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In this paper, we consider the physical mechanism for the clustering of inertial particles in the
inertial range of isotropic turbulence. We analyze the exact, but unclosed, equation governing
the radial distribution function (RDF) and compare the mechanisms it describes for clustering in
the dissipation and inertial ranges. We demonstrate that in the limit Str � 1, where Str is the
Stokes number based on the eddy turnover timescale at separation r, the clustering in the inertial
range can be understood to be due to the preferential sampling of the coarse-grained fluid velocity
gradient tensor at that scale. When Str & O(1) this mechanism gives way to a non-local clustering
mechanism. These findings reveal that the clustering mechanisms in the inertial range are analogous
to the mechanisms that we identified for the dissipation regime (see New J. Phys. 16:055013,
2014). Further, we discuss the similarities and differences between the clustering mechanisms we
identify in the inertial range and the “sweep-stick” mechanism developed by Coleman & Vassilicos
(Phys. Fluids 21:113301, 2009). We show that the idea that initial particles are swept along
with acceleration stagnation points is only approximately true because there always exists a finite
difference between the velocity of the acceleration stagnation points and the local fluid velocity.
This relative velocity is sufficient to allow particles to traverse the average distance between the
stagnation points within the correlation timescale of the acceleration field. We also show that the
stick part of the mechanism is only valid for Str � 1 in the inertial range. We emphasize that our
clustering mechanism provides the more fundamental explanation since it, unlike the sweep-stick
mechanism, is able to explain clustering in arbitrary spatially correlated velocity fields. We then
consider the closed, model equation for the RDF given in Zaichik & Alipchenkov (Phys. Fluids.
19:113308, 2007) and use this, together with the results from our analysis, to predict the analytic
form of the RDF in the inertial range for Str � 1, which, unlike that in the dissipation range, is not
scale-invariant. The results are in good agreement with direct numerical simulations, provided the
separations are well within the inertial range.

I. INTRODUCTION

An initially uniform distribution of inertial particles in
an incompressible turbulent fluid velocity field will de-
velop dynamically evolving spatial clusters. Such clus-
tering has important implications for aerosol processes
such as gravitational settling [1, 2], turbulence modu-
lation [3, 4] and particle collisions [5, 6]. These pro-
cesses are relevant to industrial processes such as aerosol
manufacturing [7], drug delivery [8] and spray combus-
tion [9] as well as to natural processes such as sediment
and plankton distribution in oceans [10] and even the
formation of planets in the early universe [11].

In a recent paper [12], we considered in detail the
physical mechanism responsible for the clustering of in-
ertial particles in the dissipation range of isotropic tur-
bulence. Formally, the dissipation range is defined as
r � η, where r is the distance between two points in
space and η is the Kolmogorov length scale, though it
should be noted that experiments and numerical simu-
lations of the Navier-Stokes equation suggest that the
dissipation range actually extends to r = O(10η) [13].
Nevertheless, in what follows we define the dissipation
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range to be the limit r � η. In [12] we showed that
in the regime St� 1 (where St ≡ τp/τη is the Stokes
number, τp is the particle response time and τη is the
Kolmogorov timescale), the mechanism for clustering in
the Zaichik & Alipchenkov theory [14–16] (hereafter this
body of work is referred to as ‘ZT’) is the same as that in
the Chun et al. theory [17] (hereafter referred to as ‘CT’),
which is essentially an extension of the classical argument
of Maxey [1] that particles are centrifuged out of rotat-
ing regions of the fluid into regions of high strain rate.
When St & O(1), we showed that the ZT describes an
additional non-local contribution to the clustering mech-
anism that is discussed in greater detail in §II.

If the Taylor microscale Reynolds number, Reλ, is suf-
ficiently large, particles may also cluster in the inertial
range of the turbulence, a scenario that has been con-
sidered in several works [18–24]. The inertial range is
defined as η � r � L, where L is the integral length-
scale of the turbulence. In [18], they showed using
direct numerical simulations (DNS) that particle clus-
tering at η � r � L is not scale-invariant, unlike for
r � η. Furthermore, they also argued that the cluster-
ing is not simply characterized by Str, as would be pre-
dicted by a white-in-time flow analysis (e.g. [19]), but
rather by a rescaled contraction rate, at least for Str � 1,
where Str ≡ τp/〈ε〉−1/3r2/3 is the scale-dependent parti-
cle Stokes number based on eddies of size r, and 〈ε〉 is
the average turbulent energy dissipation rate. In a se-
ries of articles [20–23], an explanation for clustering at
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η � r � L was developed in terms of the “sweep-stick”
mechanism, whereby inertial particles are argued to stick
to stagnation points in the fluid acceleration field and are
swept along with them by the local fluid velocity. Since
the fluid acceleration stagnation points are clustered in
Navier-Stokes turbulence, they argue that this leads to
clustering of the inertial particles at η � r � L. More-
over, in [23], they argue that the clustering mechanisms
operating at r � η and η � r � L are different, with the
sweep-stick mechanism describing the clustering only for
η � r � L. The break in scale-invariance of the cluster-
ing noted in [18] as one goes from the dissipation range
to the inertial range is certainly consistent with their hy-
pothesis of different clustering mechanisms operating in
the two regimes.

The outline of the paper is as follows. In §II we exam-
ine the question of the clustering mechanism in the iner-
tial range by analyzing an exact equation for the radial
distribution function (RDF), and show that the mecha-
nism is precisely analogous to that operating in the dissi-
pation range. We show that the break in scale-invariance
of the clustering does not arise from a change in the un-
derlying mechanism. In §III, we contrast our findings
with the sweep-stick model of Coleman & Vassilicos [23].
Finally, in §IV we apply our findings to the model equa-
tion for the RDF from Zaichik & Alipchenkov [15] and
derive a prediction for the analytical form of the RDF
in the inertial range for Str � 1, which we test against
DNS data at Reλ = 597.

