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Transport properties and equation of state for HCNO mixtures in and beyond the
Warm Dense Matter regime

Christopher Ticknor, Lee A. Collins, and Joel D. Kress
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

We present simulations of a four component mixture of HCNO with orbital free molecular dy-
namics (OFMD). These simulations were conducted for 5-200 eV with densities ranging between
0.184-36.8 g/cm3. We extract the equation of state from the simulations and compare to average
atom models. We found that we only need to add a cold curve model to find excellent agreement.
Additionally, we studied mass transport properties. We present fits to the self-diffusion and shear
viscosity which are able to reproduce the transport properties over the parameter range studied.
We compare these OFMD results to models based on the Coulomb coupling parameter and one
component plasmas.

PACS numbers: 03.75Hh,67.85-d

I. INTRODUCTION

Heterogeneity can profoundly change the behavior of a
system when compared to a homogenous, single compo-
nent plasma. This is particularly true at a fundamental
level in high-energy density (HED) physics where mix-
tures of elements can lead to anomalous behavior. Good
examples are found in inertial confinement fusion (ICF)
experiments, where lasers compress material to extraor-
dinary densities [1–3]. Invariably the ablator, the plas-
tic shell holding the nuclear fuel, mixes with the fuel
when imploded, changing the material properties and re-
ducing the yield [4]. Recent studies have been designed
to directly study this intriguing mixing process [5, 6].
More generally, HED mixtures are found throughout as-
trophysics, examples range from interiors of planets [7]
to white dwarfs [8].

A full theoretical understanding of mixtures remains il-
lusive due to the large number of phenomena that occur.
One important approach has been the application of a
first principles method called quantum molecular dynam-
ics (QMD), which combines density functional theory to
determine the electronic structure with the classical mo-
tion of ions [9–11]. This creates a consistent theory of
HED matter that accurately produces transport proper-
ties and EOS for mixtures [12–16]. Despite QMD’s suc-
cess and accuracy, it is computationally intense and this
limits its use. Other theories have begun to approach
the challenge of mixtures from different avenues, such
as generalizations of the one component plasma (OCP)
model [17] such as the works of Refs. [18, 19]. Equation
of states (EOSs) for mixtures has been obtained from
quantum average atom methods [20–26]. Other notable
recent efforts have extended such quantum average atom
formulations to explicitly treat mixtures [27, 28] with the
hyper-netted chain formalism.

Yet these alternative methods to first principles QMD
simulations remain limited in scope. Therefore it remains
important to directly study mixtures and explore and
characterize their general behavior. Here we study the
behavior of mixtures with a flavor of QMD, called orbital

free molecular dynamic (OFMD), which uses Thomas-
Fermi-Dirac theory to construct the electronic density
and is valid at higher temperature (T> 5eV ). We have
performed large OFMD simulations of a representative
four component mixture of Hydrogen (H), Carbon (C),
Nitrogen (N) and Oxygen (O). We study densities rang-
ing between 0.184 and 36.8 g/cm3 and temperatures of
5 to 200 eV. This density range is representative of PBX
9501, an energetic material [29], with a compression ratio
of 0.1 to 20. The molecular mixture is representative of
high explosives, and it differs from the cases encountered
in modeling ice-giant planets because of its much lower
hydrogen content.

From these simulations we extract the EOS, self-
diffusion coefficients, and the shear viscosity of the mix-
tures. With these results we inform and test simpler
models used to produce EOS. For example, we are able
to accurately reproduce the OFMD EOS with an effective
average atom Thomas-Fermi-Dirac (TFD) method. Ad-
ditionally, we compare the transport properties to models
which use the plasma coupling parameter, Γ, to parame-
terize the behavior of viscosity [30] and diffusion [18, 26].
These models produce good estimates of the OFMD with
more simple models.

In the remainder of the paper, we first review the
OFMD simulation methods. Then we review an average
atom model used to reproduce the EOS. We present the
transport properties and their behavior as a function of
density and temperature. Finally, we look at the results
of Γ models used predict transport properties.

