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Nonequilibrium physics encompasses a broad range of natural and synthetic small-scale systems.
Optimizing transitions of such systems will be crucial for the development of nanoscale technologies
and may reveal the physical principles underlying biological processes at the molecular level. Recent
work has demonstrated that when a thermodynamic system is driven away from equilibrium then
the space of controllable parameters has a Riemannian geometry induced by a generalized inverse
diffusion tensor. We derive a simple, compact expression for the inverse diffusion tensor that depends
solely on equilibrium information for a broad class of potentials. We use this formula to compute
the minimal dissipation for two model systems relevant to small-scale information processing and
biological molecular motors. In the first model, we optimally erase a single classical bit of information
modelled by an overdamped particle in a smooth double-well potential. In the second model, we
find the minimal dissipation of a simple molecular motor model coupled to an optical trap. In both
models, we find that the minimal dissipation for the optimal protocol of duration τ is proportional
to 1/τ , as expected, though the dissipation for the erasure model takes a different form than what
we found previously for a similar system.

PACS numbers: 05.70.Ln, 02.40.-k,05.40.-a

I. INTRODUCTION

A complete set of principles describing physical phe-
nomena far from equilibrium remains elusive. However,
considerable progress has been made in the study of
nonequilibrium processes in recent times. Fluctuation
theorems relating the probability of an increase to that
of a comparable decrease in entropy during a finite time
period have been derived [1–5] and experimentally veri-
fied [6–9]. Considerations of Maxwell’s demon and Lan-
dauer’s principle have led to a better understanding of
the thermodynamic role of information [10–12] and new
fundamental relationships valid for systems far from equi-
librium such as the Jarzynski equality have provided
deep insights into thermodynamic quantities such as en-
tropy [13–16]. More recently it has been appreciated that
these nonequilibrium relationships are closely related to
pioneering work by Bochkov and Kuzovlev [17–25].

Recent work has also shed light on the general prob-
lem of computing optimal protocols that minimize dis-
sipation while driving small-scale systems between sta-
tionary states [26–33]. Optimization schemes for finite-
time thermodynamic processes will be needed for tech-
nological applications in which energetic efficiency is
paramount [34, 35]. This will be particularly relevant in
the decades to come as computational demands approach
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physical limits.

It may also be the case that evolution sculpted molec-
ular machines such as kinesin and FO − F1 ATP-ase
to operate far from equilibrium while maximizing effi-
ciency [36]. Thus, optimization schemes for nonequilib-
rium transitions also have the potential to unlock phys-
ical principles underlying the function of biological sys-
tems on the molecular level.

A promising approach utilizes a linear-response frame-
work in which a generalized inverse diffusion tensor in-
duces a Riemannian manifold structure on the space of
parameters [26]. Optimal protocols are geodesics of this
geometry. This idea is developed further in [27] where
the machinery of Riemannian geometry is exploited to
find explicit optimal protocols for a paradigmatic col-
loidal particle model and in [37] where optimal finite-time
erasure protocols are computed for a simple classical bit
model. An extension of this framework to transitions be-
tween nonequilibrium steady states is established in [28].

This framework builds on earlier investigations into
thermodynamic metrics by including the dynamics of the
driven system. For macroscopic systems, the properties
of optimal driving processes have been investigated using
thermodynamic length, a natural measure of the distance
between pairs of equilibrium thermodynamics states [38–
43], with extensions to microscopic systems involving a
metric of Fisher information [44, 45]. Slow transitions be-
tween nonequilibrium steady states have also been stud-
ied in terms of thermodynamic metric structure [46].

In [27], the method to calculate the inverse diffusion
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tensor components relied on the (continuous) potential
being harmonic. In this paper, we demonstrate how the
inverse diffusion tensor may be computed for a more gen-
eral class of potentials in terms of the equilibrium proba-
bility distribution. Our starting point will be the Fokker-
Planck equation [47], which we assume fully describes
the physics of the system. Furthermore, we show that
the inverse diffusion tensor arises naturally through an
expansion in temporal derivatives in this general setting.

We use this construction to compute minimal dissipa-
tion for two model systems of physical interest. First,
we consider a one-dimensional system modeling the stor-
age and erasure of a single classical bit of informa-
tion [37, 48, 49]. The erasure of information results
in energy dissipation according to the Landauer prin-
ciple. Minimizing this dissipation (equivalently, maxi-
mizing erasure efficiency) will likely prove critical to the
development of future small-scale information process-
ing devices. The first model system consists of an over-
damped colloidal particle diffusing under the influence of
a continuous double-well potential with a large central
barrier stabilizing the memory. If the particle is found to
the left (right) of the origin, the memory value is 1 (0).
We seek the most efficient protocol altering the shape of
the confining potential so that the particle will be found
to the right of the origin with overwhelming probability,
thus setting the memory value to 0 and erasing the sin-
gle bit of classical information originally encoded by the
system.

The erasure cycle consists of a continuous stage in
which the wells merge and the central barrier is lowered.
A reset stage in which the potential returns instanta-
neously to its original state and leaves the final probabil-
ity distribution undisturbed completes the erasure cycle
(see Fig. 1). The inverse diffusion tensor predicts optimal
erasure cycles in the long duration limit.