II. ANALYSIS OF THE CLUSTERING
MECHANISM IN THE INERTIAL RANGE

We consider the relative motion between two identi-
cal point particles, a ‘primary’ particle and a ‘satellite’
particle. We make the approximations that the particles
are subject to Stokes drag forces only, that they do not
interact with each other through physical collisions or hy-
drodynamic interactions and that they are at low enough
concentration to not affect the turbulence (i.e., ‘one-way
coupling’). Furthermore, we restrict our attention to
statistically stationary, homogeneous and isotropic tur-
bulence. One of the reasons for choosing such simplified
turbulence and particle dynamics is that we want to com-
pare our analysis with earlier studies that were based on
the same simplifications [e.g. 18–24]. The equation gov-
erning the relative motion of the two particles is [25]

ẇp(t) = (Stτη)−1
(

∆u(rp(t), t)−wp(t)
)
, (1)

where rp(t),wp(t), ẇp(t) are the particle pair relative
separation, relative velocity and relative acceleration vec-
tors, respectively, and ∆u(rp(t), t) is the difference in the
fluid velocity evaluated at the positions of the two parti-
cles.

For the system governed by (1) the exact equa-
tion governing the probability density function (PDF)

p(r,w, t) ≡ 〈δ(rp(t) − r)δ(wp(t) − w)〉 describing the
distribution of rp(t),wp(t) in the phase-space r,w is

∂tp =−∇r · pw + (Stτη)−1∇w · pw
− (Stτη)−1∇w · p〈∆u(rp(t), t)〉r,w,

(2)

where 〈·〉r,w denotes an ensemble average conditioned on
rp(t) = r and wp(t) = w. A commonly used statistical
measure of particle clustering is the RDF [26], which is
defined as the ratio of the number of particle pairs at sep-
aration r = |r| to the number that would be expected if
the particles were uniformly distributed. An exact equa-
tion for the statistically stationary RDF, g(r), can be
constructed by multiplying the stationary form of (2) by
w and then integrating over all w yielding

0 = g〈∆u(rp(t), t)〉r−StτηS
p
2 ·∇rg−Stτηg∇r ·Sp2 , (3)

where

g(r) =
N(N − 1)

n2V

∫
w

p(r,w) dw, (4)

N is the total number of particles lying within the control
volume V , n ≡ N/V is the number density of particles,
and Sp2 (r) ≡ 〈wp(t)wp(t)〉r is the second-order particle
velocity structure function.

The drift mechanisms that generate clustering are as-
sociated with the term Stτη∇r · Sp2 . The contribution
from g〈∆u(rp(t), t)〉r may also contain drift contribu-
tions in addition to diffusion effects (see [12]), and this
term is unclosed. It is not necessary at this stage to con-
sider closure approximations for g〈∆u(rp(t), t)〉r since its
physical interpretation is known, namely it describes a
flux arising from correlations between ∆u and rp(t) that
is associated with preferential sampling effects. Hence
for this qualitative discussion, we will focus on under-
standing the physical mechanisms described by the term
Stτη∇r · Sp2 .

We begin by reviewing the findings from [12] on the
meaning and behavior of Stτη∇r · Sp2 in the dissipation
range. In [12] we showed that for r � η and St� 1

Stτη∇r · Sp2 =
Stτη

3
r(A− B), (5)

where A ≡ 〈S2(xp(t), t)〉 and B ≡ 〈R2(xp(t), t)〉 are av-
erages of the second invariants of the strain-rate S and
rotation-rateR tensors evaluated along the inertial parti-
cle trajectory xp(t). This drift mechanism is identical to
the one derived in the CT using perturbation theory, and
is associated with the traditional centrifuge mechanism.
For St & O(1), the particle velocity dynamics become in-
creasingly non-local, and this fundamentally changes the
clustering mechanism described by Stτη∇r · Sp2 . The
physical interpretation of the non-local drift is as fol-
lows. Particle pairs arriving at separation r coming from
larger separations carry a memory of larger fluid velocity
differences in their path-history as compared with pairs
arriving at r from smaller separations. This path-history
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bias breaks the symmetry of the particle inward and out-
ward motions, creating a net inward drift and clustering.

In order to analyze the clustering mechanism in the
inertial range, we consider the limit Reλ →∞, such that
the inertial range is unbounded. Furthermore, we define
a scale-dependent Stokes number as Str ≡ τp/τr, where τr
is the eddy turnover timescale defined as τr ≡ 〈ε〉−1/3r2/3

for η � r � L, where 〈ε〉 is the average turbulent ki-
netic energy dissipation rate and L is the (asymptotically
large) integral length scale. For arbitrary Stokes num-

bers, St, the regime Str � 1 corresponds to r � ηSt3/2.
We can analyze this regime in much the same way as CT
did for r � η and St� 1.

Introducing the coarse-grained strain-rate S̃
and rotation-rate R̃ tensors, with coarse-graining
length scale r, we can write the fluid velocity

difference as ∆u(r, t) ≈ (S̃ + R̃) · r [27–29]. In
the regime Str � 1, wp(t) ≈ ∆u(rp(t), t) +O(Str)
and therefore to leading order Stτη∇r · Sp2 is
Stτη∇r · 〈∆u(rp(t), t)∆u(rp(t), t)〉r. We can de-
rive an expression for the latter quantity using the
coarse-graining and the scaling from Kolmogorov’s 1941
theory (K41, see [30]), yielding

Stτη∇r · Sp2 ≈
Stτη

3
r
[
(2r/5)∇rÃ+ Ã − ζB̃

]
, (6)

where

Ã ≡
〈
S̃p(t) : S̃p(t)

〉
, B̃ ≡

〈
R̃p(t) : R̃p(t)

〉
,

S̃p(t) and R̃p(t) denote S(xp(t), t) and R(xp(t), t)
coarse-grained over the scale r, ζ(r � η) = 1 and
ζ(η � r � L) = 7/15 [31]. For η � r � L (6) becomes

Stτη∇r · Sp2 =
7Stτη

45
r(Ã − B̃), (7)

and for r � η, (6) reduces to (5). Preferential sampling

of the inertial range eddies will lead to Ã > B̃, which
is associated with centrifuging out of eddies of size ≈ r.
Note that any drift contribution coming from the un-
closed term 〈∆u(rp(t), t)〉r in (3) has a similar interpre-
tation.

