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The design of efficient quantum information processing will rely on optimal nonequilibrium transi-
tions of driven quantum systems. Building on a recently-developed geometric framework for comput-
ing optimal protocols for classical systems driven in finite-time, we construct a general framework for
optimizing the average information entropy for driven quantum systems. Geodesics on the parame-
ter manifold endowed with a positive semi-definite metric correspond to protocols that minimize the
average information entropy production in finite-time. We use this framework to explicitly compute
the optimal entropy production for a simple two-state quantum system coupled to a heat bath of
bosonic oscillators, which has applications to quantum annealing.
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I. INTRODUCTION

Though a unifying set of principles describing all
known nonequilibrium phenomena remains undiscovered,
many recent developments have illuminated the thermo-
dynamic behavior of small-scale systems. For instance,
fluctuation theorems valid far from equilibrium have been
developed in the classical setting [1–13] as well as in the
quantum regime [14–22].

An area of nonequilibrium thermodynamics of partic-
ular interest concerns the operation of small-scale infor-
mation processing systems. The interplay between infor-
mation as a physical quantity and thermodynamics has
a rich history [23–25].

The physics of information processing is of particular
relevance considering the rapid development of informa-
tion technology and the inevitable approach to compu-
tational limits imposed by physical law [26, 27]. Opti-
mization schemes for small-scale information processing
occurring in finite time will be needed to develop tech-
nology capable of approaching those limits [28, 29].

Current research has uncovered techniques to optimize
thermodynamic quantities arising in small-scale systems
designed to store and erase classical information [30–33],
including the derivation of a refined second law [32]. This
research couples with the progress made on the general
problem of predicting optimal protocols to drive classical
systems between stationary states with minimal dissipa-
tion [33–41].

In parallel with classical developments, a greater un-
derstanding of optimal processes in the nonequilibrium
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quantum regime and the efficiency of quantum engines
has been achieved [42–46]. The success of a recently-
proposed linear-response framework for optimal driving
of microscopic classical systems [34] calls out for an ex-
tension to quantum systems.

In the geometric formulation of [34], a generalized in-
verse diffusion tensor induces a Riemannian manifold
structure on the space of parameters, and optimal pro-
tocols trace out geodesics of this inverse diffusion tensor.
This geometric framework is subsequently developed and
exploited in [33, 35, 36].

In this paper, we extend this work to provide a geomet-
ric framework for computing control protocols optimiz-
ing the average information entropy production [14]. The
production of entropy is intimately related to the over-
all performance of thermodynamic devices by in some
sense quantifying irreversibility and providing a bound
on the availability of useful work. Entropy production
also provides a useful tool in the analysis of nonequilib-
rium effects.

By twice measuring the density operator of a system
interacting with a thermal reservoir at the beginning and
end of the protocol, the average information entropy pro-
duction may be defined and shown to satisfy a fluctua-
tion theorem [14]. While there is still debate about the
best way to define thermodynamic quantities along quan-
tum trajectories, this approach provides an avenue for
experimental observation [14]. Fortunately, this formal-
ism holds for open quantum systems driven arbitrarily
far from equilibrium.

We begin by constructing a general positive semi-
definite tensor on the space of control parameters for the
quantum system interacting with the thermal reservoir.
We assume the dynamics of the system are described by
a master equation of Lindblad form, arising from an adi-
abatic, rotating-wave approximation in a sense we make
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concrete below [47].
With the general tensor in hand, we compute optimal

protocols for a simple two-state system coupled to a ther-
mal bath of bosonic oscillators. The system Hamiltonian
may be interpreted as describing a spin- 12 particle cou-
pled to a time-dependent magnetic field with components
in the y and z-directions. This system has applications in
quantum annealing [47, 48]. For this simple system, we
demonstrate the existence of null directions of the met-
ric tensor, which correspond to directions in parameter
space in which there is no overall change in information
entropy. We derive an approximate expression for the
optimal overall entropy production.

