be expressed as the sum of partial correlation functions
c(n, t) that correspond to the probability density that the
first and last particles of sequence of n + 1 particles are
separated by t.

C(t) =

∞∑
n=1

c(n, t). (56)

The partial correlation function c(n, t), the joint proba-
bility of having a particle at t = 0 and the nth particle
at time t, can be written as

c(n, t) =

∫ ∞
0

N−2+n∏
i=1

dtic
(N−2)(t1, ..., tN−2)

N−2+n∏
j=N−1

ψ(tj)

×

 n∏
j=1

θ

(
N−2∑
m=0

tj+m − τ

) δ(t− N+n−2∑
i=N−1

ti

)
,

(57)

where c(N−2)(t1, ..., tN−2) is the joint probability of hav-
ing N − 1 particles such that the first and the second
particles are separated by a duration of t1, the second

2 4 6 8 10
t
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0.4

0.6

0.8

1

j(t
)

1 10 100
t
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0.2

0.4

0.6

0.8

1

j(t
)

(a)

(b)

FIG. 8. (Color online) Mean flux j(t) versus time t for
N = 2, 3, 4, 5, 6, 7 (from bottom to top) for a Poisson distribu-
tion with λ = 1. Top: short time behavior. At t = 1, circles
correspond to the exact values of the mean flux, Eq.(55). Bot-
tom: linear-log plot showing the long-time behavior. (τ = 1)

and the third particles by a duration of t2,.. and the
N − 2 and N − 1 particles by tN−2. We can write this
probability as

c(N−2)(t1, ..., tN−2) =

∫
dt0c

(N−2)(t0, ..., tN−3)

× ψ(tN−2)θ(

N−2∑
j=1

tj − τ). (58)

This definition of the correlation function considers all
trajectories, including those that end before a given time
t. As a result, the correlation function approaches zero
at long times. It seems more interesting to keep only
trajectories which survive until time t.

To generate an infinite sequence of particles corre-
sponding to a trajectory of the model, let us consider
the following rejection-free algorithm: Accounting for the
constraints of the model (less than N particles must en-
ter the channel in the time interval τ), we introduce the
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discrete stochastic equation

tn = max(τ −
N−2∑
j=1

tn−j , 0) + η, (59)

where η is a random number generated from the ψ dis-
tribution and tn−j , j = 1, N − 2 are the time intervals of
between the N − 2 previously entering particles.

In order to compute the correlation function associ-
ated with this rejection-free algorithm, we replace ψ(ti)
in Eqs.(57,58) with

ψ(ti −max(τ −
N−2∑
j=1

ti−j , 0)). (60)

The partial correlation function c(n, t) can be also ex-
pressed as the average over the event of having a first and
n+ 1th particles separated by a time duration t

c(n, t) = 〈δ(t−
n∑
i=1

ti)〉. (61)

The conservation of the probability reads∫ ∞
0

dtc(n, t) = 1. (62)

By summing over n, the integral correlation function
C(t) is given at long time by∫ t

0

dt′C(t′) = 〈n(t)〉, (63)

where 〈n(t)〉 is the mean number of particles along a tra-
jectory for a time duration t. At large t, this quantity
goes to a constant because we only consider trajectories
that have survived. By using that C(t) goes to a con-
stant at long times (due to to the decay of the memory
between particles that entered with a large time differ-
ence) (C(t) → C∞), we infer that C∞ = 1/t̄ where t̄ is
the average separation in time between successive parti-
cles.

We now focus on N = 2 and N = 3 by using the
rejection-free trajectories for which exact solutions can
be obtained.

B. Explicit Solution for N = 2

The partial correlation function c(n, t) is simply given
as the product of integrals on each independent interval.
Eq.(59) is very simple tn = τ + η, which means that ψ(t)
is replaced with ψ(t − τ) (see Eq.(60)). Therefore, the
Laplace transform of c(n, t) is given by

c̃(n, u) =

(∫ ∞
τ

dtψ(t− τ)e−tu
)n

= c̃(1, u)n. (64)

This results from the fact that successive events are not
correlated.

