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Phase reduction is an invaluable technique for investigating the dynamics of nonlinear limit cycle
oscillators. Central to the implementation of phase reduction is the ability to calculate phase re-
sponse curves (PRCs), which describe an oscillator’s response to an external perturbation. Current
experimental techniques for inferring PRCs require data from individual oscillators, which can be
impractical to obtain when the oscillator is part of a much larger population. Here we present a
simple yet novel methodology to calculate PRCs of individual oscillators using an aggregate signal
from a large homogeneous population. This methodology is shown to be accurate in the presence of
inter-oscillator coupling and noise and can also provide a good estimate of an average PRC of a het-
erogeneous population. We also find that standard experimental techniques for PRC measurement
can produce misleading results when applied to aggregate population data.

PACS numbers: 87.19.lj, 02.30.Zz, 02.30.Nw

I. INTRODUCTION

Collective oscillation in populations of limit cycle oscillators is a widely observed phenomenon in nonlinear
biological sciences [1], [2], [3], [4]. To understand the collective behavior of these systems, it is often useful to
reduce the dynamics of the constituent oscillators through phase reduction [5], [4], [6], so that each oscillator
obeys an equation of the form

θ̇ = ω + Z(θ)u(t), (1)

where the phase θ ∈ [0, 2π) describes an oscillator’s position in the basin of attraction of a limit cycle, ω is the
natural frequency so that the natural period T = 2π/ω, and Z(θ) is the is the infinitesimal phase response
curve (PRC) which captures the oscillator’s response to a small perturbation, u(t). We note that (1) can be
appended to include additional terms such as noise and coupling in a population. Phase reduction has been
applied fruitfully to many applications to both understand and control populations of phase oscillators [7],
[8], [5], [9], [10], [11].
Essential to the understanding of these oscillatory group dynamics is the ability to accurately compute

PRCs, which for systems in silico has been rendered nearly trivial with modern computing algorithms and
software [12], [13], [14]. For living systems, however, the model equations are not usually known, and
calculating PRCs is more difficult. For example, accurately measuring PRCs in neurons using the “direct
method” [3], [15], [16] requires current to be injected through a dynamic clamp, piercing the cell membrane
and ultimately killing the neuron in the process. While recordings from individual neurons can be difficult to
measure, readings from populations of neurons are readily available in experimental neurology, for example,
in the form of the local field potential, which represents a filtered sum of current traveling across the cell
membranes of a population of nearby cells [17].
When it is difficult or impractical to obtain data from an individual oscillator for calculating its PRC, it

may be more convenient to study the macroscopic behavior of the population. To this end, [18], [19], [20] and
[21] investigate the relationship between the phase sensitivity of a individual limit cycle oscillators and the
phase sensitivity of their collective oscillation which arises due to coupling. Also, [22] derived a method to
calculate phase response curves for the collective oscillations in excitable systems. These methods, however,
require that the population oscillation approaches a limit cycle, which can be a relatively strict assumption.
In this work, we propose a methodology that can calculate individual PRCs using only an aggregate signal

produced by the collective oscillation of a population of homogeneous oscillators which does not require the
collective oscillation itself to approach a limit cycle. While this methodology is developed for a homogeneous
uncoupled population, we find that it is robust to both heterogeneity in the individual oscillators, uncertainty
in the signal being measured, and terms which are unaccounted for such as noise and coupling. Furthermore,
we find that the standard methods used to calculate PRCs in individual oscillators can produce misleading
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results when directly applied to populations of oscillators. This methodology could make control strategies
such as [23], [24], and [25] more feasible for in vivo testing when the individual elements in the population
are difficult to observe.

II. NUMERICAL PROCEDURE

To begin, consider a large group of N identical, uncoupled phase oscillators [1], [3]:

θ̇i = ω + Z(θi)ψδ(t− τ) +O(ǫ). (2)

Here, θi ∈ [0, 2π) is the phase of oscillator i = 1, 2, . . . , N , Z(θ) is the PRC, and ψδ(t − τ) is a δ-function
impulse of strength ψ ∈ R applied identically to each oscillator. In (2), we allow for unknown but small O(ǫ)
perturbations. Suppose we have no information about any individual oscillators, but that each cell emits a
phase dependent signal s(θ) so that the aggregate signal

s(t) =
1

N

N∑

i=1

s(θi(t)) (3)

can be measured from the distribution.
When N is very large, we can characterize the distribution of phase oscillators with a probability density

ρ(t, θ) [26]:

∂ρ

∂t
= − ∂

∂θ
[(ω + Z(θ)ψδ(t− τ) +O(ǫ))ρ(t, θ)]

= −ωρθ − ψ[Z(θ)ρθ + Zθ(θ)ρ]δ(t− τ) +O(ǫ). (4)

Equation (4) implicitly assumes that the first derivative of ρ is O(1) and the O(ǫ) terms are small. In the
absence of δ-function forcing and O(ǫ) terms, equation (4) admits periodic traveling wave solutions. This
knowledge can be exploited to calculate the probability density immediately prior to and after a δ-function
pulse, which will be necessary for calculating phase response curves.