At separations r . O(ηSt3/2), corresponding to
Str & O(1), and so long as ∆u(r, t) is statistically de-
pendent upon r, the non-local, path-history symmetry
breaking contribution to Stτη∇r · Sp2 is important. This
transition is analogous to the one that occurs in the dis-
sipation range (i.e., r � η) for particles with St & O(1).
However, the relative magnitude of the transition from
the local to the non-local mechanisms is more pronounced
in the dissipation range than in the inertial range. The
reason for this is that although the particle relative veloc-
ities have a non-local contribution when Str & O(1), the
non-locality is much weaker in the inertial range because
∆u(r, t) varies with r more weakly than in the dissi-
pation range. In this case, at Str & O(1) the filtering

effect of the particle inertia (see [32]) can dominate the
non-local contribution to the particle relative velocities
leading to Sp2/〈∆u(r, t)∆u(r, t)〉 < 1. DNS results show
that whereas Sp2/〈∆u(r, t)∆u(r, t)〉 � 1 for St & O(1)
in the dissipation range, Sp2/〈∆u(r, t)∆u(r, t)〉 < 1 for
Str & O(1) in the inertial range [33]. However, the latter
result is sensitive to the Reynolds number. In particular,
in the limit Reλ →∞, where the filtering effect of parti-
cle inertia at the large scales of the flow becomes weak,
the non-local clustering mechanism would dominate at
η � r � L for Str & O(1).

We therefore conclude that the clustering mechanisms
operating in the inertial range are analogous to those op-
erating in the dissipation range. When Str � 1 preferen-
tial sampling of the coarse-grained fluid velocity gradient
tensor at scale ≈ r generates the inward drift and clus-
tering, and when Str & O(1) the non-local, path-history
symmetry breaking mechanism contributes to the clus-
tering.

III. RELATIONSHIP TO THE SWEEP-STICK
MECHANISM

As noted earlier, there is an alternative description of
inertial particle clustering known as the “sweep-stick”
mechanism [20–23]. The sweep-stick mechanism was mo-
tivated by the observation that the instantaneous particle
positions xp(t) are correlated with the positions of the
stagnation points of the acceleration field of the fluid,
sa(t), defined such that a(sa(t), t) ≡ 0, where a(x, t) is
the fluid acceleration field. Chen et al. [20] used K41
scaling to obtain〈

|ṡa(t)− u(sa(t), t)|2
〉
≈ u′u′

(
L/η

)−2/3

, (8)

where u(sa(t), t) is the fluid velocity at sa(t),

u′ ≡
√
〈u · u〉/3 and L is the integral lengthscale of

the flow. In the limit we are considering, namely
Reλ →∞, (8) suggests that ṡa(t) = u(sa(t), t), i.e.
stagnation points are swept by the local fluid veloc-
ity. In [23] they use DNS to consider the joint
PDF of ṡa(t) and u(sa(t), t) and do find a strong
correlation, even at the modest values of Reynolds
numbers in the study, Reλ < 200. For St� 1,
vp(t) ≈ u(xp(t), t)− Stτηa(xp(t), t) where vp(t) is the
particle velocity and u(xp(t), t), a(xp(t), t) are the fluid
velocity and acceleration at the particle position, respec-
tively. According to this expression, when xp(t) = sa(t)
the co-located particle moves with the fluid velocity
u(xp(t), t). This is statistically the same velocity with
which the a = 0 points move, and therefore it is argued
that the particle sticks to sa(t) and is swept along by u.
Although the above explanation for the stick part of the
mechanism is technically valid only for St � 1, in [23]
they present results from DNS which, they argue, show
that even for St = O(1), particles at acceleration stagna-
tion points move, statistically, with the same velocity as
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the local fluid.
The conceptual framework of the sweep-stick mech-

anism is interesting and since particles do cluster near
a = 0 points, it provides a reasonable argument for in-
ertial particle clustering. However, there is a confound-
ing conceptual problem that occurs when applying the
sweep-stick mechanism to stochastic flows such as kine-
matic simulations (KS). In KS, the acceleration stagna-
tion points are uniformly distributed, yet the inertial par-
ticles still cluster. Chen et al. [20] argued that clustering
in this instance is due to the repelling action of the ve-
locity stagnation points (taken in the stationary frame of
reference), which are clustered in KS. However, we would
argue that, rather than concluding that the clustering
mechanisms operating in DNS and KS are different, a
more convincing conclusion would be that the sweep-stick
mechanism is, in fact, not the underlying cause of the
clustering in the inertial range.

The argument we presented in §II explains clustering
in both KS and DNS. In particular, our argument states
that the cause of the particle clustering lies in the nature
of the interaction of the inertial particles with the fields

S̃ and R̃. This applies to both DNS and KS since it does
not depend upon the dynamics of the underlying system

governing S̃ and R̃. However, it is possible that the
sweep-stick mechanism provides a valid explanation for
clustering in DNS, but not KS, because of a relationship

that exists between S̃, R̃ and sa(t) that is specific to
Navier-Stokes turbulence. For example, at St� 1

∇x · v(xp(t), t) ≈ −Stτη

(
S2(xp(t), t)−R2(xp(t), t)

)
,

which applies to any fluid velocity field that has spatial
structure. However, in Navier-Stokes turbulence

S2(xp(t), t)−R2(xp(t), t) = −∇2
xp

f (xp(t), t),

such that in DNS one may speak of the behavior of
∇x · v(xp(t), t) in terms of either the particles interac-
tion with S and R, or equivalently in terms of their in-
teraction with the fluid pressure field pf . Yet, since such
a relationship is particular to the Navier-Stokes equa-
tions, one ought (for the sake of generality) to describe
the behavior of ∇x · v(xp(t), t) in terms of the particles
interaction with S and R.