Inserting Eq.(64) in Eq.(56) we obtain

C̃(u) =
c̃(1, u)

1− c̃(1, u)
. (65)

At long times, C(t) approaches a constant value cor-
responding to a constant mean density. By using the
factorization property, c̃(n, u) = c̃(1, u)n, and the ex-
pansion c̃(1, u) = c̃(1, 0) + u∂c̃(1, u)/∂u|u=0 +O(u2) one

can show that C(∞) = limu→0 uC̃(u) = 1/t̄ where
t̄ =

∫∞
0
tc(1, t)dt = −∂c̃(1, u)/∂u|u=0 is the average in-

terval between particles. That is, the smaller the average
separation in time between successive particles, the larger
the steady state value of the time correlation function.

For a Poisson distribution ψ(t) = λe−λt we find

C̃(u) =

∞∑
n=1

(
λ

λ+ u

)n
e−nuτ . (66)

The inverse Laplace transform gives an explicit expres-
sion

C(t) = λ

∞∑
n=1

θ(λ(t−nτ))
(λ(t− nτ))n−1e−λ(t−nτ)

(n− 1)!
. (67)

Figure 9(a) shows C(t) for two values of λτ . As ex-
pected, C(t) is strictly equal to 0 for t < τ since no
particle can be inserted if the delay between two suc-
cessive particles is less than τ , corresponding to a strong
anti-correlation. C(t) reaches a maximum at t = τ where
C(τ) = λ and then, after a short oscillatory period, at-
tains a stationary value. Therefore after a few τ there
is no remaining correlation between entering and exiting
particles. Note that a cusp is present at t = 2τ , a simi-
lar behavior observed for the other quantities such as the
flux and the survival probability. In the long time limit
C(t =∞) = limu→0 uC̃(u) = λ/(1 + λτ).

It is also interesting to note that correlation function
Eq.(67) corresponds to the density correlation function
of the positions of the particle centers in a hard rod fluid
of density ρ with λ = ρ/(1− ρ).

C. Explicit Solution for N = 3

For N = 3, the discrete stochastic equation, Eq.(59),
becomes

tn = max(τ − tn−1, 0) + η, (68)

where tn denotes the time interval between the n−1 and
n particles and η is a random number chosen with an
exponential probability distribution λe−λt. In queuing
theory this equation is known as the Lindley-type equa-
tion [29–31].
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FIG. 9. (Color online) Correlation functions for (a) N = 2
and (b) N = 3 for λ = 1 and 0.5 (lower curves). The solid
lines correspond to Eq. (67) (N = 2) and Eq. (79) (N = 3)
and circles to numerical simulations.

For the Poisson distribution ψ(t), Eqs.(57,58) with
Eq.(60) gives

c(n, t) =

∫ ∞
0

dt0c(1, t0)δ(t−
n∑
i=1

ti)

n∏
i=1

(∫ ∞
max(τ−ti−1,0)

dtiλe
−λ(ti−max(τ−ti−1,0))

)
(69)

and

c(1, t) =

∫ ∞
Max(τ−t,0)

dt1c(1, t1)λe−λ(t−Max(τ−t1,0)).

(70)

Note that the constraint applies to two consecutive in-
tervals, i.e the arrival time between three consecutive par-
ticles is greater than τ . Consequently, the partial corre-
lation c̃(n, u) is never the product of smaller correlation
functions, as for the N = 2 model.

Because the kinetics were obtained exactly in the pre-
vious section only for the Poisson distribution, we restrict
our analysis to this distribution.

From Eq.(70), one easily shows that c(1, t) is constant
for t > τ . For t < τ , by taking the derivative of Eq.(70),
one obtains

dc(1, t)

dt
= λ(−c(1, t) + θ(τ − t)c(1, τ − t)) (71)

whose solution is

c(1, t) =
λ

1 + λτ
(θ(τ − t) + e−λ(t−τ)θ(t− τ)). (72)

One can easily obtain the average time between two
consecutively particles in a trajectory.

t̄ =

∫ ∞
0

dtc(1, t)t =
(λτ + 1)2 + 1

2λ(λτ + 1)
. (73)

As might be expected, when the intensity λτ is high,
the probability distribution is uniform within the first
interval [0, τ ] and equal to 1

2 . Conversely, when λτ tends
to 0 the effect of the constraint is negligible, t̄ diverges
as 1

λ , corresponding to the Poisson distribution.
It is easy to calculate the first few partial correlation

functions by direct integration of Eq.(69): for instance,
the probability c(2, t) is given by

c(2, t) =
λ2t

λτ + 1
e−λ(t−τ)θ(t− τ). (74)

To obtain a general expression of c(n, t), we first take
the Laplace transforms of Eq.(69)

c̃(n, u) =

∫ ∞
0

dtc(1, t)e−utm(n, t), (75)

where m(n, t) is auxiliary function given by

m(n, t) =

∫ ∞
max(τ−t,0)

dt′λe−((u+λ)t
′−λmax(τ−t,0))m(n−1, t′).