The second model system consists of an overdamped
colloidal particle diffusing in one-dimension while cou-
pled to a ratchet potential and an optical trap. In this
simplified model, the coordinate of the diffusing particle
may be identified with a mechanical state variable of a
molecular motor [50] and the thermal bath consists of the
huge number of irrelevant degrees of freedom of the liquid
surrounding the motor as well as the internal degrees of
freedom of the motor itself and the structures with which
it interacts. We suppose that our simplistic molecular
motor couples to an optical trap. The inverse diffusion
tensor framework predicts the optimal time course for the
optical trap center, which represents an external drive for
this simple molecular machine.

II. THE INVERSE DIFFUSION TENSOR

For a physical system at equilibrium in contact with
a thermal bath, the probability distribution over mi-
crostates x is given by the canonical ensemble

ρeq(x,λ) ≡ expβ [F (λ)− E(x,λ)] , (1)

where β = (kBT )−1 is the inverse temperature in natural
units, F (λ) is the free energy, and E(x,λ) is the system
energy as a function of the microstate x and a collection
of experimentally controllable parameters λ.

In equilibrium, the thermodynamic state of the system
(the probability distribution over microstates) is com-
pletely specified by values of the control parameters, but
out of equilibrium the system’s probability distribution
over microstates fundamentally depends on the history of
the control parameters λ, which we denote by the con-
trol parameter protocol Λ. We assume the protocol to
be sufficiently smooth to be twice-differentiable.

The average excess power exerted by the external agent
on the system, over and above the average power on a
system at equilibrium, is [27]

β(t0)Pex(t0) ≡ −

[
dλT

dt

]
t0

· 〈δX〉Λ . (2)

Here X ≡ −∂(βE)
∂λ are the forces conjugate to the control

parameters λ, and δX(t0) ≡ X(t0) − 〈X〉λ(t0)
is the

deviation of X(t0) from its current equilibrium value.
Applying linear response theory [47],

〈δX(t0)〉Λ ≈
∫ t0

−∞
χ(t0 − t′) · [λ(t0)− λ(t′)] dt′ (3)

where χij(t) ≡ −dΣ
λ(t0)
ij (t)/dt represents the response of

conjugate force Xi at time t to a perturbation in control
parameter λj at time zero, and

Σ
λ(t0)
ij (t) ≡ 〈δXj(0)δXi(t)〉λ(t0)

. (4)

For protocols that vary sufficiently slowly [51], the result-
ing mean excess power is

β(t0)Pex(t0) ≈

[
dλT

dt

]
t0

· ζ(λ(t0)) ·
[
dλ

dt

]
t0

, (5)

for inverse diffusion tensor

ζij ≡
∫ ∞
0

dt′
〈
δXj(0)δXi(t

′)
〉
λ(t0)

, (6)

or, more conveniently,

ζij =

∫ ∞
0

dt′
〈
∂λjφ(0) ∂λiφ(t′)

〉
λ(t0)

, (7)

where φ(x,λ) ≡ − ln ρeq(x,λ).
We assume our system consists of an overdamped col-

loidal particle obeying the stochastic equation of motion

ẋ = − 1

γ
∂xU(x(t), t) + F (t) (8)

for Gaussian white noise F (t) satisfying

〈F (t)〉 = 0 , 〈F (t)F (t′)〉 =
2

βγ
δ(t− t′). (9)
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Here, γ is the Cartesian friction coefficient and U(x, t) is
a generic potential growing unbounded as |x| → ∞ at a
rate to be specified shortly.

The components in Eq. (7) may be readily computed
if Eq. (8) is linear or, equivalently, the potential is har-
monic [27]. The linearity of Eq. (8) allows us to write
general solutions as a linear combination of a homoge-
neous piece dependent only on the initial conditions and
a particular piece dependent on the Gaussian noise. Such
a decomposition allows for a straightforward calculation
of the time correlation functions appearing in Eq. (7) as
demonstrated in [27].

For more general potentials, such a decomposition is
impossible and so a different approach must be found to
compute Eq. (7). We will find the equivalent statistical
description in terms of the Fokker-Planck equation

∂tρ = D
[
∂x (βU ′(x, t)ρ) + ∂2xρ

]
≡ −∂xG (10)

convenient, where ρ(x, t) is the position probability den-
sity, G(x, t) is the probability current, and D is the dif-
fusion coefficient.

We set out to compute a general expression for the
inverse diffusion tensor of a driven system obeying over-
damped dynamics. Using the method of Laplace trans-
form [52], we succeeded in writing the components of
the tensor entirely in terms of the equilibrium probabil-
ity distribution ρeq and cumulative distribution function
Πeq:

ζij(λ) =
1

D

∫ ∞
−∞

dx

[
∂λiΠeq(x,λ) ∂λjΠeq(x,λ)

ρeq(x,λ)

]
. (11)

We assume that the potential satisfies U(x,λ) → ∞
as |x| → ∞. Note that the construction also applies for
reflecting-wall boundary conditions.