II. METHODS

We now review the methods we used to produce the
EOS and transport properties from OFMD simulations.
Additionally, we discuss other methods used to under-
stand the transport properties of the system.
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A. OFMD simulations

In this work we have performed large four-component
OFMD simulations of an HCNO mixture. Throughout
this paper, we will label these four component simula-
tions and their results as 4C-OFMD. We use the Born-
Oppenheimer approximation and separate the electronic
and ionic degrees of freedom. For a given ion con-
figuration, the electronic structure is found, and then
classical equations of motion for the ions are numeri-
cally integrated within the isokinetic ensemble [31]. The
simulation has a total number of ions: N =

∑
γ Nγ

where for the γth species, there are Nγ ions with nuclear
charge Zγ and atomic weight Aγ . Additionally there
are Ne =

∑
γ NγZγ electrons in the volume. The elec-

tronic density is found with a finite-temperature orbital-
free density functional theory [32] treatment (Thomas-
Fermi-Dirac) with the kinetic-entropic form of Perrot
[33]. The electron-ion interaction is obtained from a regu-
larization prescription [32] and the exchange-correlation
from a local density Perdew-Zunger form [34]. OFMD
has proven accurate for extracting equations-of-state and
mass transport properties for the warm dense matter
(WDM) regime and up to the dense plasmas regime [35–
38].

The mixture density ranges between 0.184 and 36.8
g/cm3 at temperatures of 5eV to 200eV. This density
range is representative of PBX 9501 with a compression
ratio bewtween 0.1 to 20. Typical simulations have 54 H,
31 C, 39 N, and 43 O ions (167 total ions). For the two
most dilute simulations, we use 27 H, 15 C, 19 N, and
21 O ions (82 total ions). These smaller samples pro-
duce EOS and transport properties that are converged
to within statistical error to a larger simulation when
compared to when both are at denser conditions (0.92
g/cm3). The simulations required a large amount of com-
putational resources and were run on Cielo, a Cray XE6
with AMD Opterons at Los Alamos. Typical simulations
ran on 4096 cores for 24-48 hours to produce 30,000 to
50,000 MD time steps. This large number of time steps
was needed to converge the viscosity, which was particu-
larly difficult for the dilute simulations.

Instead of using all four constituents, an alternative
two-component model (2C-OFMD) was found to repro-
duce well the EOS and average transport properties. A
single representative heavy ion was used in place of C, N
and O; we will call this the heavy composite model, which
will be labeled A. This composite element has an atomic
mass (AA =

∑
γ=CNO(Nγ/N) · Aγ ∼17.1 g/mol) and

charge (ZA =
∑
γ=CNO(Nγ/N) · Zγ ∼7.1). In this man-

ner, the number of ions can be reduced while retaining
significant numbers of each ion, and thus saving com-
putational cost while retaining or improving statistical
significance of each constituent.

For the OFMD simulations, the total pressure of the
system is

P = nkBT + Pe(V, T ). (1)

This is the sum of the ideal gas pressure of the ions (at a
constant T enforced by the isokinetic thermostat) and the
electron pressure Pe, computed via the electronic forces
from the OFMD trajectory and averaged after the system
has equilibrated.

We extract the transport properties from the 4 com-
ponent OFMD simulations [39, 40]. The self-diffusion
coefficient of a particular ion species, Dγ is computed
from the integral of the velocity autocorrelation function
(VACF), which is:

Dγ =
1

3

∫ ∞
0

〈~vi(t) · ~vi(0)〉dt, (2)

where ~vi is the velocity of the ith particle (γ species). The
shear viscosity was computed from the autocorrelation
function of the stress tensor

η =
V

kBT

∫ ∞
0

〈P12(t′)P12(0)〉dt′, (3)

for further details see [39, 41].
We use empirical fits to the integrals of the autocorre-

lation functions to shorten the duration of the trajectory
required to converge the transport properties [37, 42].
For our set of parameters, the ACFs are generally not
structured, and a simple exponential fit suffices to ex-
tract the desired properties. The statistical error inher-
ent in computing correlation functions from molecular
dynamics is estimated [43] as

√
2τ/Ntdt where Ntdt is

the length of the trajectory and τ is the correlation time
of the ACF. We usually fit the ACF over a time interval
of 0 to 4τ . The length of the simulation is much longer
than τ . For the viscosity, the error computed is 10% or
less for all simulations except for the two most dilute sim-
ulations, where the error is less than 18%. The error for
the self-diffusion is less than 5%, due to the additional
factor of 1/

√
Nγ from averaging the VACF over all of

the ion of type γ.