(76)
The initial condition is obviously, m(1, t) = 1.

Let us introduce the generating function Gm(z, t, u) of
the auxiliary functions m(n, t)

Gm(z, t, u) =

∞∑
n=1

zn−1m(n, t). (77)

After some calculation, one obtains Gm(z, t, u) (see
Appendix B), and using Eq.(56), the Laplace transform
of the correlation function is given

C̃(u) =

∫ ∞
0

dtc(1, t)Gm(1, t, u)e−ut

=
λ

1 + λτ

(∫ τ

0

dtGm(1, t, u)e−ut +Gm(1, τ, u)
e−uτ

u+ λ

)
.

(78)

By inserting Eq.(B7) in Eq.(78) we obtain

C̃(u) =
λ

(u+ λ)(1 + λτ)

[
A1(1, u)

(
−e
−s2τ (λ+ s1)− u− λ

s2

)
+B1(1, u)

(
−e
−s1τ (λ+ s2)− u− λ

s1

)
+

(u+ λ)2 + e−uτλ(u2τ + λ(uτ − 1))

u(u+ λ− λe−uτ )

]
. (79)

Figure 9(b) displays the correlation function C(t) for
N = 3 versus time (with τ = 1). As expected for
t ≤ τ , C(t) is constant and is equal to λ

1+λτ , because

c(n, t) = 0, n > 1, and c(1, t) is given by Eq.(72), which is
constant and different from 0 in this time interval. One
also observes a discontinuity at t = τ and a long time

limit equal to 2λ(1+λτ)
2+2λτ+λ2τ2 . We verify that, as for N = 2,

this is equal to 1/t̄ with t̄ given by Eq.(73).
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Comparing the correlation functions for N = 2 and
N = 3 for the same values of λ we note that the steady
state values are higher for N = 3 corresponding to
a shorter time interval between particles in the steady
state. The oscillations are less pronounced for N = 3
and decay more quickly than for N = 2 due to the greater
constraint imposed by the channel. In general the time
correlation is flatter for larger N corresponing to weaker
two-body correlation.

IV. DISCUSSION

In this article we have developed a theoretical approach
to describe blocking that occurs in channels with limited
carrying capacity. These models are relevant for a variety
of applications spanning a range of lengthscales including
vehicular and pedestrian traffic flow, filtration of particu-
late matter and the flow of molecules through nanotubes.
The results presented here generalize the model intro-
duced by Gabrielli et al. [18, 19] in which blocking is
triggered by the simulataneous presence of only two par-
ticles in a channel. It was also assumed that the particles
enter according to a Poisson distribution.

The results presented here go beyond these initial mod-
els by considering an arbitrary threshold where blocking
is triggered by the simultaneous presence of N > 2 parti-
cles. In addition, the particle ingress is no longer limited
to a Poisson distribution, but follows a general distribu-
tion of entry times. This necessitated the introduction of
a novel integral representation of the n particle survival
probabilities.

For N = 3, we have presented exact solutions of
the model for the Poisson distribution and obtained ex-
pressions for all physically relevant quantities includ-
ing the survival probability, the mean time to blockage,
Eqs.(40,41), the statistics of exiting particles and the ex-
iting flux. In addition we have also investigated the in-
terparticle time correlation functions.

For N ≥ 4 obtaining an exact solution appears to be
very challenging, but we have analyzed the generic fea-
tures of the model using numerical simulation. One of
the key results is that the mean time to blockage for
small intensity and arbitrary N diverges as a power of N ,
Eq.(54). This results from the fact that as N increases,
the channel exerts a weaker constraint on the incoming
stream and blocking is less likely. A similar trend occurs
for the exiting flux that remains nearly constant for times
comparable to the mean blocking time.