A. Estimating the Population Distribution from the Aggregate Signal

Consider the one dimensional Fokker-Planck equation (4). For all times t 6= τ , we asymptotically expand
the solution of (4) in orders of ǫ as ρ(t, θ) = ρ(0)(t, θ)+ǫρ(1)(t, θ)+ǫ2ρ(2)(t, θ) . . . , and find that, ∂

∂t
ρ(0)(t, θ) =

−ωρθ so that

ρ(t, θ) = ρo(θ − ωt) + ǫρ(1)(t, θ) +O(ǫ2), (5)

where ρo(θ) = ρ(0, θ). For the moment, we will neglect the O(ǫ) and O(ǫ2) terms so that

s̄(t) =
1

2π

∫ 2π

0

ρo(θ − ωt)s(θ)dθ. (6)

If we take ∆θ small enough, errors in the following approximation of (6) are negligible:

s̄(∆tm) =
1

M

M∑

j=1

ρo(∆θj − ωm∆t)s(∆θj). (7)

Assuming that we have carefully chosen ∆θ so that the sampling rate ∆t = ∆θ/ω, letting s̄(∆tm) → s̄m,
ρo(∆θm) → ρom , and s(∆θm) → sm, we may write

s̄m =
1

M

M∑

j=1

ρoj−m
sj , (8)
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where s̄, s, and ρo now represent vectors in R
M and M = 2π/∆θ = T/∆t. Defining s̄cx = s̄M−x and

scx = sM−x, and letting m =M − k and j = g +M − k, we can manipulate the previous equation to give

s̄cM−m =
1

M

M∑

j=1

ρoj−m
scM−j ,

s̄ck =
1

M

M∑

j=1

ρoj−M+k
scM−j ,

s̄ck =
1

M

M∑

g=1

ρogs
c
k−g,

=⇒ s̄c =
1

M
(ρo ∗ sc) (9)

where ∗ is the convolution operator. Note here that we are using periodicity in s so that, for example, if
k − g ≤ 0, sck−g = scM+k−g . Thus, letting F represent the discrete Fourier transform, ρo can be found using
the relation

ρo
M

= F−1

(F(s̄c)

F(sc)

)
. (10)

If we account for the leading order ǫ terms in equation (5) we can rewrite (8) as

s̄m =
1

M

M∑

j=1

(ρoj−m
+ ǫρ

(1)
j,m)sj

=
1

M

M∑

j=1

ρoj−m
sj +

1

M

M∑

j=1

ǫρ
(1)
j,msj , (11)

where ρ
(1)
j,m ∈ R

M is a vector representing the discretized distribution ρ(1)(m∆t, j∆θ). With the same

manipulations we used in equation (9), we arrive at the relation

s̄ck =
1

M

M∑

g=1

ρogs
c
k−g +

ǫ

M

M∑

j=1

(ρ
(1)
j,M−ks

c
M−j), (12)

and therefore,

F(ρo)

M
=

F(s̄c)

F(sc)
− ǫF(W )

MF(sc)
, (13)

where Wk = 1
M

∑M
j=1(ρ

(1)
j,M−ks

c
M−j). Thus, the term ǫF(W )

MF(sc) adds order ǫ error to each of the Fourier

coefficients. Generally, F(sc) will be close to zero for contributions from higher order Fourier coefficients,
which can amplify error in calculating higher order modes of the distribution ρo. For this reason, we truncate
the calculated distribution in the main text to include only the lowest order Fourier modes.

B. Connecting the Fokker-Planck Phase Response Functional to the Individual Neuron Phase

Response Curve

Again, neglecting O(ǫ) terms, (4) admits traveling wave solutions allowing us to study its solution in
terms of a group phase Θ, defined here so that Θ ∈ [0, 2π) and κ cos(θ − Θ) is the first Fourier mode of
the distribution ρ(t, θ). With this definition of group phase, we may view the network (4) itself as a phase
oscillator which evolves according to

Θ̇ = ω +

〈
G(θ,Θ),−ψ[Z(θ)ρθ + Zθ(θ)ρ]δ(t− τ) +O(ǫ)

〉
, (14)
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where G(θ,Θ) is the group phase response functional, and 〈·, ·〉 is the L2 inner product. As we show in

