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Reconstructing heterogeneous materials from limited structural information has been a topic that
attracts extensive research efforts and still poses many challenges. The Yeong-Torquato procedure
is one of the most popular reconstruction techniques, in which the material reconstruction problem
based on a set of spatial correlation functions is formulated as a constrained energy minimization
(optimization) problem and solved using simulated annealing [Yeong and Torquato, Phys. Rev. E
57, 495 (1998)]. The standard two-point correlation function S2 has been widely used in reconstruc-
tions, but can also lead to large structural degeneracy for certain nearly percolating systems. To
improve reconstruction accuracy and reduce structural degeneracy, one can successively incorporate
additional morphological information (e.g., non-conventional or higher order correlation functions),
which amounts to re-shaping the energy landscape to create a deep (local) energy minimum. In
this paper, we present a dynamic reconstruction procedure that allows one to use a series of aux-
iliary S2 to achieve the same level of accuracy as those incorporating additional non-conventional
correlation functions. In particular, instead of randomly sampling the microstructure space as in
the simulated annealing scheme, our procedure utilizes a series of auxiliary microstructures that
mimic a physical structural evolution process (e.g., grain growth). This amounts to constructing
a series auxiliary energy landscapes that bias the convergence of the reconstruction to a favored
(local) energy minimum. Moreover, our dynamic procedure can be naturally applied to reconstruct
an actual microstructure evolution process. In contrast to commonly used evolution reconstruction
approaches that separately generate individual static configurations, our procedure continuously
evolves a single microstructure according to a time-dependent correlation function. The utility of
our procedure is illustrated by successfully reconstructing nearly percolating hard-sphere packings
and particle-reinforced composites as well as the coarsening process in a binary metallic alloy.

PACS numbers: 05.20.-y, 61.43.-j

I. INTRODUCTION

Heterogeneous materials such as composites, alloys,
granular materials and porous media abound in nature
and synthetic situations. Successful applications of such
materials require accurate assessments and predictions of
the effective material properties and their performance
under extreme conditions, which in turn rely on the ac-
curate knowledge of the complex material microstructure
and quantitative structure-property relations [1–3]. Gen-
erating virtual 3D microstructure is a key step in estab-
lishing rigorous structure-property relations. Although
certain advanced imaging techniques, such as x-ray to-
mographic microscopy [4–7], allow one to directly ob-
tain sufficient structural information in a non-destructive
manner for 3D material rendition, there are still mate-
rial systems for which only limited morphological infor-
mation are available, such as those in x-ray scattering
experiments [8, 9].

Recently, a variety of material reconstruction methods
using limited structural information contained in differ-
ent statistical morphological descriptors have been de-
veloped. Examples of such reconstruction techniques in-
clude the Gaussian random field method [10], stochastic
reconstruction procedure [11, 12], gradient-based method
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[13], phase recovery method [14], multi-point reconstruc-
tion method [15], and raster-path method [16], to name
but a few. The structural descriptors utilized in the re-
constructions usually arise in rigorous structure-property
analysis [17–27] and statistically capture different geo-
metrical and topological features of the material sys-
tem. Examples include the standard two-point corre-
lation function S2 [1, 2], which gives the probability of
finding two specific points in the material phase of inter-
est. The general n-point correlation function Sn provides
the probability of finding a specific n-point configuration
in the phase of interest. The integrals of Sn are involved
in various rigorous bounds [17] and contrast expansions
[18, 19] of effective material properties. Interested read-
ers are referred to Ref. [2] for a detailed discussion of
correlation functions and their properties.

The stochastic reconstruction procedure [11, 12], also
referred to as Yeong-Torquato (YT) procedure in litera-
ture, is one of the most popular material reconstruction
techniques. In principle, the Y-T procedure allows one
to incorporate an arbitrary number of correlation func-
tions of any types into the reconstructions (with increas-
ing computational cost when more correlation functions
are used). Specifically, the reconstruction problem is for-
mulated as an energy minimization problem, with the
energy E defined for a trial microstructure as the differ-
ence between the target and simulated correlation func-
tions. The space of trial microstructure (i.e., microstruc-
ture space) is then randomly searched to find one that
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minimizes E (with an ideal minimum of zero). This is
done by evolving an initial random trial microstructure
using the simulated annealing procedure such that in the
end the trial microstructure possesses an energy value
smaller than a prescribed tolerance (see Sec. III for al-
gorithmic details). The Y-T procedure is very flexible
and versatile in dealing with different material system.
However, due to its stochastic nature, a large number of
intermediate trial microstructures need to be generated
and analyzed, which makes it computationally intensive.
Several improved implementations of the Y-T procedure
have been devised to improve efficiency [28–32], preserve
isotropy [33–35] and handle anisotropic materials [36–38].