Future directions include the development of a mul-
tichannel model, which can be applicable to filtration
phenomenon [1], and to consider systems with diffusive
motion that are relevant for transport through biological
or synthetic nanotubes [32].
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Appendix A: Gr(z, t, u) for the N = 3 model

Multiplying Eq.(32) by zn−1 and summing over n, one
obtains that

Gr(z, t, u) = 1 + z

∫ ∞
max(τ−t,0)

dt′ψ(t′)e−ut
′
Gr(z, t

′, u).

(A1)

For t > τ Gr(z, t, u) is constant, i.e. Gr(z, t, u) =
Gr(z, τ, u). For t < τ , it is convenient to express the
time evolution of Gr(z, t, u) as follows: taking the first
two partial derivatives of G(z, t, u) with respect to t, one
obtains the ordinary differential equation

∂2Gr(z, t, u)

∂t2
=

(
− ψ̇(τ − t)
ψ(τ − t)

+ u

)
∂Gr(z, t, u)

∂t

− z2ψ(τ − t)ψ(t)e−uτGr(z, t). (A2)

By using Eq.(A1), the differential is supplemented by two
boundary conditions{

Gr(z, 0, u) = 1 + zGr(z, τ, u)
∫∞
τ
dt′ψ(t′)e−ut

′

∂Gr(z,t,u)
∂t

∣∣∣
t=τ

= zψ(0)Gr(z, 0, u).

(A3)

Eq.(A2) cannot be solved analytically in general but
for a Poisson distribution it becomes

∂2Gr(z, t, u)

∂t2
= (λ+ u)

∂Gr(z, t, u)

∂t

− (zλ)2e−(u+λ)τGr(z, t, u), (A4)

with the boundary condition given by Eq.(A3) with
ψ(t) = e−λt.

The solutions of the characteristic equation of Eq.(A4)
are

s1,2(z, u) =
(λ+ u)±

√
(λ+ u)2 − 4(zλ)2e−(λ+u)τ

2
(A5)

and the generating function is given by Gr(z, t, u) =
A(z, u)es1(z,u)t + B(z, u)es2(z,u)t where A(z, u) and
B(z, u) are determined by Eq.(A3) adapted to a Pois-
son process.
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Appendix B: Gm(z, t, u) for the N = 3 model

Inserting Eq.(76) in Eq.(77), we obtain

Gm(z, t, u) = 1 + z

∫ ∞
max(τ−t,0)

dt′Gm(z, t′, u)

λe−((u+λ)t
′−λmax(τ−t,0)). (B1)

For t > τ the generating function is constant,
Gm(z, t, y) = Gm(z, τ, u). For t < τ , by taking the two
partial derivatives of the integral equation Eq.(B1), one
obtains

∂2Gm(z, t, u)

∂2t
= zλue−u(τ−t) (Gm(z, τ − t, u)

+
∂Gm(z, τ − t, u)

∂t

)
− λ∂G(z, t, u)

∂t
.

(B2)

Simplifying we obtain

∂2Gm(z, t, u)

∂t2
=u

∂Gm(z, t, u)

∂t
+ (uλ+ λ2 − (λz)2e−uτ )×

Gm(z, t, u)− uλ− λ2 − λ2ze−u(τ−t).
(B3)

with boundary conditions (from Eq.(B1)).

{
Gm(z, 0, u) = 1 + zGm(z, τ, u)λe

−uτ

u+λ
∂Gm(z,t,u)

∂t

∣∣∣
t=τ

= zλGm(z, 0, u)− λ[Gm(z, τ, u)− 1].

(B4)

whose solution is given by

Gm(z, t, u) =A1(z, u)es1t +B1(z, u)es2t

+
(uλ+ λ2 + λ2ze−u(τ−t))

uλ+ λ2 − (λz)2e−uτ
, (B5)

where s1,2 are the roots of the characteristic equation

s1,2 =
1

2
(u±

√
(u+ 2λ)2 − 4z2λ2e−uτ ). (B6)

Finally we have

Gm(z, t, u) =
(
A1(z, u)es1t +B1(z, u)es2t

+
(uλ+ λ2 + λ2ze−u(τ−t))

uλ+ λ2 − (λz)2e−uτ

)
θ(τ − t)

+Gm(z, τ, u)θ(t− τ), (B7)

where A(z, u) and B(z, u) are determined by the bound-
ary conditions, Eq.(B4).
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