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Rupture of a thin free film of a power law fluid under the competing influences of destabilizing van
der Waals pressure and stabilizing surface tension pressure is analyzed. In such a fluid, viscosity
decreases with deformation rate raised to the n− 1 power where 0 < n ≤ 1 (n = 1 for a Newtonian
fluid). When 6/7 < n ≤ 1, film rupture occurs under a balance between van der Waals pressure,
inertial stress, and viscous stress. When n < 6/7, however, the dominant balance changes: vis-
cous stress becomes negligible and the film ruptures under the competition between van der Waals
pressure, inertial stress, and surface tension pressure.

I. INTRODUCTION

Dynamics of thin films are important in technology
and nature [1, 2]. Both free films, or sheets, where the
film has two free surfaces (Fig. 1) [3–7], and supported
films, where the film lies on a solid substrate and has a
single free surface [8, 9], are of interest. In the former,
the intermolecular van der Waals attraction between the
molecules in the film and, in the latter, the van der Waals
attraction between the molecules in the film and the solid
can cause the film to rupture despite the stabilizing in-
fluence of surface tension. The van der Waals attraction
in free films is the key effect by which foams collapse and
two drops coalesce [10–12]. Similarly, van der Waals at-
traction in supported films is central to film rupture and
formation of dry spots in coating and heat transfer ap-
plications [13–17].

Study of dynamics of free films has been of interest
since at least Ref. [18]. Recent work has focused on the
self-similar dynamics and finite time singularities that
arise during film rupture [6]. In this paper, the nonlin-
ear dynamics leading to the rupture of a thin free film
of a power law fluid is analyzed. If the two flat surfaces
of a thin liquid film of constant thickness 2h0 are sub-
jected to static shape deformations that are symmetric
about the midplane of the unperturbed sheet that lies in
the xz-plane and the perturbations are translationally-
symmetric in the x-direction so that the shape of one
of the two interfaces between the liquid film and the sur-
rounding gas can be represented as y = h(z), the pressure
in a nearly flat static film is given by

p =
A

6π(2h)3
− σ ∂2h

∂z2
(1)

where A is the Hamaker constant, σ is the surface ten-
sion, the pressure in the gas is taken as the pressure da-
tum, and the effect of gravity is neglected on account
of the film’s thinness. Thus, as is well known, the van
der Waals pressure (the first term) is destabilizing be-
cause it would cause flow from the neck toward the swell
whereas surface tension or capillary pressure (the second
term) is stabilizing because it would cause flow from the

swell toward the neck. If the perturbation is a sinusoidal
deformation of wavelength λ and small amplitude ε� 1,

h = h0

[
1− ε cos

(
2πz

λ

)]
, (2)

it is readily shown from a simple pressure driving force
argument or a more sophisticated linear stability analysis
[6] that disturbances of wavelengths exceeding a critical
value λc = 8π3/2σ1/2h20/A

1/2 = 8π3/2h20/d are unstable,
where d ≡ (A/σ)1/2 is the molecular lengthscale. For a
continuum approach to be valid, h0 � d. Thus, λc � h0
and the instability is a long-wavelength one. Vaynblat et
al. [6] used the long-wavelength approximation to derive
a set of one-dimensional (1D) equations to analyze the
thinning and rupture of thin films of Newtonian fluids
and showed that the dominant physical balance is be-
tween inertial, viscous, and van der Waals stresses, while
surface tension stress is negligible. These authors further
showed that the film thickness h, lateral scale z′ ≡ z−zR,
where z = zR is the lateral location where the film rup-
tures, and lateral velocity v vary with time remaining to
rupture τ ≡ tR − t, where tR is the time t at which the
film ruptures, as h ∼ τ1/3 , z′ ∼ τ1/2 , and v ∼ τ−1/2. If,
however, the film is supported on a substrate, both the
dominant balance and the scaling exponents differ from
the situation just discussed, as shown by [9].