The inverse diffusion tensor components are given by

ζij(λ) =

∫ ∞
0

dt′
〈
∂φ

∂λi
(t′)

∂φ

∂λj
(0)

〉
eq,λ

, (12)

where φ(x,λ) ≡ − ln ρeq(x,λ) and ρeq(x,λ) is the equi-
librium distribution.

We rewrite Eq. (12) as

ζij(λ) =

∫ ∞
0

dt′
[ ∫ ∞
−∞

dx0 ρeq(x0,λ) ∂λjφ(x0,λ)×(∫ ∞
−∞

dx ρ(x, t′;x0) ∂λiφ(x,λ)

)]
,

(13)

where ρ(x, t;x0) satisfies Eq. (10) with initial condition
ρ(x, t = 0;x0) = δx,x0 and ρ(x, t;x0) → 0 for |x| → ∞.
For simplicity, define

mi(t) ≡
∫ ∞
−∞

dx ρ(x, t;x0) ∂λiφ(x,λ) (14)

so that

ζij(λ) =

∫ ∞
−∞

dx0 ρeq(x0,λ) ∂λjφ(x0,λ)

∫ ∞
0

dt′ mi(t
′).

(15)
Note that we have suppressed the dependence of mi on
x0 and λ for convenience. We evaluate

∫∞
0
dt′ mi(t

′) by
computing the Laplace transform

m̂i(s) ≡
∫ ∞
0

dt′ mi(t
′) e−st

′
(16)

and taking the limit as s→ 0+.
Integrating by parts,∫ ∞

0

dt′
dmi

dt′
(t′) e−st

′
= s m̂i(s)−mi(0). (17)

Note that mi(∞) vanishes since limt→∞ ρ(x, t;x0) =
ρeq(x,λ); i.e. the system comes to a stationary state
after a sufficiently long time has elapsed. By definition
of mi,

m′i(t) =

∫ ∞
−∞

dx ∂tρ(x, t;x0) ∂λiφ(x,λ). (18)

In terms of the probability current G(x, t),

m̂i(s) =
mi(0)−

∫∞
−∞ dx ∂xĜ(x, s) ∂λiφ(x,λ)

s
. (19)

Therefore, to compute m̂i(s), we need the Laplace trans-
form of the probability current.

The Fokker-Planck equation may be used to derive an
equation for the probability current:

∂tG(x, t) = D
[
βU ′(x,λ)∂xG(x, t) + ∂2xG(x, t)

]
. (20)

Taking the Laplace transform of both sides, we have

s Ĝ(x, s)−G(x, 0) = D
[
βU ′(x,λ) ∂xĜ(x, s)+∂2xĜ(x, s)

]
(21)

which follows from limt→∞G(x, t) = 0. Multiplying both

sides by s and defining H(x, s) ≡ s Ĝ(x, s),

s H(x, s)−s G(x, 0) = D
[
βU ′(x,λ) ∂xH(x, s)+∂2xH(x, s)

]
.

(22)
We may obtain a solution to Eq. (22) by expanding
H(x, s) as a series in s. If we define H(x, s) ≡ H0(x) +
s H1(x) + . . . , then

0 = βU ′(x,λ) H ′0(x) +H ′′0 (x) (23)

H0(x)−G(x, 0) = D
[
βU ′(x,λ) ∂xH1(x) + ∂2xH1(x)

]
(24)

Hk−1(x) = D
[
βU ′(x,λ) ∂xHk(x) + ∂2xHk(x)

]
(25)

follow from substituting the expansion into Eq. (22) and
comparing the coefficients of powers of s on both sides.
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The boundary conditions on the probability current must
also be satisfied by Hk for each k.

We see that these differential equations may be solved
iteratively. Fortunately, it turns out that only H2(x)
is needed for our purposes as a short calculation using
Eq. (19) shows that∫ ∞

0

dt′ mi(t
′) = −

∫ ∞
−∞

dx ∂xH2(x) ∂λiφ(x,λ). (26)

For potentials that grow unbounded as |x| → ∞, the
probability current must vanish in the limit of large |x|.
With these boundary conditions it is not difficult to show

H2(x) =
1

D

[
−
(∫ ∞
−∞

dx e−βU(x,λ)

∫ x

a

dx′ eβU(x′,λ)×

(
θ(x′ − x0)−Πeq(x

′,λ)
))

Πeq(x,λ)+∫ x

−∞
dx′ e−βU(x′,λ)

∫ x′

a

dx′′ eβU(x′′,λ)×

(
θ(x′′ − x0)−Πeq(x

′′,λ)
)]
, (27)

where θ denotes the Heaviside function and Πeq(x,λ) =∫ x
−∞ dx′ ρeq(x

′,λ) is the equilibrium cumulative distri-
bution function. Here, a is an arbitrary real constant.
Surprisingly, H2(x) is independent of a and we will have
occasion to choose different convenient values for compu-
tational purposes.

From this result we see that the inverse diffusion tensor
has the compact form

ζij(λ) =

∫
dν(x, x′, x′′)

[
eβ(U(x′,λ)−U(x,λ)−U(x′′,λ))×

∂λiφ(x,λ) ∂λjφ(x′′,λ)

]
, (28)

where we have used the shorthand∫
dν(x, x′, x′′)→ − 1

DZ(λ)

∫ ∞
−∞

dx

∫ x

a

dx′
∫ x′

−∞
dx′′.