B. Average atom Thomas-Fermi-Dirac model

An average atom (AA) Thomas-Fermi-Dirac (TFD)
electronic model can be used to reasonably reproduce
the thermal EOS of the 4C-OFMD simulations. The av-
erage atom model assumes a single ion of type γ has
charge Zγ and atomic mass of Aγ centered in a sphere,
for which one solves for the electronic density and elec-
trostatic potential such that there are Zγ electrons in
the spherical volume bounded by rws, the Wigner-Seitz
radius. This is found from the single particle volume:
V = 4πr3ws/3. More details of the average atom TFD
model can be found in Ref. [44, 45].

A standard way to decompose an EOS is to con-
sider the thermal behavior and T=0 (cold curve) be-
havior as separate contributions [46]. With this de-
composition, the electronic pressure can be written as:
P (V, T ) = Pe0(V ) + Pe(V, T ). Since AA TFD simula-
tions produce the total pressure, P (V, T ), to obtain the
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thermal electronic pressure, Pe(V, T ), we need to find
and subtract the cold curve, Pe0(V ). In our implemen-
tation of this TFD model, we take special care to make
sure that the thermodynamic properties are well behaved
at each V as T → 0. We set the thermal pressure to
Pe(V, T ) = AT 2 below Tref . We find Tref by solving
Pe(V, Tref )/Pe0(V ) = 0.01. This behavior is anticipated
at low temperature from the TFD model. Additionally,
this procedure is applied to energy and entropy (lin-
ear in T ) and produces a thermodynamically consistent
EOS and smooth thermodynamic functions and deriva-
tive with respect to both T and V of pressure, energy,
and entropy as a function of both V and T .

We consider two distinct ways to apply the average
atom model to represent a mixture. First an average el-
ement model (AE-AA), is defined where Aav and Zav are
averaged over all the atoms: Zav =

∑
γ=HCNO (Nγ/N) ·

Zγ ∼5.13 and Aav =
∑
γ=HCNO (Nγ/N)·Aγ ∼9.9 g/mol.

This is straightforward and produces good results. A
second more accurate model uses a 2 component model
(2C-AA) utilizing the heavy composite ion (A) and a pres-
sure matching mixing rule. To perform the mixing rule
[41], we define the desired state: T , V , N , NH , and NA,
and then solve for the partial volumes (VH and VA) at
which the pressures, from H and A, are equal under the
constraint that their volume sum to the total volume:

PH(VH , T ) = PA(VA, T )

V = VH + VA (4)

C. Γ models

Previous work [18, 26, 30, 35, 47–49] examined trans-
port properties of the one component plasma (OCP) as
a function of Γ = Z2/(akT ), where Z is the charge of an
ion and a is the interparticle separation, both of these
will be further specified below. We will compare our
4C-OFMD simulations with the models of Bastea [18],
Hansen [30], and Arnault [26]. For viscosity, Bastea gives
η/η0 = AΓ−2 + BΓ−s + CΓ with A = 0.482, B = 0.629,
C = 0.00188, s = 0.878, η0 = ρMr2wsωp and ω2

p =

4πρe2Z2/M [18]. For diffusion, we use the simple fit of
Hansen to estimate the diffusion as D/D0 = 2.95Γ−1.34

with D0 = ωpa
2 [30]. Additionally, we compare our dif-

fusion results to [26], which uses portions of the model
from Ref. [48, 49]. The Arnault model defines several
different regions in Γ in which different fits are provided
in each region [26].

The most successful means to estimate η and D used
the effective charge of the ions. So to define Γ, Z becomes
Z∗, which is a function of ρ and T . It should be clear
that Z∗ is not the total charge of an ion but its effec-
tive charge in dense plasma environment. In Fig. 1 the
effective charge for H, A (CNO composite), and the aver-
age element (av) are shown as a function of temperature
for three densities: 0.184 (black dotted line), 1.84 (red
dashed line) and 18.4 (blue line) g/cm3. For high den-

FIG. 1: (color online) The effective charge for H, A (CNO
composite) and av (average element) as a function of temper-
ature for three densities: 0.184 (black dotted line), 1.84 (red
dashed line) and 18.4 (blue line) g/cm3.

sity the Z∗ changes (solid blue) only a little and for low
density (black dashed), the Z∗ changes the most, starting
the lowest and finishing the highest for each atom.

To use the Γ model to find η and diffusion we use
a = ravws and the average ion mass, Mav, to define both
η0 and Γ. Here ravws and Mav are found by using the
average element’s properties. For the viscosity, we use the
average element effective charge, Z∗av [16]. For diffusion,
we find both DH and DA by using Z∗H and Z∗A [16] while
satisfying Eq. (4). This procedure gives good results for
both diffusion and viscosity as will be shown below.