Although the two-point correlation function S2 is
widely used for reconstructing a wide class of material
systems, it generally does not contain sufficient morpho-
logical information to uniquely determine a microstruc-
ture [39, 40]. Thus, reconstructions using S2 alone can
lead to large structural degeneracy (i.e., a large number
of distinct microstructures compatible with the specified
correlation function) [40], especially for nearly percolat-
ing systems, in which the volume fraction φ of one of
the phases is close to the critical value φc beyond which
a system-spanning cluster of that phase emerges [2, 3].
To reduce structural degeneracy and increase reconstruc-
tion accuracy, a variety of non-standard correlation func-
tions, such as the two-point cluster function C2 provid-
ing topological connectedness information [21, 22] and
surface-surface correlation function Fss providing inter-
face information [23], have also been incorporated into
the Y-T procedure [30] (see definitions in Sec. II). It has
been shown that these non-standard correlation functions
contain higher-order structural information encoded in
Sn and thus, incorporating them in the reconstruction
can significantly reduce the number of compatible mi-
crostructures [30]. This amounts to re-shaping the energy
landscape (defined over all possible microstructures) to
create a deep (local) energy minimum with a wide and
smooth basin, which has a very high probability of being
identified by the random microstructure search (see Fig.
1).

In this paper, we present a dynamic reconstruction pro-
cedure within the Yeong-Torquato framework that allows
one to use a series of auxiliary S2 to achieve the same
level of accuracy as those incorporating additional non-
conventional correlation functions. In particular, instead
of randomly sampling the microstructure space as in the
standard Y-T simulated annealing scheme, our proce-
dure utilizes a series of auxiliary microstructures that
mimic a physical structural evolution process (e.g., grain
growth). Such auxiliary microstructures are obtained,
e.g., by successive isotropic erosion of the original target
microstructure [41, 42]. For each auxiliary microstruc-
ture, the associated S2 is computed and the reconstruc-
tion process proceeds by growing as well as successively
evolving the morphology of the target phase according
the series of target S2s. This also amounts to construct-
ing a series auxiliary energy landscapes, one associated

(a) (b)

FIG. 1: (Color online). Schematic illustration of different
modifications of energy landscape to improve convergence for
different reconstruction methods within the Yeong-Torquato
framework. The original funnel energy landscape associated
with S2 is illustrated by the black curve in both panels. (a)
Incorporating additional correlation functions amounts to re-
shaping the energy landscape to create a deep (local) energy
minimum with a wide and smooth basin (red curves or dark
gray curves in print version). (b) The dynamic reconstruc-
tion utilizes a series of auxiliary energy landscapes (dashed
red curves or dark gray curves in print version) to bias the
convergence of reconstruction to the favor microstructure (il-
lustrated by the dashed blue arrow or light gray arrow in print
version).

with each S2 in the series, that bias the convergence of
the reconstruction to a favored (local) energy minimum
(see Fig. 1). We note that our procedure is different
from a recently developed “dilation/erossoin” method
[41, 42], which transforms topologically complex struc-
tures to simpler ones and utilizes appropriate topological
descriptors such as C2 for accurate reconstructions of the
original system.

Moreover, the dynamic reconstruction procedure can
be naturally applied to reconstruct a microstructure evo-
lution process. In this case, the series of S2 character-
ize snapshots of the material microstructure at succes-
sive time points during the evolution and thus, can be
considered as a single time-dependent correlation func-
tion evaluated at different time points. In contrast to
commonly used evolution reconstruction approaches that
separately generate individual static configurations, our
procedure continuously evolves a single microstructure
according to a time-dependent correlation function. The
utility of our procedure is illustrated by successfully re-
constructing nearly percolating hard-sphere packings and
particle-reinforced composites as well as the coarsening
process of a binary metallic alloy.

The rest of the paper is organized as follows: In Sec. II,
we provide definitions of various correlation functions em-
ployed in this paper. In Sec. III, we present the dynamic
reconstruction procedure in detail. In Secs. IV and V,
we respectively apply our procedure to successively re-
construct nearly percolating systems and microstructure
evolution based on two-point correlation functions alone.
In Sec. VI, we make concluding remarks.
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FIG. 2: (Color online). Schematic illustration of the probabil-
ity interpretation of the correlation functions employed in this
work. The line segments (two-point configurations) and tri-
angles (three-point configurations) illustrate the events that
contribute to the corresponding correlation functions.

