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Phase response curves (PRCs) have become an indispensable tool in understanding the entrain-
ment and synchronization of biological oscillators. However, biological oscillators are often found in
large coupled heterogeneous systems and the variable of physiological importance is the collective
rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we
consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-
Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic
formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in
the amplitude and entrainment points for the collective PRC compared to the individual oscillator
PRC. We support the analytical findings with numerical evidence and demonstrate the applicability
of the theory to large ensembles of coupled neuronal oscillators.

I. INTRODUCTION

Many biological rhythms are produced in a collective
manner by a large ensemble of coupled heterogeneous os-
cillators. For example, the mammalian circadian clock
consists of approximately twenty thousand coupled het-
erogeneous neuronal oscillators [1]. The collective oscil-
lation produced by the ensemble of individual neurons
drives the behavioral circadian rhythm [1]. Similar phe-
nomena have been observed in the generation of brain
rhythms, cardiac pacemaker cells, and many other bio-
logical systems [2–4].
For weakly coupled limit-cycle oscillators the dynamics

of each oscillator may be reduced to a single phase vari-
able and the collective properties of the systemmay be re-
vealed through the study of the coupled phase equations
[5–7]. One of the best characterized systems of coupled
phase oscillators is the mean-field Sakaguchi-Kuramoto
model [5, 8]. In this model the oscillators are assumed to
be all-to-all coupled through a sinusoidal coupling func-
tion. The existence, stability and phase distribution of
the synchronized state in the Sakaguchi-Kuramoto equa-
tions has been the subject of extensive mathematical
investigation [8, 9]. In particular, several dimension-
reduction techniques have been developed for this system
which allow for analytical investigation [10–13].
The properties of oscillating systems are often stud-

ied both experimentally and theoretically by character-
izing their response to perturbations applied at different
phases in the oscillation [6, 14]. Commonly, the effect of
the perturbation is measured in terms of a phase shift
and the resulting curve is termed a phase response curve
(PRC).
For a single oscillator, the (microscopic) PRC is well

defined both mathematically and experimentally and can
provide insights into the stability, synchronization and
entrainment behaviors of the oscillator [15–17]. Of par-
ticular importance are the amplitude and zeros of the
PRC. For entrainment by a weak resetting signal, the
amplitude of the PRC determines the range of frequen-

cies the oscillator can entrain to and the stable zeros give
the phase difference between the entraining force and the
oscillator [17].
Comparatively little is known about the (macroscopic)

collective phase response curve. Here, an external stim-
ulus perturbs each individual oscillator which induces a
phase shift according to the microscopic PRC. These mi-
croscopic shifts interact to produce a macroscopic shift in
the collective rhythmicity of the population. The phase
shift in the macroscopic phase gives the collective PRC
for the ensemble of oscillators.
For a population of oscillators with identical phases

the collective and microscopic phase PRCs will coincide.
However, when the oscillator population has some vari-
ance in the phase distribution, the collective PRC will
generally differ from the microscopic PRC [16]. A cen-
tral question is how the collective and the microscopic
PRCs may be related for a population of heterogeneous
oscillators.
Mathematically, several factors have been identified

which can lead to significant differences between the mi-
croscopic and collective PRCs. The nature of the cou-
pling function as well as the connectivity between the
individual oscillators is known to have important effects
on how the collective PRC differs from the microscopic
PRC [18]. The effect of a general network structure on
the collective PRC is discussed in [18] for the case of
small deviations from a global limit cycle attractor. Fur-
thermore, the effect of a non-odd coupling function on
collective phase shifts is examined in [19] using the Ott-
Antonsen dimension reduction technique [10, 20]. The
effect of non-odd coupling functions is also examined in
[21] using symmetry properties of the coupling function.
Moreover, the phase distribution of the ensemble of oscil-
lators is known to effect the shape of the collective PRC
[16].
In this work, we consider an all-to-all coupled net-

work and focus on the effect of the phase distribution
and the coupling function in determining the collective
PRC. We study a globally coupled system of Sakaguchi-
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Kuramoto oscillators with a non-odd sinusoidal coupling
function. Each individual oscillator experiences an in-
stantaneous phase shift according to a microscopic PRC-
where we make no assumptions on the form of the mi-
croscopic PRC. We analytically determine an asymptotic
expansion for the collective phase response curve making
use of the formalism developed in [19] based on the Ott-
Antonsen reduction [10, 20].
The resulting analytical formula reveals the effect of

heterogeneity. The formula predicts the collective PRC
differs from the microscopic PRC by an amplification
of the first harmonic and dissipation of the higher har-
monics. In addition, an important effect of coupling is
shown to be a shift in the zeros of the collective PRC.
Significantly, these results give a characteristic scaling
for the amplitude and change in the zeros of the collec-
tive PRC as a function of the mean phase coherence of
the system. We also derive the instantaneous amplitude
response function for the coupled system which charac-
terizes the transient effect of perturbations on the phase
coherence of the system.
Our work builds upon that of Levnajić and Pikovsky