III. COMPARISON OF AVERAGE ATOM TFD
TO OFMD

Here we compare the 4C-OFMD EOS to the inexpen-
sive AA-TFD models. To do this directly, we decompose
the EOS into the thermal behavior and cold curve, as
discussed above. Each of the models has its own unique
cold curve behavior. Every TFD model has a critical
volume [50] where the exchange term pulls the electron
density out of the interstitial regions. This includes the
4C-OFMD and results in the cold curve pressure being
zero. The AE-AA model gives a unique critical volume.
The 2C-AA has two distinct critical volumes, one for H
and one for A (CNO composite). Here it makes sense
to construct a cold curve model. Finally, the 4C-OFMD
give another distinct result due to the many-particle na-
ture of the OFMD result. Therefore to quantitatively
compare the electronic EOS from 4C-OFMD simulations
and the average atom TFD model, we must model the
cold curve to add this to the average atom model. The
model we use for the OFMD cold curve is:

Pe0 = A(ρ− ρ0)2Θ(ρ− ρ0)

PTFDe (ρ, T ) + Pe0(ρ) = POFMD
e (ρ, T ) (5)
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where Θ(x) is the Heaviside function and is equal to 1
when x ≥ 0 and 0 otherwise.

It should be noted that we are seeking to compare the
thermal behavior of the 4C-OFMD and the AA models.
Generally, TFD models do not correctly predict the cold
curve behavior of a material in the dilute limit. The com-
parison of the thermal behavior can be done, as we have
in Eq. (5), by adding the cold curve to the AA results, or
it can be done by subtracting it from the OFMD result.
We chose to add it, so it can more easily be visualized in
Fig. 2.

We perform a least-squares fit to determine A and ρ0
directly comparing the average atom plus the cold curve
model to the 4C-OFMD data; we used the relative er-
ror so not to over-emphasize the high temperature data.
For the 2C-AA, we find A =40.946 GPa/(g/cm3)2 and
ρ0=0.4435 g/cm3. For the average atom TFD model, we
find A =41.421 GPa/(g/cm3)2 and ρ0=0.646 g/cm3.

FIG. 2: (color online) The electronic pressure as a function of
temperature at several different densities. 4C-OFMD results
(red circles) as a function of temperature at various densities.
For the AE-AA, the EOS is shown without (black) and with
(blue squares) the modified cold curve model. The agreement
with the 4C-OFMD is excellent. For all data points, the aver-
age relative error is 1.5% . 2C-OFMD simulations are shown
as green triangles at select locations.

The electronic pressure from the 4C-OFMD simula-
tions and the 2C-AA model with a cold curve are shown
in Fig. 2. The red circles are from 4C-OFMD simula-
tions, the black lines are from the 2C-AA model, PTFDe ,
and the blue lines with squares include the cold curve,
PTFDe + Pe0. We see excellent agreement between the
OFMD simulations and 2 component average atom model
with the cold curve. For the 2C-AA, the results have
a relative chi-squared of 0.05, and the average error is
1.5%. The largest disagreement is near the transition
where Pe0 → 0 as temperature goes to zero for a den-
sity of 0.46 g/cm3. Beside these points, the agreement is
excellent. The results from the average atom model are
slightly higher in pressure than the 2 component average
atom, particularly at low T . The relative chi-squared is

0.28 and the average error is 5 %. For the most dilute
4-OFMD simulations, the cold curve is zero, i.e. ρ < ρ0,
and the agreement with the mixed average atom model
is very good.

We find that the 2C-AA model reproduces the 4C-
OFMD pressure more accurately because it allows the H
and the heavy ions to take up different volumes. This is
particularly important in the dilute limit. For example
in the low T limit, the H component of the gas occupies
much more volume. In the most dilute case, the volume
occupied by the H is 19% then lowers to 7% as tempera-
ture is increased. In contrast at the highest compression
ratio, the volume of H is roughly constant starting at
9% and lowering to 7%. The 7% number is the ideal
gas limit (each electron takes up equal volume and 7%
of the electrons are from H), and this is why all the high
temperature results trend to it.