II. STATISTICAL MORPHOLOGICAL
DESCRIPTORS

A. n-Point Correlation Function

In general, the microstructure of a heterogeneous ma-
terial can be uniquely determined by specifying the in-
dicator functions associated with all of the individual
phases of the material [1, 2]. Without loss of generality,
we focus on two-phase materials (binary medium) in this
work. We note that the generalization of the subsequent
discussion to a multiple-phase system is straightforward.
Consider a statistically homogeneous materialM occu-

pying the region V in the d-dimensional Euclidean space
R

d (d = 1, 2, 3) which is partitioned into two disjoint
phases: phase 1, regions V1 of volume fraction φ1 and
phase 2, regions V2 of volume fraction φ2. It is obvious
that V1∪V2 = V and V1∩V2 = 0. The indicator function
I(i)(x) of phase i is given by

I(i) (x) =

{
1 x ∈ Vi,
0 x ∈ V̄i,

(1)

for i = 1, 2 with Vi ∪ V̄i = V and

I(1)(x) + I(2)(x) = 1. (2)

The n-point correlation function S
(i)
n for phase i is defined

as follows:

S(i)
n (x1,x2, ...,xn, ) =

〈
I(i)(x1)I

(i)(x2)...I
(i)(xn)

〉
,

(3)
where the angular brackets “〈...〉” denote ensemble aver-
aging over independent realizations of the medium. The

two-point correlation function S
(i)
2 for phase i is defined

by

S
(i)
2 (x1,x2) =

〈
I(i)(x1)I

(i)(x2)
〉
. (4)

For a statistically homogeneous medium, S
(i)
2 is a func-

tion of the relative displacements of point pairs, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (x2 − x1) = S

(i)
2 (r), (5)

where r = x2 − x1. If the medium is also statistically

isotropic, S
(i)
2 is a radial function, depending on the sep-

aration distances of point pairs only, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (|r|) = S

(i)
2 (r). (6)

Interested readers are referred to Ref. [2] for a detailed

discussion of S
(i)
2 and other higher order S

(i)
n . Hence-

forth, we will drop the superscript i in S
(i)
2 for simplicity.

Without further elaboration, S2 is always the two-point
correlation function of the phase of interest.

B. Surface Correlation Functions

The surface correlation functions contain information
about the random interface in a heterogeneous system
[23]. Since such statistics arise in and are of basic im-
portance in the trapping and flow problems, it is con-
ventional in that context to let phase 1 denote the fluid
or “void” phase, and phase 2 denote the “solid” phase.
The simplest surface correlation function is the specific
surface s(x) at point x, which gives the interface per unit
volume, i.e.,

s(x) = 〈M(x)〉, (7)

where M(x) is the interface indicator function defined
as the absolute gradient of the phase indicator function,
i.e.,

M(x) = | ▽ L(x)|. (8)

We note that for statistically homogeneous material, the
specific surface is a constant everywhere and thus, is sim-
ply denoted by s.
The two-point surface correlation functions for a gen-

eral heterogeneous material are defined by

Fss(x1,x2) = 〈M(x1)M(x2)〉, (9)

and

Fsv(x1,x2) = 〈M(x1)L(x2)〉, (10)

which are respectively called the surface-surface and
surface-void correlation functions [2, 23]. For statistically
homogeneous and isotropic materials, the functions Fss

and Fsv only depend on the scalar distance r = |x1−x2|.
We note that unlike Sn, the surface correlation functions
do not have a direct probability interpretation, since the
probability of finding a point exactly falling on the the
interface is always zero. Instead, they can be associated
with the probability of finding points in the dilated inter-
face region with thickness δ in the limit δ → 0 [30] (see
Fig. 2).
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C. Two-point Cluster Function

The two-point cluster correlation function C2(x1,x2)
gives the probability that two randomly selected points
x1 and x2 fall into the same cluster of the phase of in-
terest [21, 22] (see Fig. 2). For statistically homoge-
neous and isotropic materials, C2 depends only on the
relative distance r between the two points. It contains
complete clustering information of the phases, which has
been shown to have dramatic effects on the material’s
physical properties [2, 3]. However, unlike S2 and the
surface correlation functions, the cluster function gen-
erally cannot be obtained from lower-dimensional cuts
(e.g., 2D slices) of a 3D microstructure, which may not
contain correct connectedness information of the actual
3D system.
It has been shown that C2 is related to S2 via the

following equation [22]