[19] in that we consider general microscopic phase re-
sponse curves and derive a characteristic scaling for the
collective phase response curve. We also focus on the de-
terministic case, whereas in [22, 23] they study a stochas-
tic system.
This paper is organized as follows: in Sec. II we define

the model to be studied, components of the collective
phase response curve and the Ott-Antonsen reduction
approach. In Sec. III we derive an asymptotic formula
for the collective phase response curve. In Sec. IV we
test the analytical theory against numerical simulations
for phase oscillators. In Sec. V we demonstrate the appli-
cability of the theory to biological systems by studying
a population of coupled neuronal oscillators. The results
and conclusions are discussed in Sec. VI.

II. FORMULATION OF THE MODEL

A. Model Definition

We consider an ensemble of N heterogeneous oscilla-
tors characterized by their natural frequencies ωk and
whose dynamical states may be described as phase vari-
ables φk, k = 1, 2...N . Further we assume a Sakaguchi-
Kuramoto type sinusoidally coupled system where each
individual oscillator responds to a instantaneous pertur-
bation according to a microscopic phase response curve
Q(φ):

φ̇k = ωk+
K0

N

N
∑

j=1

sin(φj−φk+β)+ ǫQ(φk)δ(t− t
′) (1)

for β ∈ (−π2 ,
π
2 ). The ǫ parameter will be used to control

the magnitude of the phase shifts. The collective dynam-
ical state of the ensemble is described through the set of

generalized Daido order parameters Zn defined according
to [24–26],

Zn =
1

N

N
∑

k=1

einφk ∈ C. (2)

When n = 1 we refer to |Z1| = R as the phase coherence
of the system and Arg(Z1) = ψ as the mean or collec-
tive phase. The collective PRC will be expressed as a
function of the mean phase ψ. In the limit as N → ∞
we may convert Eq. (1) to a partial differential equation
for the continuous density function f(ω, φ, t) such that
f(ω, φ, t)dφdω gives the fraction of oscillators at phase
φ with natural frequency ω at time t. The continuity
equation as N → ∞ is given by,

∂f

∂t
+

∂

∂φ
[f(ω, φ, t) · v] = 0, (3)

v = ω +K0Im[eiβeiφZ] + ǫQ(φ)δ(t).

The generalized Daido order parameter Zn for a contin-
uous density function is given by,

Zn(t) =

∫ π

−π

∫

∞

−∞

f(ω, φ, t)einφdωdφ ∈ C. (4)

Finally, we assume the distribution of natural frequen-
cies follows a Lorentzian distribution with mean ω0 and
dispersion parameter γ,

g(ω) =
1

π

γ

(ω − ω0)2 + γ2
. (5)

B. Components of the Phase Response Curve

The shift induced on the collective phase in this sys-
tem may be separated into two components: (1) The
prompt phase shift induced on the system at t = t′ gov-
erned by the microscopic phase response curve, and (2)
the slower acting phase shift mediated by the coupling
function as the ensemble returns to its asymptotic state
[19] (see Fig. 1). Assume that just before the perturba-
tion occurs the order parameter is given by Z0 and the
mean phase ψ0. Barred quantities refer to the system
after the perturbation has occurred.

Definition 1 (pPRC ∆0 ). Let us define the prompt

phase response curve as the phase shift of the mean
phase just after the perturbation t = t′.

∆0(ψ0) = ψ̄ − ψ0 = arg
Z̄

Z0

Definition 2 (fPRC ∆∞). Let us define the final (t →
∞) phase resetting value as the final phase response

curve where

∆∞(ψ0) = lim
t→∞

[ψ̄(t)− ψ(t)] = lim
t→∞

arg
Z̄(t)

Z(t)
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In the long-time limit the dynamics of Eq. (3) for
heterogeneous oscillators collapses to the so-called Ott-
Antonsen manifold [10]. Within the Ott-Antonsen man-
ifold the dynamics of Z are described by a two dimen-
sional system for the phase coherence R and the mean
phase ψ:

Ṙ =
K0cos(β)