(29)
This expression may be further simplified by observing

that∫ x′

−∞
dx′′ ∂λjφ(x′′,λ)e−βU(x′′,λ) = −Z(λ)∂λjΠeq(x

′,λ)

(30)
and

∂λiφ(x,λ)e−βU(x,λ) = −Z(λ)∂λiρeq(x,λ) (31)

which follow from the definition of the nonequilibrium
potential φ. These expressions may be used to rewrite
Eq. (28) as

ζij(λ) = −Z(λ)

D

∫ ∞
−∞

dx

[
∂λiρeq(x,λ)×∫ x

a

dx′ eβU(x′,λ)∂λjΠeq(x
′,λ)

]
(32)

or

ζij(λ) = −Z(λ)

D

∫ ∞
−∞

dx

[
∂x

(
∂λiΠeq(x,λ)

)
×∫ x

a

dx′ eβU(x′,λ)∂λjΠeq(x
′,λ)

]
.

(33)

If

lim
x→±∞

∂λiΠeq(x,λ)

∫ x

a

dx′ eβU(x′,λ)∂λjΠeq(x
′,λ) = 0,

(34)
then

ζij(λ) =
1

D

∫ ∞
−∞

dx

[
∂λiΠeq(x,λ) ∂λjΠeq(x,λ)

ρeq(x,λ)

]
, (35)

which is our desired result. Eq. (35) allows us to bypass
the need for computing correlation functions in order to
find the inverse diffusion tensor as it is based solely on
equilibrium information. We will now explore an alter-
nate approach to deriving this formula, and then we will
apply it to two specific systems of interest.

III. DERIVATIVE TRUNCATION
APPROXIMATION

We relied on linear response theory to arrive at
Eq. (11). However, the inverse diffusion tensor arises nat-
urally from a first order expansion in temporal derivatives
of the control parameters as noted in [27] for harmonic
potentials. Assuming the probability distribution ρ(x, t)
may be well approximated by

ρ(x, t) ≈ ρeq(x,λ(t)) + G(x, λ(t)) · dλ
dt

(36)

where G is determined by the Fokker-Planck equation,
we provide an alternative construction of the inverse dif-
fusion tensor via the so-called “derivative truncation” ar-
gument [27].

Referring to Eq. (10), we assume the nonequilibrium
probability density has the approximate form

ρ(x, t) ≈ ρeq(x,λ(t)) +
dλi

dt
Gi(x,λ(t)), (37)

where Gi(x,λ) is to be determined. Substituting this ex-
pression into Eq. (10) and neglecting higher-order deriva-
tives, we see

∂ρeq(x,λ)

∂λi
= D

[
∂

∂x

(
∂ (βU(x,λ))

∂x
Gi(x,λ)

)
+
∂2

∂x2
Gi(x,λ)

]
.

(38)
Furthermore, since both ρ(x, t) and ρeq(x,λ) are normal-
ized probability distributions, we have the constraint∫ ∞

−∞
dx Gi(x,λ) = 0. (39)
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We may systematically integrate Eq. (38) to obtain a so-
lution that also satisfies Eq. (39) and appropriate bound-
ary conditions. For our purposes, a more expedient way
of arriving at the solution is to simply state a candidate
and demonstrate that it satisfies the necessary require-
ments.

Our candidate is

Gj(x,λ) ≡ −〈∂xH2(x;λ, x0)∂λjφ(x0,λ)〉eq,λ. (40)

Here, H2 is defined by Eqs. (23), (24) and (25) and ap-
propriate boundary conditions as dictated by the physics
of the problem. The average 〈·〉eq,λ applies to the vari-
able x0 and is defined in terms of the stationary state
probability distribution characterized by λ.

We can quickly establish Eq. (39). Bringing the in-
tegral

∫∞
−∞ dx inside of the stationary state average in

Eq. (40), we see that
∫∞
−∞ dx ∂xH2(x;λ, x0) vanishes by

the fundamental theorem of calculus in the case of an
unbounded potential at ±∞.

Substituting Eq. (40) into Eq. (38), we see that we
must prove

∂ρeq(x,λ)

∂λj
=−D∂x

[〈(
βU ′(x,λ)∂xH2(x;λ, x0)

+ ∂xH2(x;λ, x0)
)
∂λjφ(x0,λ)

〉
eq,λ

]
. (41)

From Eq. (25) follows

D
[
βU ′(x,λ)∂xH2(x;λ, x0)+∂xH2(x;λ, x0)

]
= H1(x;λ, x0)

(42)

and so we must show

∂ρeq(x,λ)

∂λj
= −〈∂xH1(x;λ, x0)∂λjφ(x0,λ)〉eq,λ. (43)

For unbounded-potential boundary conditions,
H1(x;λ, x0) = θ(x− x0) + Πeq(x,λ). Therefore,

〈∂xH1(x;λ, x0)∂λjφ(x0,λ)〉eq,λ = 〈δx,x0∂λjφ(x0,λ)〉eq,λ.
(44)

The second term vanishes since ρeq(x,λ) is independent
of x0 and 〈∂λjφ(x0,λ)〉eq,λ = 0. Moreover,

〈δx,x0
∂λjφ(x0,λ)〉eq,λ = ρeq∂λjφ = −∂λjρeq, (45)

establishing the claim.