II. THE QUANTUM TENSOR

Our model consists of two distinct components: the
system under our control and a large collection of quan-
tum degrees of freedom acting as the thermal reservoir.
Together, the system and the bath degrees of freedom
evolve unitarily according to the von Neumann equation
∂tρtot = − i

~ [Ĥtot, ρtot], where

Ĥtot = Ĥsys(t) + ĤB + g
∑
α

Aα ⊗Bα. (1)

The operator Ĥsys(t) is the system Hamiltonian acting in

the Hilbert space of system states while ĤB is the Hamil-
tonian for the bath degrees of freedom. The interaction
term g

∑
αAα ⊗ Bα consists of a (weak) coupling g and

Hermitian operators Aα and Bα operating on the system
and bath Hilbert spaces respectively.

We are only interested in the time evolution of the
density operator of the system, denoted ρt, which can be
obtained from ρtot by tracing over the bath degrees of
freedom. We follow the construction of [47], which ob-
tains a quantum Markovian master equation governing ρt
via an adiabatic, rotating-wave approximation. Specifi-
cally, the derivation of Eq. (4) in [47] utilizes the so-called
“standard adiabatic approximation”

h

42τ
� 1 (2)

where τ denotes the total evolution time, 4 ≡
min
t∈[0,τ ]

{ε1(t)− ε0(t)} is defined to be the minimum ground

state energy gap of Hsys, and

h ≡ max
s∈[0,1];a,b

|〈εa(s)|∂sHsys(s)|εb(s)〉. (3)

Here, s = t/τ is a dimensionless measure of time. Though
it is possible to compute higher-order terms in 1/τ [47],
we will assume that Eq. (4) adequately approximates the
time-evolution of the quantum system over finite, but
sufficiently long time scales.

Assuming a weak coupling g between the system and
bath degrees of freedom, we have a master equation in

Lindblad form:

∂tρt = − i
~

[Ĥt, ρt] + g2L(ρt),

where

L(ρt) =
∑
αβ

∑
ω

γαβ(ω)

(
Lω,β(t)ρtL

†
ω,α(t)−

1

2
{L†ω,α(t)Lω,β(t), ρt}

)
. (4)

Here, Ĥt ≡ Ĥsys(t) + g2ĤLS(t) consists of the system

Hamiltonian Ĥsys(t) ≡ Ĥsys(λ(t)) and the Lamb shift
Hamiltonian, which arises through the coupling of the
system with the thermal reservoir.

Assume that the system Hamiltonian has time-
dependent eigenvalues εa(t) with time-dependent eigen-
kets |εa(t)〉. Then the operators Lω,α(t) are defined by

Lω,α(t) ≡
∑

εb(t)−εa(t)=ω

Lab,α(t) (5)

with

Lab,α(t) ≡ 〈εa(t)|Aα|εb(t)〉|εa(t)〉〈εb(t)|. (6)

Furthermore,

ĤLS =
∑
αβ

∑
ω

L†ω,α(t)Lω,β(t)Sαβ(ω) (7)

where both γαβ(ω) and Sαβ(ω) are Hermitian and can
be computed from the spectral-density matrix [47]. To
ease notation we will suppress the time dependence of
the Lindblad operators Lω,α.

It is crucial to note that the time dependence of the
terms defining L arises only through the time dependence
of the spectrum and eigenkets of the system Hamiltonian.
Therefore, the time dependence of the Lindblad operator
L stems from the control parameters λ(t). If time ap-
peared explicitly in the terms defining L, we could not
interpret the approximation developed in this section as
giving rise to a semi-definite metric on the space of con-
trol parameters.

In what follows, we denote the control parameter pro-
tocol by Λ. We assume the protocol to be sufficiently
smooth to be twice-differentiable. The framework in the
classical setting is versatile and can handle situations in
which jump discontinuities are present [33]. Jump dis-
continuities at the end points of the protocol commonly
arise in optimal finite-time driving processes of classical
systems [31, 32, 39–41, 49]. For simplicity we only admit
twice-differentiable protocols though one could in princi-
ple extend this approach to piecewise-continuous Λ.