2
R(1−R2)− γR (6a)

ψ̇ = w0 +
K0sin(β)

2
(1 +R2) (6b)

These equations are solved analytically in [19] to give a
prediction for the final phase shift as,

∆∞ = Arg

[

Z̄

Z0

]

+ tan(β)ln

∣

∣

∣

∣

Z̄

Z0

∣

∣

∣

∣

(7a)

= ∆0 +∆R. (7b)

Here we define ∆R as the ”reset phase shift” or the phase
shift induced by the relaxation of the system to equilib-
rium. The dynamics of the order parameter only collapse
to two-dimensions (Eqs. 6) for continuous density func-
tions which lie strictly within the Ott-Antonsen Manifold
[10] [27]. However, as demonstrated in [19] numerically
and further validated in this work, we expect Eqs. (7) to
provide a good approximation for sufficiently small devi-
ations off the manifold.
Using the Ott-Antonsen reduced system (Eqs. 6) we

can analyze the isochrons of the collective oscillator for
states lying within the OA manifold. When β = 0 the
coupling function is odd and the isochrons of the collec-
tive oscillator are radial. For radial isochrons a change in
the phase coherence will not affect the phase and ∆R = 0
meaning ∆∞ = ∆0. However, when β 6= 0 the collective
oscillator (Eqs. 6) has spiral isochrons and a change in
the phase coherence will induce an additional rotation
(Fig .1).
From Eqs. (7) we can see the collective PRC (∆∞)

is determined by the mapping Z0 → Z̄ at the instant
the perturbation is applied (Fig. 1). We will now show
that the nature of this mapping depends on the Fourier
decomposition of the microscopic PRC Q(φ).

III. ANALYTICAL APPROXIMATION OF Z̄

As N → ∞ we may replace Eq. (1) by the conti-
nuity equation (Eq. 3) describing the time evolution of
f(w, φ, t) the continuous density function. To ease the
notation in this section we set the time of the perturba-
tion t′ = 0.
As t → ∞ the continuous density function f(ω, φ, t)

will collapse to the Ott-Antonsen manifold [10]. Within
the Ott-Antonsen manifold the higher moments of Z may
be expressed as powers of Z such that Zn = (Z)n and
Z−n = (Z∗)n where ∗ denotes the complex conjugate.
This property will be exploited to obtain the map from
Z0 → Z̄ for a general Q in closed form.

∆0∆
R

Z
0Z̄

FIG. 1: (Color online) The order parameter just before
the perturbation is at Z0. Just after the perturbation it
is shifted to Z̄. ∆0 tracks the shift in the mean phase

that occurs in the movement from Z0 to Z̄ and ∆R gives
the relaxation phase shift of the collective oscillator.
The isochrons here show the case where β = − 1

2 .

For times sufficiently close to the moment of the per-
turbation (t = t′ = 0) the ǫQ(φ) term will dominate the
velocity of f and the continuity equation can be approx-
imated as,

ft +
∂

∂φ
[ǫQ(φ)f(w, φ, t)δ(t)] ≈ 0. (8)

Applying the method of characteristics to Eq. 8 yields
the characteristic equations,

dφ

dt
= ǫδ(t)Q(φ) (9a)

dh

dt
= −ǫδ(t)Q′(φ)h (9b)

where h(t) = f(ω, φ, t). In order to obtain an analytical
solution for Eqs. (9) we assume ǫ is a small parameter
and conduct a perturbation expansion. The expansion
will be valid for small changes in the mean phase ψ. To
leading order in ǫ we find,

φ(t) = φ0 + ǫQ(φ0) (10a)

h(t) = h0e
−ǫQ′(φ0), (10b)

for t > 0 where φ0, h0 indicate the quantities just prior
to the perturbation.
Since Q(φ) = Q(φ0) + O(ǫ) we approximate φ0 ≈ φ −

ǫQ(φ). Thus, we approximate f̄(ω, φ) the distribution
after the perturbation as,

f̄(ω, φ) = f(ω, φ− ǫQ(φ))e−ǫQ
′(φ−ǫQ(φ)) (11)

to leading order in ǫ. We integrate out the ω dependence
and define ρ(φ) which gives the fraction of oscillators at
phase φ,

ρ(φ) =

∫

∞

−∞

f(ω, φ)dω. (12)
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Therefore, we can write

ρ̄(φ) = ρ(φ− ǫQ(φ))e−ǫQ
′(φ−ǫQ(φ)) (13)

Eq. 13 gives an expression, valid for small ǫ, for the
continuous phase distribution just after the perturbation
ρ̄(φ) in terms of the phase distribution prior to the per-
turbation ρ(φ). We now convert Eq. 13 into an expression
for the order parameter and derive a form for the desired
mapping Z0 → Z̄. We expand Eq. (13) to leading order
in ǫ, multiply by eiφ and integrate to get an expression
in terms of the order parameter Z.