It may well be the case that in an analogous way, a
relationship exists in Navier-Stokes turbulence between

S̃,R̃ and sa(t). A consequence of this could be that the
explanations of inertial particle clustering in terms of ei-
ther the clustering of sa(t) points (as in the sweep-stick
mechanism) or in terms of the particles preferential sam-

pling of S̃ over R̃ (as in our explanation) are equivalent.
To consider this possibility we will analyze the sweep-

stick mechanism to see if it provides a relationship be-
tween sa(t) and xp(t). We will then derive a relation-

ship between S̃, R̃ and sa(t) and demonstrate that in
Navier-Stokes turbulence sa(t) points cluster in regions

where Ã − B̃ > 0, i.e., precisely the regions where the
particles are predicted to cluster by the analysis in §II.

A. Sweeping of acceleration stagnation points

In [20] it is argued that (8) implies that
ṡa(t) = u(sa(t), t) in the limit Reλ →∞. In the
process of deriving (8), they used u′u′(L/η)−2/3 = u2

η.
Therefore the result from (8) that ṡa(t) = u(sa(t), t)
in the limit Reλ →∞ follows simply from the fact
that limReλ→∞ uη → 0. However, relative to uη,
|ṡa(t)− u(sa(t), t)| is finite and independent of
Reλ, and this has important implications since the
fluid acceleration field a fluctuates on a timescale
O(τη), and the average separation between stagna-
tion points is O(η) [20]. Supposing for the moment
that the stick part of the mechanism is valid, then
|ṡa(t)− vp(t|xp(t) = sa(t))| = O(uη) which implies that
the particle may traverse the average distance between
two stagnation points during the timescale τη. Conse-
quently, the idea that inertial particles stick to particular
stagnation points and are swept along with them is
probably not be valid. However, (8) does nevertheless
demonstrate that compared to their individual speeds,
the speed of stagnation points relative to the local fluid
velocity is small for Reλ →∞ and thus in a significant
way the stagnation points are swept by the velocity field.
Assuming again the validity of the stick mechanism, this
could then imply that although inertial particles may
not be swept together with particular stagnation points,
they may be swept along with clusters of stagnation
points, with the particles having the freedom to move
between stagnation points within the cluster as they are
collectively swept by the large scale motions of the tur-
bulence. Essentially the same alternative interpretation
of the sweep-stick mechanism was in fact suggested in
[34].

B. Is the “stick” mechanism valid for all Stokes
numbers?

The next concern is with the “stick” part of the mech-
anism and whether it is really valid when St & O(1).
The stick mechanism was formulated by appealing to the
St� 1 expression vp(t) = u(xp(t), t)− Stτηa(xp(t), t).
Since this expression is not valid for St & O(1),
in [23] they appeal to DNS results to show that
vp(t) = u(xp(t), t) when xp(t) = sa(t). Specifically, in
[23] they show that 〈vp(t)− u(xp(t), t)〉a = 0, when
a = 0, where 〈·〉a denotes an ensemble average condi-
tioned on a(xp(t), t) = a. On this basis, they conclude
that the stick mechanism is valid even for St & O(1).
However, this result does not validate the stick mech-
anism, nor does it explain the relationship between vp(t)
and u(xp(t), t) at a = 0 points.

From the particle equation of motion we have

−Stτη

〈
v̇p(t)

〉
=
〈
vp(t)− u(xp(t), t)

〉
, (9)
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and using this we may write

−Stτη

〈
v̇p(t)

〉
≡ −Stτη

∫ +∞

−∞
ρ(a)

〈
v̇p(t)

〉
a
da

=

∫ +∞

−∞
ρ(a)

〈
vp(t)− u(xp(t), t)

〉
a
da,

(10)

where ρ(a) ≡ 〈δ(a(xp(t), t)− a)〉. In statistically
stationary, isotropic turbulence, ρ(a) = ρ(−a) and
〈v̇p(t)〉 = 0. In the limit of strong local fluid acceleration,
lima→∞〈v̇p(t)〉a → a, i.e. when the local fluid acceler-
ation is very strong it is the dominant contribution to
v̇p(t). Together with the condition

∫
ρ(a)〈v̇p(t)〉a da = 0

this implies that 〈v̇p(t)〉a is an odd function of a, and
hence 〈vp(t)− u(xp(t), t)〉a=0 = 0 for all St. The DNS
results in Fig. 12 of [23] do in fact confirm that 〈v̇p(t)〉a
is an odd function of a.

There are two implications following from this anal-
ysis. First, 〈vp(t)− u(xp(t), t)〉a=0 = 0 is not dynam-
ically significant since with respect to the particle dy-
namics it follows simply from the fact that 〈vp(t)〉 =
〈u(xp(t), t)〉 = 0, yet two variables with equal means may
be entirely independent of one another. Second, since
(10) implies 〈vp(t)− u(xp(t), t)〉a=0 = 0 for all St, then
if 〈vp(t)− u(xp(t), t)〉a=0 = 0 were sufficient to demon-
strate the stick mechanism, then it would imply that
St→∞ particles should cluster through the action of
the sweep-stick mechanism, which is clearly invalid [35].

In order to demonstrate that the stick mechanism is
valid for St & O(1) one must consider an alternative
statistic such as

Q ≡
〈
|vp(t)− u(xp(t), t)|2

〉
|a|2

= (Stτη)2
〈
|v̇p(t)|2

〉
|a|2

,

(11)

which cannot vanish for any trivial reason at a = 0
since the particle and fluid velocity variances are, un-
like their mean values, non-zero. In the regime St� 1,
Q = (Stτη)2|a|2, which is consistent with the stick mech-
anism. However, there is no reason to expect that
Q(a = 0) = 0 in the regime St & O(1). Nevertheless,
in order for the stick mechanism to be valid one does
not necessarily require that Q(a = 0) = 0 precisely but
rather that Q(a = 0) is in some sense small. For exam-
ple, the sweep part of the mechanism suggests that the
velocity with which the sa(t) points are swept is related
to u′. In this case, if Q(a = 0)� u′u′, then although the
particles do not precisely stick to the stagnation points,
they remain close enough to follow them in a significant
way.
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FIG. 1. DNS data for Q at various St, plotted as a function
of |a|2/a2η, where aη is the Kolmogorov acceleration.