S2(r) = C2(r) +D2(r) (11)

where D2(r) measures the probability that two points
separated by r fall into different clusters of the phase of
interest. In other words, C2 is the connectedness contri-
bution to the standard two-point correlation function S2.
For microstructures with well-defined inclusion, C2(r) of
the inclusions is a short-ranged function that rapidly de-
cays to zero as r approaches the largest linear size of the
inclusions. We note that although C2 is a “two-point”
quantity, it has been shown to encode higher-order struc-
tural information which makes it a highly sensitive sta-
tistical descriptor over and above S2 [30].

D. Computing Correlation Functions From Images

The aforementioned correlation functions can be effec-
tively computed from given digital images of a material,
in which the microstructure is represented as a 2D (or
3D) array of pixels (or voxels). In such arrays, each entry
indicates the local state (e.g., phase) of that pixel. For
a binary system, the array is simply a collection of black
and white pixels on a regular lattice. The probabilistic
interpretation of the correlation functions enable us here
to develop a general sampling method for reconstruction
of statistically homogeneous and isotropic digitized tex-
tures based on the “lattice-gas” formalism, which is in-
troduced in Ref. [34] and generalized in Ref. [30]. In
the generalized formalism, pixels with different values
(occupying the lattice sites) correspond to distinct lo-
cal states and pixels with the same value are considered
to be “molecules” of the same “gas” species [34]. The
correlation functions of interest can be obtained by bin-
ning the separation distances between the selected pairs
of molecules from particular species.
For example, the standard two-point correlation func-

tion S2 can be computed as follows:

S2(r) = NP (r)/NS(r), (12)

where NS(r) is the number of lattice-site separation
distances of length r and NP (r) gives he number of
molecule-pair separation distances of length r. The two-
point cluster function C2 is given by

C2(r) =
∑

i

N i
P (r)/NS(r), (13)

where N i
P (r) denotes the pair distances of length r be-

tween the “molecules” within the same cluster i. The
surface-surface correlation function Fss can be obtained
by

Fss(r) = Nss(r)/NS(r), (14)

where Nss(r) gives the number of distances between two
surface molecules with length r. Additional details about
this method are provided in Ref. [30].

III. DYNAMIC RECONSTRUCTION METHOD

A. Yeong-Torquato Procedure

Our dynamic reconstruction procedure is developed
within the Yeong-Torquato (YT) stochastic reconstruc-
tion framework [11, 12], in which an initial random mi-
crostructure is evolved to minimize an energy function
that measures the difference between target correlation
functions and those of the simulated microstructure. As
discussed in Sec. I, there are many other different mi-
crostructure reconstruction procedures [10, 14–16]. How-
ever, the Y-T procedure incorporates energy-driven mi-
crostructure evolution, which can be naturally general-
ized to derive the dynamic reconstruction procedure.
In the Y-T procedure, the reconstruction problem is

formulated as an “energy” minimization problem, with
the energy functional E defined as follows

E =
∑

r

∑

α

[
fα
n (r) − f̂α

n (r)
]2

, (15)

where f̂α
n (r) is a target correlation function of type α

and fα
n (r) is the corresponding function associated with

a trial microstructure. The simulated annealing method
[43] is usually employed to solve the aforementioned min-
imization problem. Specifically, starting from an initial
trial microstructure (i.e., old microstructure) which con-
tains a fixed number of voxels for each phase consistent
with the volume fraction of that phase, two randomly
selected voxels associated with different phases are ex-
changed to generate a new trial microstructure. Rele-
vant correlation functions are sampled from the new trial
microstructure and the associated energy is evaluated,
which determines whether the new trial microstructure
should be accepted or not via the probability:

pacc = min{exp(−∆E/T ), 1}, (16)
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where ∆E is the energy difference between the new and
old trial microstructure and T is a virtual temperature
T that is chosen to be initially high and slowly decreases
according to a cooling schedule [11, 12]. An appropriate
cooling schedule reduces the chances that the system gets
stuck in a shallow local energy minimum. In practice,
a power law schedule T (n) = γnT0 is usually employed,
where T0 is the initial temperature, n is the cooling stage
and γ ∈ (0, 1) is the cooling factor (γ = 0.98 is used
here). The simulation is terminated when E is smaller
than a prescribed tolerance (e.g., 10−6 in this case). Gen-
erally, a large number of trial microstructures need to be
searched to generate a successful reconstruction. There-
fore, highly efficient sampling methods [30, 33, 34] are
used that enable one to rapidly obtain the prescribed
correlation functions of a new microstructure by updat-
ing the corresponding functions associated with the old
microstructure, instead of completely re-computing the
functions. The readers are referred to Ref. [30] for de-
tails of the efficient correlation function update schemes.