Z̄ = Z0 − ǫ

∫ π

−π

ρ(φ)Q′(φ)eiφdφ− ǫ

∫ π

−π

ρφQ(φ)eiφdφ

(14)
Integrating the second term by parts and simplifying
gives

Z̄ = Z0 + iǫ

∫ π

−π

ρ(φ)Q(φ)eiφdφ. (15)

In order to express the integral in Eq. 15 in terms of
powers of Z0 we replace Q(φ) with its Fourier Series rep-
resentation,

Q(φ) =
A0

2
+

∞
∑

n=1

Ane
inφ +A∗

ne
−inφ. (16)

This gives the following expression,

Z̄ = Z0 + iǫ

(

A0

2
Z0 +

∞
∑

n=1

∫ π

−π

Anρe
i(n+1)φ +A∗

nρe
i(1−n)φ

)

.

(17)

Since ρ(φ) describes a system on the Ott-Antonsen man-
ifold we have the special property,
∫ π

−π

ρ(φ)einφdφ = (Z0)
n

∫ π

−π

ρ(φ)e−inφdφ = (Z∗

0 )
n.

(18)

Applying this moment closure allows us to close Eq. 17,

Z̄ = Z0 + iǫ

(

A0

2
Z0 +

∞
∑

n=1

AnZ
n+1
0 +A∗

n(Z
∗

0 )
n−1

)

This can be rearranged to give,

Z̄ = Z0

(

1 + iǫQ̂(ψ)
)

(19a)

Q̂(ψ) =
A0

2
+

∞
∑

n=1

Rn−1(RAne
inψ +

A∗

n

R
e−inψ). (19b)

Eqs. (19) gives an expression for Z̄ in terms of Z0 valid
for small values of ǫ in terms of the Fourier series for the
microscopic PRC.
Notice that Q̂(ψ) is closely related to the microscopic

phase response curve Q(φ). For values of the phase co-
herence ≈ 1 the spread of the phase distribution is small

and Q̂(ψ) ≈ Q(ψ). However, as the phase coherence de-

creases, Q̂(ψ) diverges from the microscopic phase re-
sponse curve.
In addition, we note the Ott-Antonsen reduction has

only been applied as a moment closure in this derivation.
In particular the integral equation Eq. 15 may be used
for cases for which the Ott-Antonsen reduction cannot
be applied and be adapted to moment-closure schemes
which close the moments at a higher order.

A. Prompt Phase Response Curve ∆0

With an analytical expression for the order parameter
after the perturbation is applied (Eqs. 19) we may derive
an expression for the prompt phase resetting curve ∆0.

∆0 = Arg

[

Z̄

Z0

]

= Arg





Z0

(

1 + iǫQ̂(ψ)
)

Z0





= arctan

(

ǫRe[Q̂(ψ)]

1− ǫIm[Q̂(ψ)]

)

≈ ǫRe[Q̂(ψ)] +O(ǫ2)

Taking the real part of Q̂(ψ) yields,

∆0(ǫ, R, ψ) =
ǫ

2

(

A0 +
∞
∑

n=1

Rn−1(R +
1

R
)[ansin(nψ) + bncos(nψ)]

)

(20)

which is an asymptotic expansion valid as ǫ → 0 for the
prompt phase resetting curve as a function of the Fourier
Series for the microscopic phase response curve and the
phase coherence (R) of the system. Lower phase coher-
ence values affect the Fourier modes of the microscopic
phase response curves differently.
Specifically, Eq. 20 predicts a scaling for the ampli-

tude of the collective PRC. In particular, for microscopic
PRCs which are dominated by their first harmonic the
amplitude of the collective PRC should scale like R+ 1

R
and for a microscopic PRC whose principal Fourier coef-
ficient is of order N the amplitude of the collective PRC
should scale like RN+RN−2. For microscopic PRCs com-
posed of several modes we expect the first harmonic to
be amplified and higher harmonics to be damped in the
collective PRC resulting in a change in shape of the PRC
(Fig. 2).