We are now in position to relate this derivative trun-
cation approximation to the inverse diffusion tensor ap-
proximation. Recall that

〈Y 〉Λ ≡
∫ τ

0

dt

[
dλT

dt

]
·
〈
∂φ

∂λ

(
λ(t)

)〉
Λ

, (46)

where〈
∂φ

∂λi
(
λ(t)

)〉
Λ

≡
∫ ∞
−∞

dx ρ(x, t)
∂φ

∂λi
(
x,λ(t)

)
. (47)

Using the derivative truncation approximation,

〈
∂φ

∂λi
(
λ(t)

)〉
Λ

≈ dλj

dt

∫ ∞
−∞

dx Gj(x,λ(t))
∂φ

∂λi
(
x,λ(t)

)
= −dλ

j

dt

∫ ∞
−∞

dx 〈∂xH2(x;λ(t), x0)∂λjφ(x0,λ(t))〉eq,λ(t)
∂φ

∂λi
(
x,λ(t)

)
= −dλ

j

dt

〈[∫ ∞
−∞

dx ∂xH2(x;λ(t), x0)
∂φ

∂λi
(
x,λ(t)

)]
∂λjφ(x0,λ(t))

〉
eq,λ(t)

=
dλj

dt

〈[∫ ∞
0

dt′
∫ ∞
−∞

dx ρ(x, t′;x0)
∂φ

∂λi
(
x;λ(t)

)]
∂λjφ(x0,λ(t))

〉
eq,λ(t)

=
dλj

dt

∫ ∞
0

dt′ 〈∂λiφ(t′)∂λjφ(0)〉eq,λ(t). (48)

Therefore, we see that the derivative truncation approx-
imation reproduces the inverse diffusion tensor for gen-
eral potentials in the overdamped regime [compare with
Eq. (7)].

We note that an expression similar to our Eq. (11) ap-
pears in [53] in which the authors consider anisotropic
Langevin dynamics in two dimensions. A separation of
time scales gives rise to slow dynamics for one of the sys-

tem coordinates which can be accurately modeled using
a Markovian description with a position-dependent fric-
tion. This friction in turn is related to the time integral
of an autocorrelation function similar to the one used
here to define the inverse diffusion tensor. A possible di-
rection for future work would be to investigate potential
connections between the two results.
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FIG. 1. Continuous erasure protocol. The lefthand well of the
double-well potential merges with the right and the central
barrier lowers simultaneously as λ decreases from 2 to 0.

IV. THE ERASURE MODEL

We consider the following model to represent a single
classical bit of information: an overdamped Brownian
colloidal particle diffusing in a one-dimensional double-
well potential in contact with a thermal bath of temper-
ature T [48, 49]. The wells are initially separated by a
potential barrier whose height is much larger than the
energy scale β−1 ≡ kBT set by thermal fluctuations, en-
suring stability of memory. Explicitly, we may write the
potential as

U(x, λ) ≡ − 1

β
log

[
αe−α(x−1+λ)(

1 + e−α(x−1+λ)
)2 +

αeα(x−1)(
1 + eα(x−1)

)2
]
,

(49)
where x is a dimensionless spatial coordinate and α� 1.
Initially, λ = 2 and there are two distinct wells and a
central barrier with height governed by α. As λ decreases
to 0, the barrier height diminishes and the left-hand well
shifts to merge with the right-hand well.

The system is prepared so that the particle has equal
probability of being found in either well. This may be
achieved, for example, by selecting the initial position of
the particle to be at the midpoint of the potential bar-

rier and waiting a sufficiently long relaxation period [48].
After this relaxation period has elapsed the particle has
equal probability of being located to the left or right of
the origin. If the particle is found to the left (right) of
the origin, the memory value is defined to be 1 (0).

We are primarily interested in optimizing finite-time
erasure efficiency over cyclic protocols for the classical
single bit model described above. In [37], constraining
the initial and final probability distributions forced the
optimal protocols to have jump discontinuities at the end
points. This was to be expected based on experience with
optimization in the context of stochastic thermodynam-
ics in general [31–33, 54, 55] and erasure efficiency in
particular [56, 57]. These jump discontinuities warrant
caution when defining thermodynamic quantities such as
the average dissipated heat [37, 55].

When classical information is being erased, the differ-
ence in Shannon entropies of the final and initial prob-
ability distributions must satisfy 4S ≡ Sf − Si < 0,
which would allow us to define the erasure efficiency
ε ≡ −4S/ (kB〈βQ〉Λ) as the ratio of this decrease in
Shannon entropy to the average heat 〈Q〉Λ released into
the thermal bath [58, 59]. Taking kB ≡ 1, we see that

ε =
1

1 + 〈4stot〉Λcyc
/ (−4S)

, (50)

where

〈4stot〉Λcyc
= 〈βQ〉Λcyc

+4S (51)

is the total average entropy production. Our goal will
be to minimize the total average entropy over protocols
while constraining 4S. The constraint forces us to op-
timize over protocols with jump discontinuities at the
endpoints.