Appendix A by using techniques similar to those in [22], G(θ,Θ) = sin(θ−Θ)
κπ

, where κ is the magnitude of
the first Fourier mode of ρ(t, θ). Therefore, the change in group phase ∆Θ due to the δ-function impulse is

∆Θ = − ψ

κπ
〈sin(θ −Θ), Z(θ)ρθ + Zθ(θ)ρ〉. (15)

Because ρ(t, θ) can be determined by through measurements of s̄(t) using (10), and ∆θ is defined so that
it can be found with knowledge of ρ(t, θ), equation (15) allows us to use these observable values in order to
infer the phase response curve of the individual oscillators. It should be noted that if ρ(t, θ) = δ(θ − θo)
equation (15) reduces to ∆Θ(θo)/ψ = Z(θo), i.e. the PRC can be measured precisely with a direct method.
However, when ρ is not a δ-function, we will find that simply using the direct method to calculate PRCs can
yield misleading and incorrect results. To proceed, we define two new functions

ρf (t, θ) = ρ(t, θ)−
∞∑

k=q+1

Bρ,k sin(k(φρ,k − θ)),

Zf (θ) = Z(θ)−
∞∑

k=q+1

BZ,k sin(k(φZ,k − θ)), (16)

where Bρ,k sin(k(φρ − θ)) and BZ,k sin(k(φZ − θ)) represent the kth Fourier modes of ρ(t, θ) and Z(θ),
respectively. If we take q large enough so that |ρ− ρf |, |Z −Zf | and their first derivatives with respect to θ
are small, it is reasonable to assume that

∆Θ = − ψ

κπ
〈sin(θ −Θ), Zfρ

′
f + Z ′

fρf 〉+O(ǫ), (17)

where ′ ≡ ∂/∂θ. Here we have assumed that using the truncated terms for ρf and Zf in (15) only lead to O(ǫ)
errors in the inner product. The Fourier coefficients of the phase distributions immediately preceding and
following a δ-function pulse, ρ(τ−, θ), and ρ(τ+, θ), respectively, can be determined from (10). For instance,
ρ(τ−, θ) can be found taking s̄c = [s̄(τ−T/M), s̄(τ−2T/M), . . . , s̄(τ−T )], with sc = [s(2π(1− 1

M
)), s(2π(1−

2
M
)), . . . , s(0)]. We can then use the recordings after the δ-function stimulus to calculate ρ(τ+, t) and hence

calculate ∆Θ. Finally, we are in a position to present a strategy to obtain Z(θ):

1. Record s̄(t) on the interval t ∈ [τ − T, τ + T ], where a δ-function pulse is given at t = τ .

2. Repeat p times where p ≥ 2q+ 1. Recall that q determines the number of Fourier modes of Z that we
wish to estimate.

3. Using the data from steps 1 and 2, construct the matrix A ∈ R
p×(2q+1) and vector b ∈ R

p, as defined
below.

4. Solve for the best fit of the Fourier coefficients c = A†b, where † denotes the pseudoinverse [27].

Here bi corresponds to the ith measurement of ∆Θ. For the kth set of recordings, we use the first q modes
of ρ(τ−, θ) to construct ρf,k. Using the notation Zf(θ) = c1 +

∑q
v=1 c2v sin(vθ) +

∑q
w=1 c2w+1 cos(wθ), we

can rewrite equation (17) as:

[Ak,1, Ak,2, . . . , Ak,2q+1][c1, c2, · · · , c2q+1]
T = bk +O(ǫ)

Ak,1 = − ψ

κπ
〈sin(θ −Θ), ρ′f,k〉

Ak,2v = − ψ

κπ
〈sin(θ −Θ), sin(vθ)ρ′f,k + v cos(vθ)ρf,k〉

Ak,2w+1 = − ψ

κπ
〈sin(θ −Θ), cos(wθ)ρ′f,k − w sin(wθ)ρf,k〉. (18)

In the equation above, we calculate Θ from ρ(τ−, θ). An estimate of the Fourier coefficients of Z can then
be determined by taking A†b. We note that the O(ǫ) terms from (18) will not cause the estimate of the true
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Fourier coefficients of Z to deviate by more than O(ǫ) because A does not depend on ǫ, and ||A†||, while
potentially large, will be bounded if we take enough independent measurements so that A has full rank.
As a final note, without the unknown O(ǫ) terms from equation (2), the only source of error in this

procedure results from the truncations of Z and ρ in (16). When we include these small terms, as we show
in Appendix B, they contribute an additional O(ǫ) error in the calculation of the Fourier coefficients of Z(θ).