In Fig. 1 we show results for Q computed from DNS
at Reλ = 597. Details on the DNS used through-
out this paper can be found in [33]. As expected, the
results show that Q = (Stτη)2|a|2 for St� 1, imply-
ing Q(a→ 0)→ 0, consistent with the stick mechanism.
For St = O(1), while Q(a→ 0) 6→ 0, Q(a→ 0)� u′u′,
implying that although the particles do not precisely
stick to sa(t) points, they remain close enough to follow
them in a significant way. For St = O(10), Q(a→ 0)
remains quite small relative to u′u′. However, for
St = O(10) the variation of Q with a for |a|2/a2

η ≤ O(1)
is weak. This implies that although Q(a→ 0) is still
smaller than u′u′ at St = O(10), the significance of sa(t)
points for the particle motion becomes small. This
follows from noting that if Q(a) were constant for a
given St, then it would imply that the particle mo-
tion is entirely uncorrelated with a(xp(t), t). Never-
theless, our DNS data shows that St = O(10) parti-
cles cluster, and in fact cluster more strongly than
St = O(1) particles in the inertial range (see [33]), indi-
cating the breakdown of the sweep-stick mechanism as
the explanation for clustering when St = O(10). In
our DNS at Reλ = 597, St . O(1) =⇒ Str � 1, and
St & O(10) =⇒ Str & O(1) for r in the inertial range.

The conclusion to be drawn is that the sweep-stick
mechanism provides a valid explanation for clustering
in the inertial range of Navier-Stokes turbulence when
Str � 1, but it is not valid when Str & O(1). This is not
surprising since the sweep-stick mechanism is essentially
a local mechanism. It is also not surprising since the
correlation timescale of a(x, t) is O(τη), the lifetime of
sa(t) points is typically too short to cause the cluster-
ing of particles with St = O(10) (i.e. Str & O(1) in the
inertial range).

Thus, in the regime Str � 1, the sweep-stick mecha-
nism provides an essentially equivalent explanation for
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clustering to the mechanism we presented in §II (i.e.
centrifuging by eddies of size ≈ r) if the particles are
suspended in Navier-Stokes turbulence. This would be
analogous to the case in the dissipation regime where
for St� 1, particle clustering may be described either in
terms of their interaction with S,R or with the pressure
field pf , if the particles are in Navier-Stokes turbulence.

C. Where do sa(t) points cluster?

Irrespective of the validity of the sweep-stick mecha-
nism in providing a causal connection between the clus-
tering of sa(t) and xp(t) points, the fact remains that
DNS results reveal that there is a striking correlation
between the distribution of the two sets of points. The
mechanism we have argued for in §II predicts that the
particles should cluster in regions of high coarse-grained
strain. If our mechanism is correct then it is important to
demonstrate that sa(t) points also cluster in regions of
high coarse-grained strain in Navier-Stokes turbulence.
In order to demonstrate this we begin by defining the
PDF

P(r,∆u,a1,a2, t) ≡
〈
δ(rf (t)− r)δ(∆uf (t)−∆u)

× δ(af1 (t)− a1)δ(af2 (t)− a2)
〉
,

(12)

which describes the probability density of a pair of fluid
particles having relative separation r, relative velocity
∆u and accelerations a1 and a2 at time t. The evolution
equation for P is

∂tP =−∇r · P∆u−∇∆u · P(a2 − a1)

−∇a1 · P
〈
ȧf1 (t)

〉
r,∆u,a1,a2

−∇a2 · P
〈
ȧf2 (t)

〉
r,∆u,a1,a2

.

(13)

By multiplying this equation by ∆u and integrat-
ing over ∆u we obtain the equation governing
%(r,a1,a2, t) =

∫
P(r,∆u,a1,a2, t) d∆u, and in the

stationary state the equation is

0 =−∇r · %
〈

∆uf (t)∆uf (t)
〉
r,a1,a2

−∇a1 · %
〈
ȧ1

f (t)∆uf (t)
〉
r,a1,a2

−∇a2
· %
〈
ȧ2

f (t)∆uf (t)
〉
r,a1,a2

+ %(a2 − a1).

(14)

We now introduce into this the coarse-graining

approximation ∆uf (t) ≈ Γ̃f (t) · rf (t), where
Γf (t) ≡∇xu(xf (t), t) is the fluid velocity gradient

tensor evaluated at xf (t), yielding

0 ≈−∇r · %
〈(

Γ̃f (t) · r
)(

Γ̃f (t) · r
)〉

r,a1,a2

−∇a1
· %
〈
ȧ1

f (t)
(
Γ̃f (t) · r

)〉
r,a1,a2

−∇a2
· %
〈
ȧ2

f (t)
(
Γ̃f (t) · r

)〉
r,a1,a2

+ %(a2 − a1).

(15)

In the case of inertial particles, when St� 1 the cluster-
ing is weak and the leading order behavior of the cluster-
ing can be approximated using 〈·〉r ≈ 〈·〉 in the drift and
diffusion tensor expressions (see [12]). Since the stagna-
tion points are weakly clustered in the inertial range [20]
then we may also use this approximation, with which we
obtain (with the understanding that this is only accurate
for |r| � η, a1 ≈ a2 ≈ 0)

0 =−
〈(

Γ̃f (t) · r
)(

Γ̃f (t) · r
)〉

a1,a2

· ∇r%

− %∇r ·
〈(

Γ̃f (t) · r
)(

Γ̃f (t) · r
)〉

a1,a2

−
〈
ȧ1

f (t)
(
Γ̃f (t) · r

)〉
a1,a2

· ∇a1
%

− %∇a1
·
〈
ȧ1

f (t)
(
Γ̃f (t) · r

)〉
a1,a2

−
〈
ȧ2

f (t)
(
Γ̃f (t) · r

)〉
a1,a2

· ∇a2
%

− %∇a2
·
〈
ȧ2

f (t)
(
Γ̃f (t) · r

)〉
a1,a2

+ %(a2 − a1).