We may express the total average entropy in terms
of the initial and final probability distributions as well
as the average work done over the erasure stage of the
cycle [37, 54]:

〈4stot〉Λcyc
= 〈βW 〉Λerase

−
∫
R
dx ρ[βU + ln ρ]

∣∣∣τ
0
, (52)

where τ is the duration of the erasure stage. This follows
from

〈βW 〉Λreset =

∫
R
ρ(x, τ)[βU(x, 0)− βU(x, τ)]. (53)

Using the approximation Eq. (37), we see that

〈βW 〉Λerase ≈
∫ τ

0

dt ζ(λ(t))

(
dλ

dt

)2

− ln

(
Zτ
Z0

)
. (54)

During the first (erasure) stage, the initial equilibrium
distribution transitions to a final nonequilibrium distri-
bution in which the system is overwhelmingly more likely
to have memory value 0. In the second (reset) stage, λ is
brought instantaneously back to its original value while
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keeping the particle probability distribution constant. No
heat is generated during this stage.

Using the calculus of variations, we seek the twice-

differentiable optimizer of
∫ τ
0
dt ζ(λ(t))

(
dλ
dt

)2
for the era-

sure stage of the cycle. By considering variations that
vanish away from the endpoints of the protocol, this op-
timizer satisfies the Euler-Lagrange equation

dλ

dt
= −

∫ λi
λf
dz
√
ζ(z)

/
τ√

ζ(λ(t))
, (55)

where λi and λf are determined by the constraints on
the probability distribution.

By definition,

4S = −
∫
R
dx ρ(x, τ) ln ρ(x, τ) +

∫
R
dx ρ(x, 0) ln ρ(x, 0).

(56)
Using Eq. (37), we can derive an approximate expression
for 4S, which allows us to compute the endpoints of the
protocol. The average total entropy generated during the
optimal protocol is approximately

〈4stot〉Λopt ≈

(∫ λf
λi

dz
√
ζ(z)

)2
τ

+O(1/τ2). (57)

Since we are neglecting terms of order 1/τ2 and higher,
we need only compute λi and λf assuming ρ(x, t) ≈
ρeq(x, λ(t)) throughout the driving process. For simplic-
ity, we assume that λi = 2 , λf = 0.

From Eq. (35), we have

ζ(λ) =
1

2D

{
1−

π
2 − tan−1

(√
2
/[

cosh(αλ)− 1
])√

2
[

cosh(αλ)− 1
]

}
.

(58)

10 30 50 70 90

Α1.8

1.9

2
à

0

2
ΖHz, ΑL â z

2

FIG. 2. Dependence of the leading order term of 〈4stot〉Λopt

on α for the erasure model given by Eq. (49). Note the satu-
ration at 2 as α becomes very large.

The dependence of the leading order term of the op-
timal total average entropy on α is displayed in Fig. 2.
We note that the leading order term grows as a func-
tion of α and appears to approach a limiting value close
to 2 as α becomes very large. In [37], a similar erasure

model is considered. There, the potential is piecewise
constant with central barrier height and “tilt” of the left-
hand well as control parameters. The leading order term
of 〈4stot〉Λopt

for that model is given in terms of the
Hellinger distance between the initial and final probabil-
ity distributions:

4
[√

pr(τ)−
√
pr(0)

]2
+ 4

[√
pl(τ)−

√
pl(0)

]2
. (59)

Assuming the particle has overwhelming probability to
be located in the righthand well after the erasure cycle,
we see that τ〈4stot〉Λopt

≈ 2.343 for barrier heights of
physical relevance. (Compare with the current model’s
saturation value of τ〈4stot〉Λopt

≈ 2.) In future work, it
will be interesting to explore whether there might be a
common cause for the intriguing similarity between the
saturation values for the leading order terms in the op-
timal average entropy production for these two different
erasure cycle models.

V. THE RATCHET MODEL

We consider an overdamped colloidal particle diffusing
in one dimension subject to optical trap confinement and
a tilted ratchet potential [50]. Mathematically,

βU(x,λ) =
1

2
βk (x− x0)

2 − βFx+ βV0 ϕ (x/l) . (60)

Here, l is some characteristic length scale, F is the “tilt”
of the ratchet, and V0 is the magnitude of the ratchet po-
tential. Furthermore, we choose a single control param-
eter, namely x0, the position of the center of the optical
trap.

The model possesses relative mathematical simplicity
and captures essential physics of chemical processes rele-
vant to the operation of cellular machinery. We view the
following as the first step towards applying the inverse
diffusion tensor framework to optimization of nonequilib-
rium processes underlying the functionality of molecular
motors and other nanoscale biological machines.

If we consider an isothermal chemical reaction in the
presence of a catalyst protein (i.e. an enzyme), then
the reaction can be described by a single reaction coor-
dinate, cycling through a number of chemical states in
the simplest case [50]. A suitable working model is then
an overdamped Brownian particle (reaction coordinate)
in the presence of thermal fluctuations in a periodic po-
tential. For this reason, we select ϕ(y) = sin(y).