B. Amplitude Response Curve

The formalism developed here allows us to predict not
only the phase shift of the collective phase but also how
perturbations of individual oscillators affect the phase co-
herence of the population. Since we are operating within
the Ott-Antonsen framework we expect that after a per-
turbation the system will return to its equilibrium R
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∆
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R=0.6
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Q(ψ)

FIG. 2: (Color online) A representative plot of the
prompt phase response curve ∆0 for various values of R
and Q(ψ) = sin(ψ) + sin(4ψ) with ǫ = 0.1. The first

harmonic is amplified and higher harmonics are
dissipated in the collective PRC.

value for long times. However, it is interesting to con-
sider how the phase coherence is transiently altered by
perturbations. To study this we introduce the amplitude
response curve Λ(ψ,R, ǫ) where Λ is defined as the ra-
tio of the phase coherence after the perturbation to the
phase coherence prior to the perturbation.

Λ0(ψ,R, ǫ) =

∣

∣

∣

∣

Z̄

Z0

∣

∣

∣

∣

≈

∣

∣

∣

∣

∣

Z0 + ǫiZ0Q̂(ψ)

Z0

∣

∣

∣

∣

∣

=

√

1− 2ǫIm[Q̂] + ǫ2(Re[Q̂]2 + Im[Q̂]2)

= 1− ǫIm[Q̂] +O(ǫ2)

Therefore using that Im[z] = z−z∗

2i we have that

Im[Q̂] =

∞
∑

n=1

Rn−1(
1

R
−R)Im[A∗

ne
−inψ]

Im[Q̂] =
1

2

∞
∑

n=1

Rn−1(
1

R
−R)(ancos(nψ)− bnsin(nψ))

Where an is the nth sine coefficient and bn is the nth
cosine coefficient in the Fourier Series of Q(ψ). This gives
the following expression for Λ0:

Λ0(ψ,R, ǫ) ≈ 1+
ǫ

2

∞
∑

n=1

Rn−1(
1

R
−R)[bnsin(nψ)−ancos(nψ)]

(21)
Notice that

bnsin(nψ)− ancos(nψ) ∝ −
dQ

dψ
,

so we expect the amplitude shifts to be greatest around
the zeros of the microscopic phase response curve, with

0 1 2 3 4 5 6

ψ

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Λ
0
=

R
f

R
0

R=0.5

R=0.6

R=0.8

Q(ψ)

FIG. 3: (Color online) A representative plot of the
amplitude response curve Λ for various values of the
phase coherence with Q(ψ) = 1

2sin(ψ)− cos(ψ) and
ǫ = 0.1. Perturbations around stable fixed points of
Q(ψ) give transient increases in the phase coherence
and perturbations about unstable fixed points of Q(ψ)

give decreases in the phase coherence.

increases in R around stable points and decreases around
unstable points (Fig. 3).
In addition, notice this derivation contains two ex-

pected limits for this system: as ǫ → 0 we expect the
ratio of phase coherences to go to one (no change in R,
due to the perturbation), as R → 1 we expect the change
in R values to go to zero as well.

C. Reset Phase Response Curve ∆R

We now consider the case where the system (Eq. 1)
evolves with a non-odd coupling function β 6= 0. In this
case we expect the reset phase shift (∆R) to be non-zero.
If the deviation off the Ott-Antonsen manifold is small
enough we expect that Eq. 7 will provide a good estimate
for ∆R.

∆R = tan(β)ln

(∣

∣

∣

∣

Z̄

Z

∣

∣

∣

∣

)

= tan(β)ln[Λ0(R,ψ, ǫ)]

Therefore, the reset phase shift depends on the logarithm
of the amplitude response curve. Expanding this system
to leading order in ǫ we get:

∆R =
ǫ

2
tan(β)

∞
∑

n=1

Rn−1(
1

R
−R)[bnsin(nψ)− ancos(nψ)]

(22)

where an is the nth sine coefficient and bn is the nth

cosine coefficient in the Fourier Series for Q(ψ). Once
again as the phase coherence goes to one the reset phase
shift goes to zero. Also, we expect the effect of the reset
phase shift to be strongest around the zeros of the micro-
scopic phase response curve Q(ψ) because the amplitude
response curve is maximal at those points (Fig. 3).
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Therefore, for systems with β 6= 0 we expect the col-
lective PRC to have shifted zeros compared to the mi-
croscopic phase response curve. Moreover, this shift will
become more exaggerated when the microscopic phase
response curve is dominated by low harmonics and the
ensemble has a small phase coherence.

D. Collective Phase Response Curve ∆∞

Having computed the prompt phase response curve ∆0

and the resetting curve ∆R we can now write down an
expression for the collective phase response curve ∆∞

valid for small ǫ.