B. Dynamic Reconstruction

In the original Y-T scheme, the microstructure space
is randomly sampled and thus, the evolution of the trial
microstructure during the reconstruction is not associ-
ated with a physical process. In addition, the conver-
gence of the reconstruction strongly depends on the en-
ergy landscape defined over the microstructure space [c.f.
Eq. (15)]. As discussed in Sec. I, for certain nearly per-
colating systems (e.g., dense particle packings), the en-
ergy landscape associated with the reconstruction using
S2(r) alone is very rough and contains many local min-
ima, which usually lead to large structural degeneracy
and inaccurate reconstructions. For example, in a typ-
ical reconstructed structure, the degree of clustering is
significantly overestimated and the particle phase, which
is supposed to be disconnected, usually percolates and
forms a system spanning cluster [39, 40]. One approach
to reduce structural degeneracy is to incorporate addi-
tional correlation functions such as C2 and Fss, which
re-shape the energy landscape to create a deep (local)
energy minimum with a wide and smooth basin of at-
traction. Such a minimum is usually associated with a
high probability being visited and selected by the random
microstructure research.
The dynamic reconstruction procedure we devise here

uses auxiliary energy landscapes to bias the microstruc-
ture evolution towards a favored reconstruction. This
allows one to use a series of auxiliary S2 to achieve the
same level of reconstruction accuracy as those incorpo-
rating additional non-conventional correlation functions.
It works as follows: Given a target digitized two-phase
microstructure (2D or 3D) possessing a volume fraction
φ(n) for the phase of interest, say phase 1, the associated

two-point correlation function S
(n)
2 (r) is computed. Then

an “erosion” operation is applied to the microstructure,

which is described in detail in the subsequent section.
The erosion operation results in a reduced volume frac-
tion of phase 1, i.e., φ(n−1) and the associated two-point

correlation function S
(n−1)
2 (r) is computed. This process

is repeated n times until the morphology of phase 1 con-
sists of well separated compact particles with a very low
volume fraction φ(0), which results in a series of correla-

tion functions {S
(0)
2 (r), S

(1)
2 (r), . . . , S

(n)
2 (r)}.

To reconstruct the original system, instead of directly

using Ŝ2 of the target microstructure, we start from S
(0)
2

associated with the eroded system possessing the lowest
volume fraction φ(0). A corresponding microstructure is
then reconstructed using the Y-T procedure, which has
been shown to be highly efficiently in generating accu-
rate reconstruction at such low φ. The reconstructed mi-
crostructure is then used as the initial configuration for

reconstructing the structure with φ(1) from S
(1)
2 . Specif-

ically, a new trial microstructure is generated from the
current configuration by adding pixels of phase 1 to ran-
domly selected locations at the two-phase interface to
increase the volume fraction from φ(0) to φ(1). Then Y-
T procedure is applied in which only surface pixels are
randomly selected and displaced on the surface. The re-
sulting new trial microstructure is accepted with a prob-
ability specified by Eq. (16) and simulated annealing is
used to evolve the system.
We note that this approach is distinct from a conven-

tional Y-T procedure in two aspects: (i) a favored initial
configuration instead of a random one is used, which is al-
ready in the basin associated with an energy minimum;
(ii) more efficient evolution kinetics that only involves
displacing surface pixels is employed. This corresponds
to evolve the energy-minimal configuration M(k) asso-

ciated with S
(k)
2 to the nearest energy-minimal configu-

ration M(k+1) in the energy landscape associated with

S
(k+1)
2 via surface optimization. This process is repeated

to successively generate a series of auxiliary microstruc-
tures M(k), M(k+1), . . ., M(n) in order to finally accu-
rately reconstruct the original microstructure M̂. It can
be seen that during the entire reconstruction process,
a series of auxiliary energy landscapes are constructed,

each associated with a S
(k)
2 (k = 0, 1, . . . , n). These aux-

iliary landscapes successively bias the evolution path of
the trial microstructure to improve the convergence of the
reconstruction (see Fig. 1). Our procedure is also differ-
ent from a recently developed “dilation/erossion”method
[41, 42], which transforms a topologically complex struc-
ture to simpler one, and utilizes appropriate topological
descriptors such as C2 for accurate reconstructions of the
original system. No auxiliary landscapes are used in the
“dilation/erossion” approach.
Moreover, the dynamic reconstruction procedure is

readily applicable to reconstruction of a microstruc-
ture evolution process. In this case, the series