By definition [14], the average information entropy is
given by

〈ΣI〉Λ =

∫ τ

0

dt Tr
{
∂tρ
[
− ln ρ+ ln ρeqt

]}
, (8)
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where

ρeqt =
e−βĤsys(λ(t))

Tr{e−βĤsys(λ(t))}
(9)

is the equilibrium distribution defined by the instanta-
neous control parameters λ(t) and β is related to the

thermal bath temperature by β = (kBT )
−1

where kB is
Boltzmann’s constant. Using Eq. (4), we see

〈ΣI〉Λ =

∫ τ

0

dt Tr

{(
−i[Ĥt, ρt] + g2L(ρt)

)
×

(− ln ρt + ln ρeqt )

}
= g2

∫ τ

0

dt Tr

{
L(ρt) (− ln ρt + ln ρeqt )

}
, (10)

where τ represents the duration of the protocol. This
equation follows from the cyclic property of the trace:

The trace term involving − ln ρt and the commuta-
tor vanishes because we may permute − ln ρt into the
commutator with ρt. As for the ρeqt term, it too can

be permuted into the commutator and [Ĥsys, ρ
eq
t ] = 0,

naturally. A little more work goes into showing that

[ĤLS , ρ
eq
t ] = 0. Since ρeqt = e−βĤsys(λ(t))

Tr
{
e−βĤsys(λ(t))

} by defi-

nition, it is sufficient to show that [ĤLS , Ĥsys(λ(t))] = 0.
From Eq. (7), we need only establish that

[L†ω,αLω,β , Ĥsys(λ(t))] = 0. First, note that

[Lω,β , Ĥsys] =

[ ∑
εb−εa=ω

〈εa|Âβ |εb〉|εa〉〈εb|, Ĥsys

]
=

∑
εb−εa=ω

〈εa|Âβ |εb〉
[
|εa〉〈εb|, Ĥsys

]
=

∑
εb−εa=ω

〈εa|Âβ |εb〉 (εb − εa) |εa〉〈εb|

= ωLω,β (11)

where we have suppressed the time dependence for
brevity. This further implies that

[L†ω,α, Ĥsys] = −
(

[Lω,α, Ĥsys]
)†

= −ωL†ω,α (12)

and so

[L†ω,αLω,β , Ĥsys(λ(t))] = L†ω,α[Lω,β , Ĥsys(λ(t))]

+ [L†ω,α, Ĥsys(λ(t))]Lω,β

= ωL†ω,αLω,β − ωL†ω,αLω,β
= 0 (13)

establishing our claim.
We see from Eq. (10) that the average information en-

tropy is proportional to g2. This seems reasonable since
if g = 0, then there would be no coupling between the

system and the bath. The system would then evolve in
time unitarily and the average entropy would vanish.

This observation allows us to drastically simplify the
mathematics since the expressions inside the integral
need only be kept to 0-th order in g2. In other words,
we may compute the evolution of ρt using only the von
Neumann equation

∂tρt = − i
~

[Ĥsys(t), ρt]. (14)

We wish to approximate Eq (10) when the protocol
duration τ is large in the sense of Eq. (2). To achieve
this end we utilize the so-called derivative truncation
method [33, 35, 36], which assumes a specific form for
the density operator in terms of the equilibrium system
density operator and the first order derivative of the pro-
tocol Λ:

ρt ≈ ρeqt + δρλα
dλα

dt
. (15)

The Einstein summation convention is assumed here and
throughout for the index α and the operator δρλα is Her-
mitian and traceless.

Substituting Eq. (15) into the von Neumann equation
Eq. (14) and ignoring derivative terms of order higher
than first, we obtain equations for the unknown operators
δρλα where α indexes the finite set of control parameters.

These equations are most conveniently expressed in
terms of the operator basis |ωa(t)〉〈ωb(t)| where |ωa(t)〉
is an eigenket of ρt with eigenvalue ωa. The convenience
of this choice arises in the time independence of the eigen-
values ωa, which can be illustrated by the following ar-
gument:

As ρt evolves according to Eq. (14), we must have

∂tTr {ρnt } = Tr

{
n

(
− i
~

[Ĥsys(t), ρt]

)
ρn−1t

}
= 0 (16)

for all positive integers n. Since the coefficients of the
characteristic polynomial of ρt can be expressed in terms
of combinations of traces of powers of ρt, it follows that
the spectrum is time independent; i.e.; ωa(t) = ωa(0) ≡
ωa.