∆∞ = ∆0 +∆R (23a)

∆0 =
ǫ

2

(

A0 +

∞
∑

n=1

Rn−1(R+
1

R
)[ansin(nψ) + bncos(nψ)]

)

(23b)

∆R =
ǫ

2
tan(β)

∞
∑

n=1

Rn−1(
1

R
−R)[bnsin(nψ)− ancos(nψ)]

(23c)

Therefore we have expressed the collective phase response
function in terms of the Fourier coefficients of the micro-
scopic phase response function and the phase coherence
of the equilibrium state.
We may now find an approximation for the shift in ze-

ros for the collective phase response curve. If ∆∞(ψ0) =
0 then we have ∆0(ψ0) = −∆R(ψ0). Let Q(ψ) be a mi-
croscopic PRC which is dominated by its nth harmonic,
then applying Eqs. 23 we get that,

tan(nψ0) = tan(β)

(

2

1 +R2
− 1

)

(24)

Let ψ∗ be the zero of the microscopic PRC Q(ψ∗) =
∆0(ψ

∗) = 0 and let ∆ψz = ψ0 − ψ∗ be the shift in the
zero for the collective PRC. We expand Eq. 24 about ψ∗

to get an expression for the shift in the zero ∆ψz,

∆ψz =
1

n

(

2

R2 + 1
− 1

)

tan(β). (25)

Thus, the shift in the zeros of the collective phase re-
sponse curve relative to the microscopic PRC will in-
crease like 1

R2+1 for smaller values of the phase coherence

and will be attenuated like 1
n
when the microscopic phase

response curve is dominated by higher harmonics.
In summary, Eqs. 23 make the following predictions

concerning the difference between the microscopic phase
response curve Q and the collective PRC for sinusoidally
coupled heterogeneous phase oscillators:

1. The amplitude of the nth harmonic in the collective
PRC should scale like Rn−1(R+ 1

R
) relative to the

microscopic PRC.

2. For non-odd coupling functions (β 6= 0) the zeros
of the collective PRC should be shifted in a manner
that scales with 2

R2+1−1 relative to the microscopic
PRC.

We now test these predictions numerically for coupled
phase oscillators and for a model of electrically coupled
neurons.

IV. NUMERICAL RESULTS

In this section we present numerical results in order
to test the theoretical findings from the previous sec-
tion. For each simulation we set N = 104 oscillators
and numerically integrate (Eq.1) to find the station-
ary phase distribution. The natural frequencies of the
oscillators were drawn from a Lorentzian distribution
(Eq. 5) with dispersion parameter γ = 0.5 and mean
w0 = 0.0. In order to generate phase distributions with
differing phase coherence (R) values the strength of the
coupling constant K0 in Eq. 1 was varied. Ott-Antonsen
theory predicts and numerics validate that the equilib-
rium phase coherence and coupling constant are related
by, K0 = 2γ

(1−R2) cos(β) . A stationary phase distribution

was generated by numerically integrating Eq. 1 for long-
times.

A stimulus was applied to the stationary phase distri-
bution at a sampling of mean phase values ψ ∈ [0, 2π)
and the order parameter was recorded just after the ap-
plication of the stimulus. The system was numerically in-
tegrated for a long-time until a steady state phase shift in
the mean phase was recovered relative to the unperturbed
system. These numerical collective PRCs were compared
against the theoretical predictions from Sec. III.

As a first case, we consider a simple microscopic PRC
Q(ψ) = sin(ψ) (Fig. 4 ). This provides validation that
the first harmonic is amplified like R + 1

R
in the col-

lective PRC and the zeros of the microscopic PRC are
shifted proportional to tan(β)( 1

R
− R) in the collective

PRC (Fig. 4).

In Fig. 5 we consider more general microscopic PRCs
and once again see good agreement between the theoreti-
cal prediction (Eq. 23) and numerical simulations. As can
be seen in Fig. 5 the collective PRC can deviate signif-
icantly from the microscopic PRC and these differences
can largely be understood as an amplification of the first
harmonic and dissipation of higher harmonics.