{S
(0)
2 (r), S

(1)
2 (r), . . . , S

(n)
2 (r)} characterize snapshots of

the materials at successive time points during the evo-
lution and thus, can be considered as a single time-
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dependent correlation function evaluated at different
time points. This is to be distinguished from the se-
ries of auxiliary S2 obtained from the erosion process,
for which the inverse reconstruction from a low-density
initial configuration only “mimics” a physical evolution
process. In contrast to commonly used evolution recon-
struction approaches that separately generate individual
static configurations, our procedure continuously evolves
a single microstructure according to a time-dependent
correlation function.

C. Generating Serial S2 Using Erosion Operation

As discussed in the previous section, an erosion op-
eration is employed to generate auxiliary microstruc-
tures, from which the auxiliary correlation functions

{S
(0)
2 (r), S

(1)
2 (r), . . . , S

(n)
2 (r)} are computed. Specifically,

the operation successively removes surface layers of the
phase 1 and convert the associated pixels into phase 2.
(The surface layer of phase 1 is defined as a layer of pixel
that has at least one neighbor pixel of phase 2.) We now
describe the erosion procedure devised for particulate mi-
crostructure in detail.

(a) before erosion (b) after erosion

FIG. 3: (Color online). A schematic illustration of erosion
operation. Panel (a) shows the target grain, whose center of
mass is denoted by “c”. Panel (b) shows the grain morphology
after an erosion operation, where d is the change of the radius
of the circle enclosing the grain.

Our erosion operation mimics a physical erosion pro-
cess. For example, for material in a erosive environment,
the erosion rates at different locations are different and
depend on the local morphology as well as the environ-
ment. Generally speaking, geometrical singular regions
with more exposure to the environment such as corners
and protrusion are more easily eroded out. To achieve
this in our simulated erosion process, we first examine
the target microstructure and obtain the centers of mass
(COM) of each individual grains. Then we place equal-
sized circles (or spheres in 3D) centered at COMs to en-
close the grains in the system. The radius of circles is
initially large and successively decreased until the circles
intersect with the grains. The regions of grains that are
not enclosed by the circles are removed, and the reduced

density φ(k) as well as the associated correlation function

S
(k)
2 is computed, where k corresponds to this erosion

stage. This process is repeated until the morphology of
the phase of interest consists of well separated compact
particles with a very low volume fraction φ(0). Gener-
ally, our erosion operation reduces geometrical singular-
ities (e.g., sharp corners, elongated protrusions etc.) as
well as size dispersity in the microstructure, leading to
an easy-to-reconstruct configuration via the Y-T proce-
dure. For example, at a certain stage, all the grains could
become equal sized circles (or spheres in 3D) with a very
low volume fraction, which are easily reconstructed via
the Y-T procedure. This is to be distinguished from the
erosion method used in Refs. [41] and [42], in which “ero-
sion” occurs along the direction normal to the surface and
thus, preserves the geometrical singularities and particle
size distribution in the eroded microstructures.

IV. RECONSTRUCTING NEARLY
PERCOLATING MICROSTRUCTURE

In this section, we apply the dynamic reconstruction
procedure to generate virtual microstructures of 3D bi-
nary heterogeneous materials in which one of the phases
is nearly percolating. Specifically, two systems are con-
sidered here: a packing of equal-sized hard spheres [44]
and a SiC-particle reinforced Al-matrix composite [45]
with a particle-phase volume fraction close to the corre-
sponding percolation thresholds. Previous studies have
shown that the standard Y-T reconstruction using S2

alone significantly overestimates the degree of clustering
of the particle phase in such systems. In the following,
we will show that our procedure not only correctly re-
produces the connectedness of the particle phase but also
reasonably resolve the shape and size distribution for the
SiC particles.