If the concentrations of the reactants and products
are away from their equilibrium ratio, then the catalyst
molecule will loop through the chemical reaction cycle
preferably in one direction [50]. In the corresponding
ratchet model, the periodic potential must be supple-
mented by a constant tilt, i.e. F .
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Define

α ≡ βkl2 , y ≡ x/l , f ≡ F/(kl) ,

u0(y, y0) ≡ 1

2
(y − y0)2 − fy , ε ≡ V0/(kl2) (61)

so that βU(x, x0) = α
[
u0(y, y0) + εϕ(y)

]
. Assuming the

strength of the optical trap far exceeds the strength of
the ratchet potential, ε is a small parameter and we may
apply perturbation theory; i.e. we expand all quantities
to first order in ε and discard higher order terms.

It is straightforward to show that

ρeq(y, y0) ≈ 1

l

√
α

2π
e−

1
2α(y−y0−f)

2

[
1− αε

(
ϕ(y)− 〈ϕ〉0

)]
(62)

where the subscript “0” indicates an average with ε = 0.

Using Eq. (35), we compute

ζ(y0) ≈ l2

D
(1− 2αε〈ϕ′′〉0) . (63)

The equilibrium distribution for the ratchet model

(Eq. (62)) has cumulative distribution function

Πeq(y, y0) =

∫ y

−∞
dy′ρeq(y

′, y0). (64)

According to [60],

ew
2

∫ ∞
w

e−z
2

dz ≤ 1

w +
√
w2 + 4

π

(65)

for w ≥ 0. Since ϕ and all of its derivatives are bounded
on R,

lim
y→∞

∂y0Πeq(y, y0)

∫ y

0

dy′ eβU(y′,y0)∂y0Πeq(y
′, y0) = 0.

(66)
A similar argument shows that

lim
y→−∞

∂y0Πeq(y, y0)

∫ y

0

dy′ eβU(y′,y0)∂y0Πeq(y
′, y0) = 0,

(67)
and so we may apply Eq. (35) to compute the inverse
diffusion tensor.

Using Eqs. (62) and (64), we see that

[
∂y0Πeq

]2
ρeq

≈ l
√

α

2π

{
e−

α
2 (y−y0−f)2 + αε

(
− (ϕ(y)− 〈ϕ〉0)e−

α
2 (y−y0−f)2 + 2

∫ y

−∞
dy′ (ϕ′(y′)− 〈ϕ′〉0) e−

α
2 (y′−y0−f)

2
)}

.

(68)

From Eq. (35) we have

ζ(y0) ≈ l2

D

{
1 + 2αε

∫ ∞
−∞

dy

∫ y

−∞
dy′ (ϕ′(y′)− 〈ϕ′〉0)×

e−
α
2 (y′−y0−f)

2
/√

2π

α

}
. (69)

The integral may be evaluated using integration by parts.
Therefore, we have

ζ(y0) ≈ l2

D
(1− 2αε〈ϕ′′〉0) . (70)

For ϕ(y) = sin(y) (which is mathematically similar to
the parametric quantron of [61]),

ζ(y0) ≈ l2

D

(
1 + 2ε e−

1
2α sin (y0 + f)

)
. (71)

Since

〈βWex〉Λ ≈
∫ τ

0

dt ζ(y0)

(
dy0
dt

)2

, (72)

the minimal dissipation is

〈βWex〉Λopt
≈

(∫ y0(τ)
y0(0)

dz
√
ζ(z)

)2
τ

. (73)

We plot the dependence of this expression on f in Fig. 3
which clearly illustrates the periodicity in the tilt. This
periodicity has a natural interpretation. A shift in the
tilt f by 2π units corresponds to an overall shift in the
potential energy by a constant amount and a horizontal
translation upon completing the square. Since constant
shifts in the potential are physically irrelevant, we would
expect the optimal average excess work to be insensitive
to such a shift in the tilt.

VI. DISCUSSION

In this paper, we constructed a compact formula
(Eq. (11)) for the inverse diffusion tensor for a broad class
of overdamped dynamics. This is a powerful expression in
part because the inverse diffusion tensor components are
expressed entirely in terms of the equilibrium probability
distribution, and we expect it to increase the number of
applications for this approach.

We applied this formula to calculate the optimal dis-
sipation for two model systems. In the first model, we
considered the erasure of a single classical bit of infor-
mation. The system modeling the storage and erasure
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FIG. 3. Dependence of minimal dissipation for ratchet model
on (scaled) tilt f where α = 1, ε = 0.1 and y0(0) = 0 and
y0(τ) = 2. Note that the minimal dissipation is a periodic
function of f .

of this bit consisted of a colloidal particle diffusing under
Brownian dynamics in a double-well potential. In the sec-
ond model, we considered a colloidal Brownian particle
coupled to an optical trap and a tilted ratchet potential.
In both cases, the inverse diffusion tensor allowed us to
predict the optimal time course and produced an explicit
expression for the minimal dissipation.