It follows immediately that

∂tρt =
∑
a

ωa∂t
[
|ωa(t)〉〈ωa(t)|

]
(17)

by the Spectral Theorem. Using the eigenket basis
|ωa(t)〉 affords us a simple expression for ∂tρt: we need
only compute the time-derivative of the projection op-
erators since the eigenvalues ωa are time-independent.
However, the (time-dependent) energy eigenkets are more
convenient for practical applications and so we express all
relevant quantities in terms of this basis.

Using the derivative truncation approximation, we can
deduce the approximate eigenkets of ρt in terms of the
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energy eigenkets:

|ωa〉 ≈ |εa〉+
∑
b 6=a

(
Zt

e−βεa − e−βεb

)
〈εb|δρλα |εa〉|εb〉

dλα

dt

≡ |εa〉+ (δ|ωa〉)λα
dλα

dt
. (18)

Furthermore, ωa ≈ e−βεa

Z . This follows immediate from
the approximation Eq. (15) and the definition of eigen-
kets.

The construction of the approximate eigenkets and
eigenvalues forces the diagonal entries of δρλα in the en-
ergy eigenket basis to vanish. This is consistent with the
requirement of positivity as both ρt and ρeqt are positive
in Eq. (15), but the term involving δρλα is sensitive to
the rate of change of λα which could be negative.

Using Eqs. (15) and (18) , we see that

∂tρt ≈
∑
a

e−βεa

Zt

∂

∂λα
[
|εa〉〈εa|

]dλα
dt

(19)

and so we obtain the expansion of δρλα in the energy
eigenket operator basis:

δρλα =
∑
a6=c

∑
b

(
~ie−βεb
εacZt

Tr {|εc〉〈εa|∂λα [|εb〉〈εb|]}
)
|εa〉〈εc|

=
∑
a6=c

~i
εac

(∂λαρ
eq
t )ac |εa〉〈εc| (20)

with εac ≡ εa − εc and (∂λαρ
eq)ac ≡ Tr {|εc〉〈εa|∂λαρeqt }.

Furthermore, from Eq. (18) we have

(δ|ωa〉)λα =
∑
b 6=a

Zt
e−βεa − e−βεb

~i
εba

(∂λαρ
eq
t )ba |εb〉. (21)

By constructing an explicit expression for δρλα we
may now construct a quadratic functional approximat-
ing 〈ΣI〉Λ:

〈ΣI〉Λ = g2
∫ τ

0

dt Tr {L(ρt) (− ln ρt + ln ρeqt )}

≈ g2
∫ τ

0

dt
dλβ

dt
Tr {L(δρλβ ) (− ln ρt + ln ρeqt )}

(22)

which follows from L(ρeqt ) = 0.
We compute the trace in the |ωa〉 basis in which − ln ρt

is diagonal. Since Tr{L (·)} = 0, we have

dλβ

dt
Tr {L (δρλβ ) (− ln ρt)}

=
dλβ

dt
Tr {L (δρλβ ) (− ln ρt + lnZt)}

≈ dλβ

dt
Tr {L (δρλβ ) (− ln ρeqt )}

+
∑
a

2βεa <{〈εa|L(δρλβ )δ (|ωa〉)λα}
dλα

dt

dλβ

dt
.

(23)

From this follows a useful expression for the entropy
production

〈ΣI〉Λ ≈ g2
∫ τ

0

dt
dλα

dt

dλβ

dt
×∑

a

βεa <{〈εa|L(δρλβ )δ (|ωa〉)λα

+ 〈εa|L(δρλα)δ (|ωa〉)λβ} (24)

after symmetrization in the α and β indices. We may
write this expression as

〈ΣI〉Λ ≈ g2
∫ τ

0

dt
∑
jklm

dλα

dt

dλβ

dt
Ajklm (∂λαρ

eq
t )jk (∂λβρ

eq
t )lm

(25)
where the components of the matrix A depend on L and
the energy eigenvalues and eigenkets. We include the
explicit components of A in the appendix.