A. Packing of Equal-Size Hard Spheres

We first consider a packing of equal-sized hard spheres
with packing fraction (i.e., volume fraction of the particle
phase) φ = 0.283 (see Fig. 4). The packing is generated
by compressing a low-density initial configuration of N =
199 spheres via the adaptive-shrinking-cell method [46].
The erosion operation described in Sec. IIIC is em-

ployed to generate a series of auxiliary structures. Specif-
ically, the spheres are successively shrunk until each
sphere is represented by a single voxel. The resulting

series of correlation functions S
(j)
2 are computed and em-

ployed to successively reconstruct the auxiliary struc-
tures, see Fig. 5. The final reconstruction is shown
in Fig. 6a. It can be clearly seen that well separated
equal-sized spherical particles of are produced. This is
to be contrasted with the S2-alone reconstruction using
the standard Y-T procedure, in which the particle phase
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FIG. 4: (Color online). A packing of N = 199 equal-sized
hard spheres with packing fraction φ = 0.283.
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FIG. 5: (Color online). Dynamic reconstruction of a dense
hard-sphere packing system. Auxiliary structures (d-f) are
successively reconstructed from the associated correlation
functions (a-c) based on previously reconstructed structures
as favored initial configurations.

is connected as shown in Fig. 6b. To quantitatively as-
certain the accuracy of the dynamic reconstruction, the
two-point cluster function C2 and surface-surface corre-
lation function Fss computed from both the target and
reconstructed structures are compared in Fig. 6c. In the
case of dynamic reconstruction, the corresponding func-
tions match very well with one another, indicating the
high accuracy of the dynamic reconstruction. It can be
clearly seen that the Y-T procedure significantly over-
estimates the clustering in the reconstruction, as shown
by the long-range C2 in Fig. 6c. In addition, the Y-T
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FIG. 6: (Color online). Reconstructed systems based on S2

alone. (a) Dynamics reconstruction. (b) Standard Y-T recon-
struction. Comparison of C2 (c) and Fss (d) computed from
the target and reconstructed microstructures.

reconstruction also overestimates the number of surface
voxels, as indicated by the larger values of Fss, compared
to the target function as shown in Fig. 6d.

B. SiC/Al Composite

Fig. 7 shows a model microstructure of SiC-particle
reinforced Al-matrix composite [45] with particle volume
fraction φ = 0.31. It can be seen that the isotropic SiC
particles possess a wide size distribution. Although the
particle volume fraction is close to the percolation thresh-
old, the particle phase is still disconnected, which makes
the system very difficult to reconstruct using the stan-
dard Y-T procedure based on S2 alone.
The erosion operation described in Sec. IIIC is em-

ployed to generate a series of auxiliary structures. Specif-
ically, the SiC particles are successively shrunk until the
smallest particle is represented by a few voxels. The

resulting correlation functions S
(j)
2 are computed and

employed to successively reconstruct the auxiliary struc-
tures, see Fig. 8. The final reconstruction is shown in
Fig. 9a. It can be clearly seen that the size distribution of
SiC particles are very well resolved in the reconstruction.
This is also quantitatively indicated from the comparison
of the two-point cluster function C2 and surface-surface
correlation function Fss computed from the target and
the reconstruction, as shown in 9c. Also shown is the
reconstructed system using the standard Y-T procedure
from S2 alone (Fig. 9b), in which the clustering of the
particle phase is again significantly overestimated.
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FIG. 7: (Color online). A SiC-particle reinforced Al-matrix
composite material with particle volume fraction φ = 0.31.
Only the particle is shown and the matrix is transparent. The
linear size of the system is 200 µm. The whole system is
digitized into 100 by 100 by 100 voxels.
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FIG. 8: (Color online). Dynamic reconstruction of the SiC/Al
composite system. Auxiliary structures (d-f) are successively
reconstructed from the associated correlation functions (a-c)
based on previously reconstructed structures as favored initial
configurations.

V. RECONSTRUCTING MICROSTRUCTURE
EVOLUTION

In this section, we apply the dynamic reconstruction
procedure to reproduce the microstructure coarsening
process in a binary lead/tin alloy aged at 448K up to
216 hours [35]. It has been shown that the scaled auto-
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FIG. 9: (Color online). Reconstructed systems based on S2

alone. (a) Dynamics reconstruction. (b) Standard Y-T recon-
struction. Comparison of C2 (c) and Fss (d) computed from
the target and reconstructed microstructures.