Consistent with previous studies [37, 56–58], we find
that the minimal dissipation for each model considered
here obeys the expected 1/τ law. As with the erasure
model we considered previously [37], the coefficient mul-
tiplying the 1/τ term is fixed by the diffusion tensor, but
it does not obviously take the same functional form of the
square of the Hellinger distance between initial and final
probability distributions. A direct comparison between
the two erasure models is challenging given that the pre-
vious example was a discrete three state system whereas
here our system is continuous. Yet, despite these differ-

ences, we found a striking similarity between the satura-
tion values for large, physically relevant barrier heights.
It is possible that the saturation value for the optimal av-
erage entropy produced during an erasure cycle possesses
some universality as a function of initial barrier height.
Future work will address this intriguing possibility.

Analyzing these erasure models in the regime of low
to moderate initial barrier height provides another in-
teresting avenue for future development. As described
in [62], characteristic time scales of dynamical systems
driven by noise — such as the relaxation time to a steady
state — follow from the moments of the transition time
if a specific potential (e.g., Eq. (49)) is assumed. It may
be possible to apply the framework of [62, 63] to these
erasure models especially in light of the fact that the
inverse diffusion tensor may be used to compute the in-
tegral relaxation time for a broad class of systems driven
by noise [26].

We expect further study of these models to generate
yet more testable predictions for experiments in erasure
similar to the setup of [64] and the parametric quantron
based on the Josephson effect in superconductors as
in [61].

ACKNOWLEDGMENTS

The authors would like to thank Dibyendu Mandal,
David Sivak and Gavin Crooks for many helpful discus-
sions. M. R. D. gratefully acknowledges support from the
McKnight Foundation and the Hellman Family Faculty
Fund. M. R. D. and P. R. Z. were partly supported by
the National Science Foundation through Grant No. IIS-
1219199. This material is based upon work supported in
part by the US Army Research Laboratory and the US
Army Research Office under Contract No. W911NF-13-
1-0390.

[1] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys.
Rev. Lett. 71, 2401 (1993).

[2] D. J. Evans and D. J. Searles, Phys. Rev. E 50, 1645
(1994).

[3] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74,
2694 (1995).

[4] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[5] T. Hatano and S. Sasa, Phys. Rev. Lett. 86, 3463 (2001).
[6] G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and

D. J. Evans, Phys. Rev. Lett. 89, 050601 (2002).
[7] D. M. Carberry, J. C. Reid, G. M. Wang, E. M. Sevick,

D. J. Searles, and D. J. Evans, Phys. Rev. Lett. 92,
140601 (2004).

[8] N. Garnier and S. Ciliberto, Phys. Rev. E 71, 060101
(2005).

[9] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and
M. Sano, Nat. Phys. 6, 988 (2010).

[10] L. Szilard, Z.Phys. 53, 840 (1929).
[11] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[12] C. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
[13] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[14] J. T. Liphardt, S. Dumont, S. B. Smith, I. Tinoco Jr,
and C. Bustamante, Science 296, 1832 (2002).

[15] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[16] T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602

(2010).
[17] G. N. Bochkov and Y. E. Kuzovlev, Zh. Eksp. Teor. Fiz.

72, 238 (1977).
[18] G. N. Bochkov and Y. E. Kuzovlev, Sov. Phys.JETP 45,

125 (1977).
[19] G. N. Bochkov and Y. E. Kuzovlev, Physica 106, 443

(1981).
[20] G. N. Bochkov and Y. E. Kuzovlev, Physica 106, 480

(1981).
[21] G. N. Bochkov and Y. E. Kuzovlev, Physics-Uspekhi 56,

59 (2013).
[22] C. Jarzynski, C. R. Physique 8, 495 (2007).
[23] U. Seifert, Eur. Phys. J. B 64, 423 (2008).
[24] M. Campisi, P. Hnggi, and P. Talkner, Rev. Mod. Phys.

83, 771 (2011).
[25] J. M. Horowitz and C. Jarzynski, J. Stat. Mech. , P11002

(2007).



10

[26] D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108,
190602 (2012).

[27] P. R. Zulkowski, D. A. Sivak, G. E. Crooks, and M. R.
DeWeese, Phys. Rev. E 86, 041148 (2012).

[28] P. R. Zulkowski, D. A. Sivak, and M. R. DeWeese, Public
Library of Science (in press) (2013).

[29] D. K. Shenfeld, H. Xu, M. P. Eastwood, R. O. Dror, and
D. E. Shaw, Phys. Rev. E 80, 046705 (2009).

[30] D. C. Brody and D. W. Hook, J. Phys. A 42, 023001
(2009).

[31] A. Gomez-Marin, T. Schmiedl, and U. Seifert, J. Chem.
Phys. 129, 024114 (8) (2008).

[32] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301
(2007).

[33] E. Aurell, C. Mej́ıa-Monasterio, and P. Muratore-
Ginanneschi, Phys. Rev. Lett. 106, 250601 (4) (2011).

[34] B. Andresen, Angew. Chem., Int. Ed. 50, 2690 (2011).
[35] L. Chen and F. Sun, eds., Advances in finite time ther-

modynamics: analysis and optimization (Nova Science
Publishers, New York, 2004).

[36] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts,
and P. Walter, Molecular Biology of the Cell (Garland
Science, New York, 2002).

[37] P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E 89,
052140 (2014).

[38] F. Weinhold, J. Chem. Phys. 63, 2479 (1975).
[39] G. Ruppeiner, Phys. Rev. A 20, 1608 (1979).
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