Eq. (24) approximates the average information entropy
produced during a finite-time driving protocol of a quan-
tum system weakly coupled to a large thermal bath us-
ing only quantities directly calculable from the time-
dependent system Hamiltonian and the Lindblad oper-
ators.

We will now use Eq. (24) to explicitly compute the av-
erage information entropy produced by driving a simple
two-state model quantum system.

III. TWO-STATE MODEL SYSTEM

We apply Eq. (24) to a simple two-state system with
system Hamiltonian

Ĥsys = −~ωy(t)σy + ~ωz(t)σz (26)

where σy and σz are the Pauli spin matrices. Optimiza-
tion of such a system could potentially be useful in ap-
plications such as quantum annealing [47, 48].

We further assume that the system is coupled to a ther-
mal bath of bosonic oscillators so that the full Hamilto-
nian is

Ĥtot = Ĥsys(t) + g σz ⊗ B̂ + ĤB (27)

where ĤB =
∑
k ωkb

†
kbk, B̂ =

∑
k

(
b†k + bk

)
and g is a

small coupling constant.
It is convenient to work in an eigenbasis of σz repre-

sented by the column vectors

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
. (28)

In this basis,

Ĥsys = ~
(

ωz iωy
−iωy −ωz

)
. (29)
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It is most convenient to express the control parameters
in polar form: β~ωz ≡ r cos(θ), β~ωy ≡ r sin(θ). In this

form, it is not hard to show that the eigenvalues of Ĥsys

are ∓r with eigenvectors

| − r〉 =

(
−i sin (θ/2)

cos (θ/2)

)
, |r〉 =

(
i cos (θ/2)
sin (θ/2)

)
. (30)

For simplicity, we assume r > 0 and 0 < θ < π
2 . A

straightforward calculation demonstrates that

L0 =

(
cos2(θ) i cos(θ) sin(θ)

−i cos(θ) sin(θ) − cos2(θ)

)
(31)

L−2r =

(
1
2 sin2(θ) −i cos2(θ/2) sin(θ)

−i sin2(θ/2) sin(θ) − 1
2 sin2(θ)

)
(32)

L2r =

(
1
2 sin2(θ) i sin2(θ/2) sin(θ)

i cos2(θ/2) sin(θ) − 1
2 sin2(θ)

)
(33)

are the operators defining L for this model system.
Choosing the bath oscillator frequencies ωk so that

γ(0) ≡ γ0 and γ(±2r) = γ1e
±r for γ0, γ1 > 0 and setting

~ = 1, we have from Eq. (24)

〈ΣI〉Λ ≈ g2
∫ τ

0

[
γ0

(
x0 − 1

2

)
ln
(

x0

1−x0

)
2r2

cos2(θ)

+ γ1
(er − e−r) ln

(
x0

1−x0

)
16r2

sin2 (θ)

](
dθ

dt

)2

dt

≡
∫ τ

0

σ2[θ(t)]

(
dθ

dt

)2

dt (34)

where x0 = 1
1+e−2r .

While this functional is non-negative as expected from
the fluctuation theorem of [14], we see that it vanishes
if θ is held constant. If r is allowed to vary while θ is
fixed, no information entropy is generated on average.
In terms of Riemannian geometry, this means that the
metric tensor possesses null directions.