correlation function of this system, i.e.,

f(r) =
S2(r)− φ2

φ(1 − φ)
, (17)

which is same for both the Pb-rich and Sn-rich phases,
can be approximated via the following expression [35]

f(r; t) = exp(−ar/λ(t)) cos(πr/λ(t) + b)/ cos(b), (18)

where a = 3.5 and b = 0.60 are dimensionless fitting
parameters depending on the aging temperature and Pb
composition and

λ(t) =

[
λ3
0 + (λ3

f − λ3
0)

t

tf

]1/3
, (19)

where λ0 and λf are respectively the length-scale in the
as-processed and final aged microstructures, and tf is the
associated time of aging.
To reconstruct the coarsening process, the two-point

correlation function S2 of the Pb-rich phase is computed
at different time points during the evolution, see Fig. 10a.
The dynamic reconstruction is employed to successively
evolve the microstructure according to the series of S2,
see Fig. 10b. We note that the coarsening process is dif-
fusion controlled, thus, the phase morphological changes
occur through the two-phase interface. This makes the
surface-evolution kinetics utilized in our reconstruction
procedure naturally mimics the actual physical evolution
process, and therefore highly efficient in reconstructing
the structural evolution.
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FIG. 10: (Color online). Reconstruction of the coarsening
process in a lead/tin alloy from a time-dependent correlation
function. (a-c) S2 at different time points during the evo-
lution (i.e., respectively 12, 24 and 48 hours after annealing
starts). (d-f) The associated microstructures generated using
the dynamic reconstruction in which only the Pb-rich phase
is shown. The coarsening of the phase is apparent. The linear
size of the system is 250 µm. The total annealing time for the
alloy is 216 hours.
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FIG. 11: (Color online). Upper panels: Comparison of (a) a
2D optical micrograph of the alloy at 36 hours after annealing
starts and (b) a corresponding 2D slice of the reconstructed
structure at the same time point. Lower panels: Compari-
son of the two-point cluster functions C2 (c) and the surface-
surface correlation function Fss (d) for the experimental and
reconstructed systems.

To quantitatively ascertain the quality of the recon-
struction, the reconstructed system at selected time
points are compared both visually and qualitatively to
the 2D optical micrographs of the alloy at the correspond-
ing time points during the aging experiment, see the up-
per panels of Fig. 11. Figure 11b and c respectively show
the two-point cluster function C2 and surface-surface cor-
relation function Fss computed from the 2D micrographs
and 2D slices of the reconstructed alloy structures. The
excellent agreement between the reconstructed and ex-
perimental correlation functions clearly indicates the ac-
curacy of the dynamic reconstruction in reproducing the
entire microstructure evolution process.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented a dynamic reconstruc-
tion procedure that allows one to use a series of auxiliary
S2 to accurately reconstruct heterogeneous materials in
which one of the phases is nearly percolating. Such sys-
tems are extremely difficult to reconstruct using the stan-
dard Y-T procedure, which usually significantly overes-
timates the degree of clustering unless additional non-
conventional correlation functions containing appropri-
ate topological information are incorporated. Different
from the Y-T scheme in which the microstructure space
is randomly sampled, our procedure utilizes a series of
auxiliary energy landscapes and surface-evolution kinet-
ics to bias the microstructure evolution path and improve
the convergence of the reconstruction. This dynamic
procedure can be naturally applied to reconstruct a mi-
crostructure evolution process by continuously evolves a
single microstructure according to a time-dependent cor-
relation function. However, it is important to note that
our dynamic reconstruction procedure can only be ap-
plied in the cases where a target microstructure or a se-
ries of auxiliary S2 is given. If the only available struc-
tural information is a single S2, our procedure cannot be
applied and the standard Y-T method should be used
instead.
The utility of our procedure is illustrated by success-

fully reconstructing systems containing well separated
particle phases near percolation such as the hard-sphere
packing and SiC/Al composite, as well as a system con-
taining bi-continuous interpenetrating phases such as the
binary lead/tin alloy. These examples clearly indicate the
validity and efficiency of the dynamic reconstruction pro-
cedure in generating a wide class of complex microstruc-
tures and structural evolution.
Although the two-point correlation function S2 is em-

ployed as the input structural information for dynamic
reconstruction, this procedure can be easily generalized
to utilize other limited morphological information. For
example, limited-angle projections obtained via in situ

x-ray tomography can be used to reconstruct the contin-
uous evolution of a single material due to external stim-
uli [47]. This will significantly reduce the cost to sepa-
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rately reconstruct individual material microstuctures at
discrete time points. Progress of this study will be re-
ported in our future publications.
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