Many fluids in emerging applications involving free sur-
face flows of films, jets, and drops are non-Newtonian
[19–21]. One important type of a non-Newtonian fluid
is a so-called power law fluid. In contrast to a New-
tonian fluid that has a constant viscosity µ0, the vis-
cosity µ of a power law fluid varies with deformation
rate as µ = µ0|mγ̇|n−1. Here µ0, the zero-deformation-
rate viscosity, and m−1, the characteristic deformation
rate, are constants, 0 < n ≤ 1 is the power law expo-
nent (n = 1 corresponds to a Newtonian fluid), and γ̇
is the second invariant of the rate-of-deformation tensor
D: γ̇ = [1/2(D : D)]

1/2
and D = 1/2

[
∇v + (∇v)T

]
,

where v is the velocity. The goal of this work is to an-
alyze the rupture of thin films of power law fluids. Of
particular relevance to the present paper are theoretical
studies of pinch-off of cylindrical liquid threads of power
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FIG. 1. A liquid film: perspective view (top) and cross-
sectional view showing problem domain (bottom).

law fluids [22–25] which exhibit even richer behavior than
their Newtonian counterparts [26–28]. Some of the pre-
dicted behaviors have been confirmed by recent exper-
iments [20, 21]. A noteworthy finding of these studies
is that when 1 ≥ n > nc, where nc is a critical value
of n, liquid threads pinch-off under a balance of inertial,
viscous, and surface tension forces but when n < nc, a
thread pinches off as if it were an inviscid fluid of zero vis-
cosity. Motivated by this result, we investigate whether a
similar change of scaling behavior can occur during rup-
ture of thin films of power law fluids. Unfortunately, all
previous attempts to study power law film rupture have
involved simplifying assumptions such as neglecting in-
ertia in both film rupture on a planar substrate [29] and
that on a solid cylinder [30], or entirely omitting nonlin-
ear effects [31].

Rupture of a thin liquid film, as in pinch-off of a liquid
thread, gives rise to a finite time singularity in the gov-
erning equations. The dynamics close in time and space
to the singularity are expected to be universal and hence
independent of the boundary and initial conditions. The
goals are to examine the self-similar evolution of the film
toward the space-time singularity, determine scaling ex-
ponents governing the time evolution of film thickness
and other relevant problem variables, and construct sim-
ilarity profiles for the interface shapes.

The paper is organized as follows. In the next sec-
tion, the transient partial differential equations (PDEs)
that govern the film profile and the velocity within the
film are presented. In Section III, the forms of the sim-
ilarity solutions are deduced by dominant balance type
arguments, and the transient PDEs are solved numeri-
cally to obtain the time evolution of the film profile and
the velocity field within the film. The results from time
dependent simulations are also shown in Section III to
agree well with the similarity solutions. Concluding re-
marks are then presented in Section IV.

II. PROBLEM STATEMENT

The system is a free film of a power law fluid of initial
thickness 2h0 and constant density ρ, as shown in Fig.
1. The film is disturbed by a laterally periodic pertur-
bation of wavelength λ� h0 (typically, λ/h0 ≈ 105). In
this paper, only line rupture of the film is analyzed so
that the instantaneous shape of the interface is described
as y = h(z, t). The long wavelength nature of the prob-
lem can be taken advantage of by reducing the governing
Cauchy momentum and continuity equations, subject to
the traction and kinematic boundary conditions at the
film-ambient gas interface, to a set of 1D evolution equa-
tions for the interface shape h and lateral velocity v. It
also proves convenient to render the problem statement
dimensionless by using as characteristic film thickness
hc = h0, lateral length scale lc = (48πh30µ

2
0/ρA)1/2, time

scale tc = ρl2c/µ0, velocity scale vc = lc/tc, and viscosity
scale µc = µ0 so that the dimensionless shape function,
lateral length, time, velocity, and viscosity are given by
h̃ ≡ h/hc, z̃ ≡ z/lc, t̃ ≡ t/tc, ṽ ≡ v/vc, and µ̃ ≡ µ/µc.
The dimensionless set of 1D evolution equations govern-
ing the sheet half-thickness and lateral velocity are given
by

∂h

∂t
+
∂(hv)

∂z
= 0 (3)

∂v

∂t
+ v

∂v

∂z
= S

∂3h

∂z3
−
∂
(
h−3

)
∂z

+
4

h

∂

∂z

(
µh
∂v

∂z

)
(4)

where the dimensionless viscosity µ = |2m ∂v/∂z|n−1.
In these equations and henceforward, the tildes over the
dimensionless variables are omitted for clarity. Also in
these equations, S ≡ ρh0σ/µ

2
0 is a dimensionless pa-

rameter that equals the product of inertial and surface
tension forces divided by viscous force squared. The re-
ciprocal of S equals the square of the Ohnesorge number
Oh.