(16)

The second, fourth and sixth terms on the rhs of (16)
represent drift fluxes in the phase-space. The fourth
and sixth terms terms on the rhs of (16) represent drift
fluxes describing a change in % because of the movement
of the particles in a1,a2 space. The behavior of these
fluxes can be understood by considering the behavior of
the distribution they govern, namely ϑ(a1,a2|r), where
% ≡ ϑ(a1,a2|r)φ(r). For r in the inertial range, and
under the weak clustering approximation ϑ(a1,a2|r) ≈
ρ(a1)ρ(a2) (since the correlation lengthscale of a(x, t)
is O(η)). The fluid acceleration PDF in stationary,
isotropic turbulence is symmetric with zero mean; under
the approximation ϑ(a1,a2|r) ≈ ρ(a1)ρ(a2) the symme-
try of ϑ(a1,a2|r) at a1 = 0, a2 = 0 implies that the
drift flux of probability in a1,a2 space is zero at a1 = 0,
a2 = 0, and so the fourth and sixth terms on the rhs of
(16) are zero at a1 = 0, a2 = 0. Furthermore, the accel-
eration PDF maxima at at a1 = 0, a2 = 0 means that
the third and fifth terms in (16) are also zero at a1 = 0,
a2 = 0. The only non-zero drift contribution governing
the distribution of the stagnation points is therefore the
second term on the rhs of (16). Following essentially the
same procedure as was used for the inertial particles to
simplify the coarse-grained statistics, we then obtain for
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r in the inertial range and at a1 = 0, a2 = 0

0 =−
〈(

Γ̃f (t) · r
)(

Γ̃f (t) · r
)〉

0,0
· ∇rϕ

0

− 7

45
ϕ0r

(
Ã0 − B̃0

)
,

(17)

where Ã0 and B̃0 are the averages of the second in-
variants of the coarse-grained strain-rate and rotation-
rate tensors, respectively, evaluated at sa(t) points. In
(17), ϕ0 describes the spatial distribution of acceleration
stagnation points, where % ≡ ϕ(r|a1,a2)Θ(a1,a2) and
ϕ0 ≡ ϕ(r|0,0).
Up until this point the arguments have been mainly
kinematic in nature. However, stagnation point clus-
tering is a result of dynamics not kinematics, occurring
in Navier-Stokes turbulence but not in KS. The result
in (17) does not itself demonstrate or explain the stag-
nation point clustering. For example, in KS where the

stagnation points are not clustered, Ã0 − B̃0 = 0. Devel-
oping an explanation for the dynamical cause of stag-
nation point clustering in Navier-Stokes turbulence is
beyond the scope of this paper. The value of (17) is
that it tells us that if there is stagnation point cluster-

ing, i.e. ∇rϕ
0 < 0, then it must be that Ã0 − B̃0 > 0

(noting that 〈(Γ̃f (t) · r)(Γ̃f (t) · r)〉0,0 is positive-definite
in isotropic turbulence). This implies that in Navier-
Stokes turbulence where the stagnation points are clus-
tered, they must preferentially cluster in regions of high
coarse-grained strain.
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FIG. 2. DNS data for Z at various cut-off wavenumbers κc,
plotted as a function of |a|2/a2η.

In order to confirm this prediction that sa(t) points

tend to cluster in regions where S̃ : S̃ − R̃ : R̃ > 0 we

computed the quantity Z ≡ 〈S̃ : S̃ − R̃ : R̃〉|a|2 using
DNS. The coarse-graining was performed using a sharp
spectral cut-off at wavenumber κc. The results in Fig. 2
confirm the prediction since they show that regions

where the fluid acceleration is low (a→ 0) are associated
with regions where the coarse-grained strain exceeds the
coarse-grained rotation (Z > 0).

Our clustering mechanism is therefore consistent with
the sweep-stick mechanism in the inertial range when
Str � 1 in the sense that they both predict that parti-
cles will cluster in the same regions, namely near clusters
of sa(t) points. In light of the results in this section we
may therefore suppose that particles being swept along
with clusters of stagnation points is equivalent to par-
ticles being clustered in regions of high-coarse grained
strain which are themselves swept by the largest scales
of the turbulence. But we stress again that this equiva-
lence only holds for Str � 1 in Navier-Stokes turbulence.

In closing this section we note that the prediction in
§II that the inertial particles cluster in regions where

Ã − B̃ > 0 is only guaranteed for Str � 1, where the drift
velocity is given by (7). When Str & O(1) the non-local
clustering mechanism contributes, and indeed dominates
the centrifuge mechanism in the inertial range in the limit
Reλ →∞. When the non-local clustering mechanism
dominates it is much more complicated to predict theo-
retically where the particles will cluster in the flow. How-
ever, recent work has shown that the non-local clustering
mechanism in the dissipation range causes the particles
to accumulate in the same high-strain, low-rotation re-
gions of the turbulence as the local mechanism [36]. The
analysis can be ported over to the inertial range, but now
using the coarse-grained fluid velocity gradient field, to
show that in the limit Reλ →∞ and when Str & O(1),

the particles cluster in regions where Ã − B̃ > 0.

IV. PREDICTING THE RDF IN THE INERTIAL
RANGE

In §II we analyzed the exact equation governing g(r)
in order to consider the mechanism generating cluster-
ing when η � r � L. In this section we use a closed
model equation for g(r) in order to predict g(r) when
η � r � L and Str � 1.