IV. TRANSPORT PROPERTIES OF HCNO
MIXTURES

A. Viscosity

We now examine the shear viscosity of the HCNO
mixture. In Fig. 3(a) we show the viscosity for the
4C-OFMD simulations as a function of temperature for
three densities (g/cm3): 0.184 (black dots), 1.84 (red
squares) and 18.4 (blue triangle). In all cases, the vis-
cosity increases as temperature increases, scaling like an
plasma. We first see that the density significantly affects
the temperature dependence of the viscosity. At high-
est density, the temperature dependence is much weaker.
For example at high density and low temperature, be-
low T ∼ 30eV, the viscosity becomes nearly tempera-
ture independent. For higher densities (36.8 g/cm3, not
shown) the viscosity actually increases as temperature is
decreased, scaling like a liquid metal. For the low density
simulations, the viscosity goes up more rapidly compared
to more dense systems as temperature is increased.

We now rescale the viscosity to see if we can obtain a
single functional form to describe all of the data. This
work is inspired by the idea of universal transport prop-
erties [51–53]. We have found that rescaling the viscosity
as

η̄ = ηρ1/5/T 5/2 (6)

works well if we fit η̄ to a function exp[ax + bx2] where
x = ln[ρ/T 3]. In Eq. (6), the T 5/2 is reminiscent of the
Braginskii form of viscosity for fully ionized plasmas [54].
This form gives a reasonable fit to the data as shown in
Fig. 3 (b). The parameters a and b are found by a least
squares fit to all of the 4C-OFMD data: a=0.900614 and
b=0.0172519. This fit for the viscosity reproduces 87 of
the 96 data points to within 50%. An example of an
outlying data point, in fact the worst example, is at 8eV
and 0.184g/cm3. The fit to Eq. (6) is shown in Fig. 3
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(a). The rescaled data fit has an average relative error of
22%.

In Fig. 3 (c), we present the rescaled viscosity as a
function of Γ. The viscosity model of Bastea [18] does
not reproduce the viscosity as well as the fit we present,
Eq. (6). In particular, at high density the Bastea model
typically over estimates the viscosity, but otherwise gives
good estimates, with an average relative error of 39%.

B. Diffusion

In Fig. 4 we show the self-diffusion coefficients for the
4C-OFMD simulations as a function of temperature for
all ions at 1.84 g/cm3. There is clearly a different temper-
ature dependence for the heavy ions: C (green dotted), N
(blue dash dot), and O (violet dashed), when compared
to the H (black dots). The temperature dependence of
DH is slightly above linear while DA is just below linear.
We see that C (green dotted) is beginning to deviate from
N (blue dash dot) and O (violet dash). But overall this
shows that the behavior of C, N, and O are similar over
the range studied.

To further the analysis, we will look at an averaged two
component system and analyze the behavior. We average
the self-diffusion coefficients of C, N, and O into a single
value, labeled A (CNO composite). In Fig. 4 we show the
A diffusion coefficient as red-squares. Additionally, the
self-diffusion from the 2C-OFMD simulations (green tri-
angles) agree well with A (CNO composite). We will now
look at the temperature dependence of the self-diffusion
with the simple form D = cT ν for three example densi-
ties. The results for 0.184, 1.84, (shown in Fig. 4), and
18.4 g/cm3 are shown in Table I. As density increases, so

density [g/cm3] νH νA

0.184 1.21 0.65

1.84 1.25 0.72

18.4 1.34 0.95

TABLE I: The temperature dependence (T ν) of self-diffusion
coefficients of both H and A for three densities.

does the temperature scaling of the diffusion. Addition-
ally, while the temperature dependence of H is larger, it
does not increase as much as the temperature dependence
of A as density is increased.

To estimate the diffusion, we have rescaled the data
like the viscosity, but we found that a consistently better
result comes from the Γ models [26, 30]. We will now
compare the OFMD data against such models. In Fig. 5
(a) and (b), we show the 4C-OFMD self-diffusion coeffi-
cient (+) with the self-diffusion coefficient predicted by
[30] (squares). Each plot shows three different densities
0.184 (black), 1.84 (red), and 18.4 g/cm3 (blue). We see
generally good agreement. For the dilute example, the
black squares are systematically lower than the OFMD
data (+). In contrast, at high density the blue squares

are systematically higher than the OFMD data (+). In
Fig. 5 (b), a noticeable deviation is at low T and high
density, where the Γ fit results in predictions that become
too small as T is lowered.