III. DOMINANT BALANCES, SIMILARITY
SOLUTIONS, AND NUMERICAL SIMULATIONS

A. Power law fluids of 6/7 < n ≤ 1

As the singularity (zR, tR) is approached, the film pro-
file and lateral velocity are expected to be described by
similarity solutions of the form

h(z′, τ) = ταH(ξ) , v(z′, τ) = τγU(ξ) , ξ = z′/τβ (5)

where τ = tR − t is the dimensionless time to rupture,
z′ = z− zR is the lateral extent of the rupture zone, and
ξ is the similarity variable. Here, α, γ, and β are scal-
ing exponents and H and U are scaling functions that
are to be determined. Substitution of the similarity so-
lutions (Eq. 5) into the 1D mass balance (Eq. 3) and
enforcing that the resulting equation is independent of
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time or carrying out a kinematic balance of the terms in
that equation gives γ−β = −1. Doing the same with the
1D momentum balance (Eq. 4) or carrying out a dynam-
ical balance of the terms in that equation reveals that
the dominant balance is between the van der Waals, vis-
cous, and inertial forces, with surface tension force being
negligible, and that

α = n/3 , γ = −n/2 , β = 1− n/2 (6)

With these exponents, it is readily seen that the van der
Waals, viscous, and inertial terms in the 1D momentum
equation all blow up as τ−n/2−1 whereas the surface ten-
sion term blows up as τ11n/6−3. From the viscosity re-
lation, it follows that µ ∼ τ1−n ∼ h3(1−n)/n. In the
Newtonian limit (n = 1), the scaling exponents take on
the values α = 1/3, γ = −1/2, and β = 1/2 in accord
with prior work [6], and the dominant terms all blow up
as τ−3/2 whereas the slower growing surface tension term
blows up as τ−7/6.

The 1D evolution equations were next solved numer-
ically [22, 24]. Figure 2 shows the results of such sim-
ulations when n = 0.94. The simulation results show
that the variation with τ of the computed value of the
minimum film thickness hmin ≡ h(z = 0, t) is in excel-
lent agreement with the theoretically predicted variation
hmin ∼ τn/3 ≡ τ0.3133... (Fig. 1(a)). To evaluate the lat-
eral scale from simulation data, the variation with τ of
the z-coordinate of a point located on the interface for
which the film thickness equals a multiple of hmin is mon-
itored. Once again, the computed variation of z′ with τ
is seen to be in excellent accord with the theoretical pre-
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FIG. 2. Scaling behaviors when n = 0.94 of (a) minimum film
thickness hmin, (b) lateral length scale z′, (c) lateral velocity
v′, and (d) viscosity µ′. The straight lines are the theoretical
predictions and data points show simulation results. In this
figure and the next, S = 3/(2π2) and m = 1.
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FIG. 3. Transient film profiles scaled by minimum film thick-
ness as a function of scaled lateral coordinate show approach
to the similarity profile as hmin → 0. For each profile de-
picted at successively smaller values of hmin, hmin is roughly
half that of the previously shown profile. Here, n = 0.94.

diction of z′ ∼ τ0.53 (Fig. 1(b)). The simulations further
show that the variation with τ of the lateral velocity v′

calculated at z′ is in excellent agreement with the the-
oretical prediction of v′ ∼ τ−0.47 (Fig. 1(c)). Finally,
evaluating the variation with τ of the viscosity µ′ at z′

but then recasting this variation as µ′ versus hmin demon-
strates that the computed prediction accords well with

the theoretical prediction of µ′ ∼ h
3(1−n)/n
min ≡ h0.1914...min

(Fig. 1(d)).
The scaling exponents in Eq. 6 can be used to collapse

transient film profiles obtained from simulations. Since
h = τn/3H(ξ) and ξ = (z − zR)/τ1−n/2 (with zR = 0),
Fig. 3 shows the variation of the scaled interface profile

h/hmin with the scaled lateral coordinate z/h
3(1/n−1/2)
min .

Figure 3 demonstrates that the computed scaled shapes
tend to a similarity profile as hmin → 0.

Examining the variation with τ of the four forces as a
function of the power law exponent n reveals that when
n = 6/7 all the terms in the 1D momentum equation blow
up as τ−10/7. Therefore, surface tension force is negligi-
ble and the scaling exponents have the values given in
Eq. 6 only when 6/7 < n ≤ 1.

B. Power law fluids of n < 6/7

Because the rate at which viscosity falls with decreas-
ing film thickness rises as n decreases, it is anticipated
that viscous force may become less important compared
to the other three forces when n < 6/7. In anticipa-
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tion of the new balance of forces, the governing equa-
tions are rescaled using as a new characteristic length
scale lc = (48πh40σ/A)1/2 and as a new characteristic
time tc = (ρl4c/σh0)1/2. The new nondimensionalization
leaves the 1D mass balance and the viscosity relation un-
changed but modifies the 1D momentum balance such
that the surface tension term is now multiplied by one
but the viscous term by Oh.