For isotropic turbulence (3) may be re-written as

0 =g〈∆u‖(rp(t), t)〉r − StτηS
p
2‖∇rg

− Stτηg
(
∇rSp2‖ + 2r−1[Sp2‖ − S

p
2⊥]
)
,

(18)

where the subscripts ‖ and ⊥ denote the longitudi-
nal and perpendicular projections of the tensors and
rp(t) = |rp(t)|. In [15] the term 〈∆u‖(rp(t), t)〉r is closed
by approximating ∆u(r, t) as a spatio-temporally corre-
lated Gaussian field and by using the Furutsu-Novikov
closure method. The result they obtain is

〈∆u‖(rp(t), t)〉r ≈ −
1

g
Stτηλ‖∇rg, (19)

and for Str � 1, η � r � L

λ‖ = (Stτη)−1γC2〈ε〉1/3r4/3, (20)
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where C2 = 2.1 [37], γ = τS(15C2τ
2
η )−1/2 [14] and τS is

the Lagrangian timescale of S. In our DNS τS = 2.02τη.
It is well known that in turbulence ∆u‖(r, t) can be

strongly non-Gaussian, which calls into question the clo-
sure result in (19). However, results in [12] indicate that
even for r � η, neglecting the non-Gaussian features of
∆u‖(r, t) in the closure of 〈∆u‖(rp(t), t)〉r has a negligi-
ble effect on g(r). This is likely a consequence of the fact
that g(r) is a low-order moment of the particle phase-
space dynamics and therefore that it is only weakly af-
fected by the strongly non-Gaussian features of ∆u‖(r, t),
which predominantly manifest themselves in the tails of
the distribution. Therefore, for the present purposes of
using the closure in (19) for η � r � L, the neglect of
the non-Gaussianity of ∆u‖(r, t) in the closure should be
of even smaller importance since the non-Gaussianity of
∆u‖(r, t) is weaker in the inertial range than in the dis-
sipation range [13].

In deriving the closed expression for λ‖ given in (20),
ZT approximated the Lagrangian autocovariances of
∆u(rp(t), t) as having an exponential decay in time with
the timescale given by τZTr = γ〈ε〉−1/3r2/3. This however
appears to be in conflict with the behavior one would ex-
pect based on K41 arguments, namely〈

∆u(rp(0), 0) ·∆u(rp(t′), t′)
〉
r
∝ 〈ε〉t′, (21)

for St = 0, according to which the autocovariances should
grow indefinitely in the inertial range when Reλ →∞.
However, it is known that applications of K41 scaling
arguments to Lagrangian statistics can be in significant
error, even for low order moments [38]. In Fig. 3 we show
results computed from our DNS for

H(r, t′) ≡ 〈∆u(rp(0), 0) ·∆u(rp(t′), t′)〉r
〈∆u(rp(0), 0) ·∆u(rp(0), 0)〉r

,

for St = 0 particles at η � r � L. The results show
that H is in fact a decaying function of t′ at η � r � L
and therefore demonstrate that (21) is fundamentally in-
correct. We expect that the failure of the prediction in
(21) is due to the fact that such a simple scaling argu-
ment does not capture the effect of the spatio-temporal
decorrelation of the velocity field along the pair trajec-
tory, and only accounts for the fact that as the pair
separates, the two-point, one-time fluid velocity incre-
ments increase along the pair trajectory. In the inset of
Fig. 3 we compare Tr ≡

∫∞
0
Hdt′ with the ZT prediction

τZTr = γ〈ε〉−1/3r2/3 which is used in their closure for λ‖.

The results show a remarkable agreement between τZTr
and Tr and confirm the validity of the closure approxi-
mation made in the ZT for λ‖ when η � r � L.

If we now substitute (19) into (18) and also use the
result in (7) for the isotropic form of Stτη∇r · Sp2 for
Str � 1 and η � r � L, we obtain the solution

g(r) = exp

[
− 7Stτη

45γC2〈ε〉1/3

r∫
0

r−1/3(Ã − B̃)dr

]
. (22)
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FIG. 3. DNS data for H for various r as a function of t′. The
inset shows a comparison of the timescale Tr ≡

∫∞
0
Hdt′ with

the ZT prediction τZTr = γ〈ε〉−1/3r2/3.

The expression in (22) requires knowledge of Ã−B̃, which
is difficult to predict. However, we can obtain an approx-
imation for its r dependence in the regime Str � 1, which
allows us through (22) to determine the r dependence of

g(r) over the range ηSt3/2 � r � L. In this limit, we

introduce a perturbation expansion for Ã − B̃ in Str

Ã − B̃ = [Ã − B̃][0] + Str[Ã − B̃][1] +O(Str
2), (23)

where the superscript [·] denotes the order of the pertur-

bation term. The zeroth-order term, [Ã − B̃][0], which

represents Ã − B̃ measured along fluid particle trajecto-
ries, is zero. Based on K41, we expect that to leading

order in Str, [Ã − B̃][1] ∝ r−4/3, and using this together
with the definition for Str, which can be re-expressed as
Str ≡ St(r/η)−2/3, we obtain

Ã − B̃ = St(r/η)−2/3[Ã − B̃][1] +O(Str
2)

∝ r−2.
(24)

Substituting this into (22), we arrive at the following
expression for g(r) in the limit Str � 1

g(r) = exp[Dr−4/3], (25)

where D is an unknown positive coefficient that is inde-
pendent of r, but dependent on Stokes number, satisfy-
ing D(St = 0) = 0. The r dependance of g(r) described
by (25) is in fact the same as the result derived in [39].
This is somewhat surprising since their result was derived
under the assumption that the flow is delta-correlated
in time, yet our result is derived for finite correlation
timescales of the flow and Str � 1. That the fundamen-
tally different approaches lead to the same scaling predic-
tion for g(r) is because the r dependence of g(r) in the in-
ertial range reflects the shared assumption of K41 scaling
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in the inertial range. The physical mechanism responsi-
ble for the clustering is reflected in D rather than the
scaling with r. The coefficient D in (25) arises from the
dual assumptions of a finite time-correlated flow and that

Str � 1 (noting that D ∝ [Ã−B̃][1]). For Str & O(1), the
particle relative velocities can no longer be described as
power-law functions and consequently no simple analyti-
cal form for g(r) can be derived. Our approach therefore
makes it clear that the functional form of g(r) described
by (25) is only valid for Str � 1, as opposed to the func-
tional form of g(r) in the dissipation range, which is the
same for all St. In contrast to our approach, [39] assumes
a delta-correlated flow, for which D would be zero. As
shown in Fig. 3, there is clear DNS support for the finite
time correlations used in this analysis.