In Fig. 5 (c) the rescaled diffusion coefficients are
shown as a function of Γ, H (blue squares) and A (red
dots), and are compared to the Γ models of Refs. [26, 30].
The agreement with [30] is quiet remarkable with an av-
erage relative error of 20% for DH and 16% for DA. Com-
pared to the viscosity Γ models, Γ spans a much larger
range, due to the smaller Z∗ of H and larger Z∗ of A. Fur-
thermore, we see good agreement generally except when
Γ is small (Γ < 0.1) and large (Γ > 10). In both cases,
the OFMD data is larger than the estimate.

We have also included the model from Ref. [26] (green
dashed), which uses portions of the model from Ref. [48,
49]. The Arnault model has an average relative error
of 48% for DH and 26% for DA. The most significant
disagreement for DH occurs at low Γ where the model
becomes much larger than the data. Similarly the 4C-
OFMD data is becoming larger than the Hansen fit, just
not at the rate of the Arnault model. At moderate Γ ∼ 1,
the Arnault model goes below the data. At large Γ, the
Arnault model result does a good job of capturing the
deviation of the data from the Hansen model. Since these
models are based on the OCP, so we do not expect perfect
agreement.

V. CONCLUSION

In this work, we presented large OFMD simulations
for a four component mixture of HCNO. Our simulations
covered densities of 0.184 to 36.8 g/cm3 with temperature
ranging from 5 to 200 eV. From these simulations, we
studied both the temperature and density dependence of
the EOS, self-diffusion coefficients, and shear viscosity.

In addition to the 4C-OFMD simulations, we found
that we could replace the four component mixture with
an effective two component mixture, (2C-OFMD), where
the heavy ions were averaged into a single composite ele-
ment. This simplified model reproduced the EOS, shear
viscosity, and self diffusion coefficients with good accu-
racy.

We compared the EOS obtained from the 4C-OFMD
to a commonly used TFD average atom model. We found
excellent agreement once we added a cold curve model to
the 2C-AA, (Fig. 2). In the 2C-AA model, we pressure
matched the H ion and the A ion (CNO composite) under
the constraint of additive volumes. This model was su-
perior to the the average element model (AE-AA) which
uses a single HCNO composite ion to model the whole
system.

We looked at the transport properties of the HCNO
mixture. Several examples of viscosity and self-diffusion
were given as a function of both density and temperature.
We have found that rescaling the viscosity (Eq. 6) and
fitting to a simple function, we were to reproduce the 4C-
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OFMD data well. Additionally, the viscosity was also
compared to the Γ based model of Bastea. The self-
diffusion coefficients are shown in Figs. 4 and 5. In Fig.
5, we compared the 4C-OFMD results and predictions of
diffusion coefficients for both H and A (CNO composite)
using effective single component Γ models of Refs. [26,
30]. We found these to be good estimates of the self-
diffusion coefficients.

This work will also pave the way forward on the in-
teriors of white dwarfs with compositions such as C, O,
and Fe [8]. Future work will be to study mixtures with
a larger difference in Z, for example H-Ag. Additionally,
comparisons to orbital based quantum models which can
handle mixtures, such as Refs [27, 28], should be made.

Any difference found on the comparisons will illuminate
the path for improving the models.
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FIG. 3: (color online) (a) The 4C-OFMD simulations of vis-
cosity as a function of temperature at three densities: 0.184
(black circles), 1.84 (red diamonds) and 18.4 (blue trinagles)
g/cm3. A few 2C-OFMD simulations are shown as green +.
The colored squares are from the model of Bastea [18]. (b)
The ln-ln plot of the rescaled 4C-OFMD viscosity. (c) η/η0
shown as a function of Γ and the model from [18].
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FIG. 4: (color online) The 4C-OFMD simulations of self-
diffusion of the H (black dots), C (green dotted), N (blue
dash dot), O (violet dashed), and the averaged 4C-OFMD
result: A (red squares, CNO composite) as a function of tem-
perature for 1.84 g/cm3. The green triangles are self-diffusion
coefficeints from the 2C-OFMD simulations.
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FIG. 5: (color online) The 4C-OFMD simulations of self dif-
fusion (+) of the (a) H and (b) A (CNO composite) as a
function of temperatures at three densities: 0.184 (top), 1.84
(red), and 18.4 (blue) g/cm3. The squares are the estimates
from Ref. [30], see text for details. (c) 4C-OFMD simulations
of D/D0 shown as a function of Γ for H (blue squares) and
A (red dots) with models from Hansen [30] (black line) and
Arnault [26] (green dashed).