When the microscopic PRC is composed of several har-
monics this amplification/dissipation can be manifest in
a significant change in shape from the microscopic to the
collective PRC (Fig. 5(d)). For example, in Fig. 5(d)
the collective PRC has a phase delay region which is not
present in the microscopic PRC. Moreover, the collective
PRC in Fig. 5(d) has a stable entrainment point where
the microscopic PRC has only a neutrally stable region
(ψ > π).
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FIG. 4: (Color online) Change in the amplitude and entrainment points for a sinusoidal microscopic PRC. Here we
set Q(ψ) = sin(ψ), ǫ = 0.1 and β = 0.5. The coupling strength K0 was varied to produce phase distributions with
differing phase coherence (R) values in the synchronized state. Blue stars in Fig. (a,b) indicate the values of R

which are plotted in (c,d). (a) The amplitude of the collective phase response curve scales like R+ 1
R

with the phase

coherence. (b) The shift in the zero at ψ = π scales like tan(β)
(

2
R2+1 − 1

)

. (c) Microscopic, predicted collective

PRC and numerical collective PRC for R = 0.7 (d) Microscopic, predicted collective PRC and numerical collective
PRC when R=0.5.

V. APPLICATIONS

A. Application to a Neuronal Model

In order to investigate the broader application of this
theory, we considered a system of coupled neurons mod-
eled by the Morris-LecarModel. The Morris-Lecar model
is a two-dimensional conductance-based neuronal firing
model which is commonly used as a general neural model
[28]. For model details and parameter values see [29].

We consider an all-to-all connected system of Morris-
Lecar neurons with electrical coupling between the neu-
rons. Specifically, the coupling term in the current bal-
ance equation for neuron i is

∑

j gsyn(Vj − Vi) where j
sums over all other neurons in the network. The popula-

tion of neurons is set to fire with heterogeneous frequen-
cies distributed in a Lorentzian manner. The Morris-
Lecar model is capable of producing both Type I and
Type II microscopic phase response curves for different
parameter values [30]. This classification of neuronal
PRCs distinguishes between two physiologically observed
neuronal firing properties and is linked to the neural
membrane properties and the bifurcation which births
the oscillations. In a Type I neuronal system the PRC is
characterized by having a large region of phase advances
and a comparatively small region of phase delays in re-
sponse to an applied current [30]. A Type II PRC is char-
acterized by having regions of both phase advances and
delays. In this context the distinction allows us to test
the collective PRC theory for two qualitatively different
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FIG. 5: (Color online) Comparing theoretical predictions against numerical results for the collective PRC for various
microscopic PRC with ǫ = 0.1 and β = 0.5 The coupling strength K0 was varied to produce phase distributions with
differing phase coherence (R) values in the synchronized state. Microscopic PRC (solid black), ∆∞ (dashed green),

numerical simulation (red ’+’). Let H(ψ) be the heaviside step function. (a) Q(ψ) = sin(ψ) + 1
4sin(5ψ) (b)

Q(φ) = sin(ψ) + sin(4ψ) , (c) Q(ψ) = H(ψ − π)(−sin(2ψ)− sin(2ψ)cos(2ψ)) (d) Q(ψ) = H(−ψ − π).

and physiologically relevant microscopic phase response
curves.

In order to evaluate the utility of the theoretical pre-
dictions of this work we computed the individual neu-
ron phase response curves, the Ott-Antonsen predicted
collective phase response function and the numerical
collective phase response function in both the Type I
and Type II parameter regimes. The numerical curves
were produced using a short weak applied current pulse
(Iapplied = 1.0 uA

cm2 , ∆t = 1ms) to each individual neuron
and then measuring the phase shift in the mean phase for
an ensemble of N = 103 neurons. Ensembles of neurons
with differing phase coherence (R) values in the equilib-
rium state were generated by varying the strength of the
coupling through the gsyn parameter.

We first consider the Type I parameter regime for the
Morris-Lecar model. We numerically determined the col-
lective phase response curve for various values of the

phase coherence. For R ≈ 1 all oscillators are phase
locked together and the microscopic, asymptotic Ott-
Antonsen collective and numerical collective PRC agree.
However, as R was decreased we observed several changes
in the shape of the collective phase response curve. First,
higher harmonic Fourier terms in the microscopic PRC
damped out quickly. Secondly, the amplitude of the first
harmonic grew as R decreased and finally we saw a slight
phase shift in the zeros of the curve. The asymptotic
Ott-Antonsen procedure correctly predicted each of these
qualitative changes (Fig. 6).

These conclusions carried through to the case of Type
II neurons as well. However, for the Type II regime we
did not see as prominent a phase shift between the collec-
tive and microscopic phase response curves. This can be
explained by the β term in the Ott-Antonsen asymptotic
method. The β term for both the Type I and II parame-
ter regimes was computed numerically by truncating the
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FIG. 6: (Color online) Comparing theoretical predictions against numerical results for the collective PRC of
Morris-Lecar neurons. Inset plots show individual neurons action potentials (mV) for 400 ms in the synchronized
state for the two parameter regimes. Microscopic PRC (solid black), ∆∞ (dashed green), numerical simulation (red

’+’) (a) Collective PRC for Type I Morris-Lecar Neurons with R = 0.67 and mean applied current of 50.0 µA
cm2 . (b)

Type II Morris-Lecar system with R = 0.70 and mean applied current of 95 µA
cm2 .