Equation (25) implies that even for Str � 1, clustering
at η � r � L is not scale-invariant [18, 24][40], in con-
trast to clustering at r � η for St� 1. This may seem
surprising given that we argued that the mechanism gen-
erating the clustering in the inertial range is completely
analogous to the mechanism in the dissipation range (cf.
§II). The difference in the form of the clustering does not
arise from a difference in the mechanism generating the
clustering. Note also that according to our analysis the
break in the scale-invariance of the particle clustering in
the inertial range has nothing to do with the breakdown
of the scale-invariance of ∆u(r, t) in the inertial range
[41] since our analysis used K41 scaling. The break in the
scale-invariance of the clustering going from the dissipa-
tion to the inertial range is actually simply a consequence
of the fact that τr is dependent on r in the inertial range,
but is independent of r in the dissipation range. The final
steady state form of g(r) depends upon the way the drift
and diffusion processes depend upon r, and their relative
scaling with r is different in the dissipation and inertial
ranges precisely because of the behavior of τr.

In Fig. 4, we use DNS data to test the predic-
tion in (25) by plotting r4/3 ln[g(r)]. The results show
that the predicted form in (25) is quite accurate for
St . 0.3 and 10η . r . 200η. Deviations from (25) for
St > 0.3 when 10η . r . 200η are due to the breakdown

of the predicted scaling Ã − B̃ ∝ r−2. If we assume

in general Ã − B̃ ∝ r−α then g(r) would take the form
g(r) = exp[Dr(2−3α)/3]. Our data indicates that over the
range of r that we have access to in our DNS, α ≤ 2,
and this explains why the results in Fig. 4 show that for
St > 0.3 and 10η . r . 200η, ∇r(r4/3 ln[g(r)]) > 0.

The results in Fig. 4 for 200η . r . L show that for
all St, ∇r(r4/3 ln[g(r)]) < 0. This deviation of g(r) from
the form predicted in (25) cannot be due to a breakdown
of the validity of the perturbation analysis used to derive
(25), as this approximation should improve as r increases.
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FIG. 4. DNS data for r4/3 ln[g(r)] for various St as a function
of r.

The cause is actually the influence of the large scales.
The DNS data shows that ∆u(r, t) begins to depart from
its inertial range scaling at r ≈ 200η, which is somewhat
surprising since in the DNS L ≈ 800η. Naturally this
limitation is removed in the limit Reλ →∞.

In order to test the quantitative accuracy of (22)

we evaluate Ã − B̃ from the DNS using a sharp spec-
tral cut-off at wavenumber κc = 2π/r for the coarse-
graining. Figure 5 compares g(r) directly computed from
the DNS with that obtained from (22) using DNS data

for Ã − B̃. The results demonstrate the accuracy of (22)
at η � r � L when Str � 1. At this Reλ, St > 3 par-
ticles do not satisfy the Str � 1 requirement for (22) at
η � r � L.
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FIG. 5. Plot of DNS data and the predictions of (22) for g(r).

Finally, we consider the behavior of g(r) in the limit
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Reλ →∞ as r decreases. For St . O(1), g(r) will transi-
tion from (22) to the scale-invariant form g(r) ∝ r−ξ(St)

at r � η, where ξ(St) ≥ 0. For St� 1, g(r) will deviate

from (22) at η � r = O(St3/2η)� L. At r = O(St3/2η),
Str = O(1) at which point the path-history symmetry
breaking effect dominates the clustering mechanism. We
cannot derive a prediction for the analytic form of g(r)
in this regime because the particle relative velocity struc-
ture function in this regime does not have a known func-
tional form (e.g. it is not a simple power law). As r
decreases further, the particles enter a ballistic regime,
where g(r) ≈ constant [24, 42]. All of these trends can
be seen in [33]. The theoretical question of the existence
of a transition to g(r) ≈ constant for St . O(1) at r ≪ η
remains an open question [42].

V. CONCLUSIONS

In this paper, we have considered the mechanism for
the clustering of inertial particles in the inertial range
of isotropic turbulence. By analyzing the exact equa-
tion governing the RDF we have demonstrated that the
clustering mechanisms in the inertial range are com-
pletely analogous to the mechanisms in the dissipation
range. For any separation r which is less than the in-
tegral lengthscale of the flow, the clustering mechanism
for Str � 1 is related to the preferential sampling of
the coarse-grained fluid velocity gradient tensor at scale
≈ r, which is associated with centrifuging out of eddies
at that scale. When Str & O(1) a non-local mechanism
contributes to the inward drift that generates the cluster-
ing through the statistical asymmetry of the path-history
of approaching and separating particle pairs.

This claim regarding the universality of the clustering
mechanism across the range of scales in turbulence is in
disagreement with other explanations in the literature
that in the inertial range a completely different mech-
anism generates the clustering, namely the sweep-stick
mechanism. However, we have argued that the sweep-
stick mechanism is essentially equivalent to our mech-
anism in the inertial range of Navier-Stokes turbulence
when Str � 1. Since our mechanism reveals that the clus-
tering mechanism is analogous at all scales in turbulence,
we may therefore conclude that the sweep-stick mecha-
nism does not really imply a basic change in the clus-
tering mechanism as one goes from dissipative to inertial
scales. We also showed that the sweep-stick mechanism
is only valid for Str � 1 in the inertial range. Since our
mechanism can explain clustering in any spatially corre-
lated velocity field, whereas the sweep-stick mechanism
can only explain clustering in Navier-Stokes turbulence,
we conclude that our mechanism provides the more fun-
damental explanation.

Finally, we applied our results for the form of the drift
velocity in the regime Str � 1 in the inertial range to
the model equation for the RDF from [15]. Using this we
obtained a prediction for the analytic form of the RDF
in the inertial range when Str � 1. Comparisons with
DNS data demonstrated the accuracy of the prediction.
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