Carrying out the kinematical and the dynamical bal-
ance arguments once again reveals that the scaling expo-
nents when n < 6/7 are given by

α = 2/7 , γ = −3/7 , β = 4/7 (7)

With these exponents, it is readily seen that the van
der Waals, surface tension, and inertial terms in the
1D momentum equation all blow up as τ−10/7 whereas
the viscous term blows up as τ−n−4/7 = τ−10/7+(6/7−n).
From the viscosity relation, it follows that µ ∼ τ1−n ∼
h7(1−n)/2, as when n > 6/7. The 1D evolution equa-
tions were then solved numerically once again. Figure 4
shows the results of such simulations when n = 0.6. The
simulation results show that the variation with τ of the
computed value of the minimum film thickness hmin, the
lateral extent z′ of the rupture region, the lateral velocity
v′, and viscosity µ′ are in excellent agreement with the
theoretical predictions (Eq. 7). The scaling exponents
reported in Eq. 7 are also used to collapse transient film
profiles obtained from simulations. Since h = τ2/7H(ξ)
and ξ = (z − zR)/τ4/7 (with zR = 0), Fig. 5 shows the
variation of the scaled interface profile h/hmin with the
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FIG. 4. Scaling behaviors when n = 0.60 of (a) minimum film
thickness hmin, (b) lateral length scale z′, (c) lateral velocity
v′, and (d) viscosity µ′. The straight lines are the theoretical
predictions and data points show simulation results. In this
figure and the next, Oh =

√
(2/3)π and m = 1.
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FIG. 5. Transient film profiles scaled by minimum film thick-
ness as a function of scaled lateral coordinate show approach
to the similarity profile as hmin → 0. For each profile de-
picted at successively smaller values of hmin, hmin is roughly
half that of the previously shown profile. Here, n = 0.60.

scaled lateral coordinate z/h2min. Figure 5 demonstrates
that the computed shapes tend to a similarity profile as
hmin → 0.

IV. CONCLUSIONS

At the onset of the initial instability, the aspect ratio
of the film ε ≡ h0/l0 < d/h0 � 1, where h0 and l0 are
the initial film thickness and the initial lateral extent of
the film, and d is the molecular length scale. However,
given the exponents of the characteristic length scales
obtained in this paper, the local slope of the interface
diverges as rupture is approached. Therefore, the long
wavelength assumption on which the governing equations
3 and 4 are based may potentially be violated prior to
film rupture. It will now be demonstrated, however, that
molecular length scales are reached first before the long
wavelength assumption fails. In terms of dimensional
variables, the continuum approximation fails when the
dimensional value of half the minimum film thickness
hmin(t) ≈ d.

When n < 6/7, the film thickness varies as h ∼ τ2/7

and the lateral length scale as l ∼ τ4/7. Therefore, the
aspect ratio of the film varies as ετ−2/7. The aspect ra-
tio reaches order unity when the film thickness and the
lateral length scale are of order εh0 < d. Thus, in this
case, the continuum approximation breaks down before
the long wavelength approximation.

When 6/7 < n ≤ 1, the film thickness varies as
h ∼ τn/3 and the lateral length scale as l ∼ τ1−n/2.
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Therefore, the aspect ratio of the film varies as ετ5n/6−1.
The aspect ratio reaches order unity when the film thick-
ness and the lateral length scale are of order h0ε

2n/(6−5n).
When n = 1 (Newtonian fluid), the film aspect ratio be-
comes order one when both length scales are of order
d2/h0 � d. When n = 6/7 + δ where δ � 1, the film as-
pect ratio becomes order one when both length scales are
of order d(d/h0)49δ/12 < dε49δ/12 < d. Thus, regardless
of the value of n, the continuum approximation breaks
down before the long wavelength approximation.

The results reported here can be extended to analyze
the case of so-called point rupture where the scaling expo-
nents turn out to be identical to ones reported here [32].
Furthermore, in both cases, the similarity solutions H (ξ)
and U (ξ) can be determined directly by solving a set
of ordinary differential equations in similarity space [32].

Aside from their intrinsic theoretical value, improved un-
derstanding of thread pinch-off [22–25] and film rupture
singularities (this paper), and associated self-similar be-
havior during thinning, also hold the potential for cre-
ating improved cutoff schemes in large-scale simulations
of drop breakup and coalescence [11, 19] involving power
law fluids.
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