We apply the Euler-Lagrange equation to obtain the
optimal entropy production:

∂

∂θ

{
σ2[θ]θ̇2

}
− d

dt

(
∂

∂θ̇

{
σ2[θ]θ̇2

})
= 0 (35)

implies

θ̈ +
σ′[θ]

σ[θ]
θ̇2 = 0. (36)

Upon integration, we find

θ̇ =
C

σ[θ]
, C =

1

τ

∫ θf

θ0

σ[θ]dθ. (37)

Therefore, the optimal average entropy is given by

〈ΣI〉Λopt
≈ 1

τ

(∫ θf

θ0

σ[θ]dθ

)2

. (38)

If we choose θ0 = 0 , θf = π/2, then

〈ΣI〉Λopt
≈ g

τ

√√√√γ0
(
x0 − 1

2

)
ln
(

x0

1−x0

)
2r2

×

EllipticE

(
1− γ1 (er + e−r)

8γ0

)
. (39)

Eq. (39) exhibits the expected 1/τ behavior of the op-
timal average entropy production. Fig. 1 illustrates the
dependence of 〈ΣI〉Λopt on the constants γ0 and γ1. We
see that 〈ΣI〉Λopt has a γ1 = constant profile described
by
√
γ0. The quantities γ0 and γ1 are related to the

bosonic frequencies ωk of the thermal bath [47] and are
thereby related to the noise of the quantum system. The
bosonic frequencies consequently have a relatively sim-
ple influence on the overall average entropy production
in the finite-time long duration limit via Eq. (39).

IV. CONCLUSION

Using the formalism of [33–36], developed for classical
systems, we were able to construct a general approxi-
mation of the average information entropy of a quantum
system driven in finite-time in terms of a quadratic func-
tional of velocities in parameter space. This functional
can be interpreted as endowing parameter space with a
semi-definite metric in which optimal protocols are equiv-
alent to geodesics. For a simple two-state driven quan-
tum system weakly coupled to a thermal bosonic bath, we
were able to derive an approximate expression for the av-
erage information entropy. This expression has the char-
acteristic 1/τ dependence with a coefficient compactly
expressed in terms of quantities related to the bosonic
bath oscillator frequencies.

Interestingly, in the simple two-state example studied
here, the quadratic functional approximation for 〈ΣI〉Λ
we derived possesses null directions when expressed in
terms of metric geometry on the space of control param-
eters. In fact, for this model system, changing r results in
a shift of energies. If r alone is changed, then it turns out
that the system density matrix evolves exactly without
a change in average information entropy. Consequently,
our solution contains a null direction, which makes the
quantum tensor not positive definite but positive semi-
definite. It seems likely that this behavior is generic,
though a proof is lacking.

It is gratifying that this framework allowed us to ob-
tain a general expression for the approximate entropy
production in driven non-equilibrium quantum systems,
as well as a closed-form solution for the minimum entropy
production possible for a specific system with relevance



6

to quantum annealing. We are encouraged by the suc-
cess of this approach for this simple system and we hope
that this program will lead to further insight into the
optimization of quantum systems out of equilibrium.
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FIG. 1. Plot of 〈ΣI〉Λopt/〈ΣI〉Λopt,0 where 〈ΣI〉Λopt,0 is the
optimal average entropy for γ0 = 1 , γ1 = 0.
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VI. APPENDIX

We record here the components of A appearing in
Eq. (25) for the convenience of the reader.

Ajklm =
1

2

∑
b>a,d>c

~βZt
(e−βεb − e−βεa) εdc

× {

− (δjd δkc δlb δma + δld δmc δjb δka) 〈εa|L(|εd〉〈εc|)|εb〉
+ (δjc δkd δlb δma + δlc δmd δjb δka) 〈εa|L(|εc〉〈εd|)|εb〉
+ (δjd δkc δla δmb + δld δmc δja δkb) 〈εb|L(|εd〉〈εc|)|εa〉
− (δjc δkd δla δmb + δlc δmd δja δkb) 〈εb|L(|εc〉〈εd|)|εa〉}

(40)

[1] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys.
Rev. Lett. 71, 2401 (1993).

[2] D. J. Evans and D. J. Searles, Phys. Rev. E 50, 1645
(1994).

[3] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74,
2694 (1995).