Fourier series for the coupling function determined in the
course of the phase reduction of the coupled Morris-Lecar
system. For electrically coupled neurons with Type II
microscopic PRCs β = 0.25 while for electrically coupled
neurons with Type I microscopic PRCs β = −0.65. This
implies that the Type II system isochrones are closer to
radial so we see a smaller resetting shift (∆R) due to the
perturbation.
In both of these cases we see that the Ott-Antonsen

derived collective phase response curve gives a good ap-
proximation to the numerical case and provides an accu-
rate approximation for the shape, zeros and amplitude of
the collective phase response curve. We note the asymp-
totic procedure matches numerical simulations well de-
spite a violation of the assumptions of the Ott-Antonsen
reduction. In particular, the coupling functions for both
the Type I and Type II parameter regimes have higher
harmonic terms which violates a principal assumption
of the Ott-Antonsen approach [27]. Finally, this theory
makes the experimentally testable prediction that a cou-
pled system of Type II neurons will be able to entrain
to a smaller frequency range than the individual neurons
with the opposite being true for coupled Type I neurons.

VI. CONCLUSIONS

We have constructed an asymptotically valid analytic
formula for the collective phase response function in
terms of the microscopic phase response curve for glob-
ally coupled Sakaguchi-Kuramoto phase oscillators inter-
acting via an non-odd coupling function. Our analytic
results extends the framework developed in Levnajić and
Pikovsky [19] to consider a general microscopic PRC and

derives a characteristic scaling for changes in the am-
plitude and zeros of the collective PRC relative to the
microscopic PRC. These results were validated through
comparison with numerical simulations for a variety of
microscopic PRCs. By studying a system of coupled neu-
rons we demonstrated the broader applicability of the
theory to biological systems.

In particular, the theory predicts the amplitude and
zeros of the collective PRC. For weakly forced system a
larger amplitude PRC indicates a broader range of fre-
quencies which can entrain the system and the zeros pre-
dict the phase offset between the entraining force and the
mean phase of the population of oscillators. Therefore, a
better understanding of how these properties may be al-
tered by coupling between large ensembles of oscillators
has direct application to many biological systems. For in-
stance, in experimental studies of the mammalian circa-
dian rhythm, it was found that weaker coupling between
the neurons or a greater variance in the phase distribu-
tion of the oscillators decreased the entrainment time to
light input and increased the entrainment range [31, 32].
This suggests the collective PRC has a higher amplitude
than the microscopic PRC in the circadian system.

Moreover, the collective PRC is shown to have a change
in shape when the microscopic PRC is composed of sev-
eral harmonics. The first harmonic is amplified and
higher harmonics are dissipated as the phase coherence of
the population is decreased. This can result in the intro-
duction of advance/delay regions in the collective PRC
which are not observed in the microscopic PRC and an
overall smoothing of the curve.

The Ott-Antonsen dimension reduction is a key com-
ponent allowing for an analytical investigation of the col-
lective PRC presented in this work. The Ott-Antonsen



10

reduction is strictly valid for sinusoidally coupled het-
erogenous Sakaguchi-Kuramoto phase oscillators. How-
ever, as demonstrated numerically, for a Morris-Lecar
neuronal system here and for Stuart-Landau oscilla-
tors in [19], it provides a useful approximation even for
systems which have not been shown to rigorously col-
lapse to the Ott-Antonsen Manifold. Moreover, addi-
tional dimension-reduction techniques have been devel-
oped which may be useful in studying the collective phase
response curve in the future [11–13].
An important extension of these results is the gener-

alization to complex networks. The prompt phase shift,
∆0, can be estimated when the Ott-Antonsen moment
closure cannot be applied using the integral equation
Eq. 15 either numerically or analytically by using an ap-
propriate higher order moment closure.

However, in the absence of the Ott-Antonsen reduction
the computation of the reset phase shift ∆R presents a
challenge. In this case we cannot assume the collective os-
cillator has simple spiral isochrons as exploited in [19] to
derive Eq. 7. Therefore, the computation becomes much
more difficult. In addition, the collective phase response
curve for systems with a stochastic term has not been
considered here and is of great interest in applications.
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