[4] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[5] T. Hatano and S. Sasa, Phys. Rev. Lett. 86, 3463 (2001).
[6] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[7] J. T. Liphardt, S. Dumont, S. B. Smith, I. Tinoco Jr,

and C. Bustamante, Science 296, 1832 (2002).
[8] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[9] T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602

(2010).
[10] G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and

D. J. Evans, Phys. Rev. Lett. 89, 050601 (2002).
[11] D. M. Carberry, J. C. Reid, G. M. Wang, E. M. Sevick,

D. J. Searles, and D. J. Evans, Phys. Rev. Lett. 92,
140601 (2004).

[12] N. Garnier and S. Ciliberto, Phys. Rev. E 71, 060101
(2005).

[13] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and
M. Sano, Nat. Phys. 6, 988 (2010).

[14] S. Deffner and E. Lutz, Phys. Rev. Lett. 107, 140404 (5
pp.) (2011).

[15] L. Fei and O. Zhong-Can, Chin. Phys. B 23 (2014).
[16] B. Leggio, A. Napoli, H.-P. Breuer, and A. Messina,

Phys. Rev. E 87 (2013).
[17] R. Chetrite and K. Mallick, J. Stat. Phys. 148 (2012).

[18] T. Albash, D. A. Lidar, M. Marvian, and P. Zanardi,
Phys. Rev. E 88 (2013).

[19] G. Crooks, J. Stat. Mech.:Theor. Exp. 2008 (2008).
[20] M. Campisi, P. Haenggi, and P. Talkner, Rev. Mod.

Phys. 83 (2011).
[21] M. Campisi, P. Talkner, and P. Haenggi, Phys. Rev.

Lett. 102 (2009).
[22] P. Talkner, M. Campisi, and P. Haenggi, J. Stat.

Mech.:Theor. Exp. (2009).
[23] L. Szilard, Z. Phys. 53, 840 (1929).
[24] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[25] C. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
[26] M. Frank, Comput. Sci. Eng. 4, 16 (2002).
[27] B. Lambson, D. Carlton, and J. Bokor, Phys. Rev. Lett.

107, 010604 (2011).
[28] B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011).
[29] L. Chen and F. Sun, eds., Advances in Finite Time Ther-

modynamics: Analysis and Optimization, (Nova Science,
New York, 2004).

[30] G. Diana, G. B. Bagci, and M. Esposito, Phys. Rev. E
87, 012111 (2013).

[31] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den
Broeck, Europhys. Lett. 89, 20003 (2010).

[32] E. Aurell, K. Gawedzki, C. Mejia-Monasterio, R. Mo-
hayaee, and P. Muratore-Ginanneschi, J. Stat. Phys.
147, 487 (2012).

[33] P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E 89,
052140 (2014).

[34] D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108,
190602 (2012).



7

[35] P. R. Zulkowski, D. A. Sivak, G. E. Crooks, and M. R.
DeWeese, Phys. Rev. E 86, 041148 (2012).

[36] P. R. Zulkowski, D. A. Sivak, and M. R. DeWeese, PLoS
ONE 8, e82754 (2013).

[37] D. K. Shenfeld, H. Xu, M. P. Eastwood, R. O. Dror, and
D. E. Shaw, Phys. Rev. E 80, 046705 (2009).

[38] D. C. Brody and D. W. Hook, J. Phys. A 42, 023001
(2009).

[39] A. Gomez-Marin, T. Schmiedl, and U. Seifert, J. Chem.
Phys. 129, 024114 (2008).

[40] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301
(2007).

[41] E. Aurell, C. Mej́ıa-Monasterio, and P. Muratore-
Ginanneschi, Phys. Rev. Lett. 106, 250601 (4) (2011).

[42] O. Abah and E. Lutz, EPL 106 (2014).
[43] P. Mehta and A. Polkovnikov, Annals of Physics 332,

110 (2013).
[44] S. Deffner, J. Phys. B 47 (2014).
[45] D. Stefanatos, Phys. Rev. E 90 (2014).
[46] T. Schmiedl, E. Dieterich, P.-S. Dieterich, and U. Seifert,

J. Stat. Mech.:Theor. Exp. (2009).
[47] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi, New

Journal of Physics 14, 123016 (2012).
[48] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355

(1998).
[49] U. Seifert, Reports on Progress in Physics 75, 126001

(2012).