III. NUMERICAL RESULTS FOR A NETWORK OF OSCILLATORY NEURONS

We now test the utility of this method on a model which exhibits periodic neural spiking behavior. First
consider a model of N = 1000 periodically spiking thalamic neurons [28]:

CV̇i = −IL(Vi)− INa(Vi, hi)− IK(Vi, hi)

− IT (Vi, ri) + Ii,SM + ζiu(t) +Dηi(t) +
αc

N

N∑

j=1

(Vj − Vi),

ḣi = (h∞(Vi)− hi)/τh(Vi),

ṙi = (r∞(Vi)− hi)/τr(Vi), i = 1, . . . , N. (19)

Here, Vi, hi, and ri are transmembrane voltage and gating variables for neuron i, u(t) = I(t)/C represents a
control input common to all neurons, ζi is a constant representing the proximity to the stimulus electrode,
Ii,SM represents a baseline current chosen so that each neuron fires periodically, ηi(t) = N (0, 1) is i.i.d. noise
with zero mean and variance 1, D and αc are constants determining the strength of the noise and electrotonic
coupling [29], respectively, and all other functions and parameters are given in [28]. We note that this network
could be generalized to include, for instance, chemical synaptic coupling with more complicated coupling
structures. In our first example, we take the network to be homogeneous with Ii,SM = 5µA/cm2 and ζi = 1
for all i. We also set D = αc = 0 so that the distribution evolves according to (4) with no O(ǫ) terms. When
u(t) ≡ 0, each neuron settles to the same stable limit cycle, and we take s(θ) to be the transmembrane voltage
along this cycle, shown in panel A of Figure 1. We take p = 70 measurements taking u(t) to approximate
a δ-function with ψ = 0.025 using the methodology described above. Panel B shows an example of s̄(t)
centered at t = τ , the time at which the perturbation is applied. Panel C shows raw measurements of ∆Θ/ψ
plotted against the phase that the stimulus was applied, similar to how PRCs are typically measured in
single neuron recordings [15], and panel D gives the estimated PRC using the methodology detailed above
with M = 1000 and q = 4 (black line) with the exact PRC (grey line) measured using XPPAUT [12]. Note
that while there is a strong, seemingly sinusoidal, correlation between Θ and ∆Θ, this does not capture the
phase response properties of the individual neurons.
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FIG. 1. Panel A shows the transmembrane voltage as a function of θ on the limit cycle, which we take to be s(θ).
Panel B shows an example measurement of s̄ for a perturbation at t = τ . Panel C shows a strong, potentially
misleading correlation between the initial phase and ∆Θ which does not accurately reflect the true PRC in Panel D.
The PRC calculated from the data using the methods of Section II is shown in black in Panel D with the true PRC
in grey.

A. Including Heterogeneity, Coupling and Noise

In the derivation of the phase response calculation methodology from Section II, we assume that the phase
response curves and natural frequencies of each oscillator are identical. In all but the simplest applications,
this is an overly restrictive assumption. Here, we provide numerical evidence that in a heterogeneous net-
work, the proposed methodology can accurately estimate the average phase response curve of the system.
Furthermore, while we show in Appendix B that this methodology is guaranteed to be accurate when each
oscillator is subject to small unknown external perturbations (e.g. noise and coupling), we find that this
methodology can still yield accurate results when external perturbations are large.

To include heterogeneity in the neural network (19), we draw the parameters ISM , ζ and the leak current
conductance, (gL from [28]) in (19) from normal distributions, with histograms for the chosen values shown
in Figure 2. For this choice of parameters, both the PRCs and the natural periods of each neuron in the
population are no longer identical. We take s(θ) to be voltage along the limit cycle, averaged over each
neuron which gives a similar s(θ) to what was used in the homogeneous population example (we note that
this calculation of s(θ) would not be feasible in a real experiment, and provide a discussion about robustness
with respect to the choice of s(θ) in the next section).

In order to apply the numerical procedure from Section II B to the heterogeneous population, we need to
determine an appropriate value of T , the natural period of oscillation for our system. When the network is
homogeneous, T from steps 1 and 2 can simply be taken as the natural frequency of each oscillator. In this
case, however, we assume that we do not have a priori knowledge of T for the heterogeneous population,
and implement steps 1 and 2 by continuously recording s̄(θ), and intermittently perturb the system with
δ-function pulses. We then take T to be the period corresponding to the largest mode of the Fourier
transformed data s̄(θ), taken over the entire duration of the simulation. By recording the time at which the
pulses were presented, we can then extract the portions of the measurement s̄(t) necessary to implement the
numerical procedure. We illustrate this strategy for both a noiseless and uncoupled (D = 0, αc = 0) and
a noisy and coupled network (D = 2, αc = 0.1), with results shown in panels A-C and D-F of Figure 3,
respectively. In the noiseless, uncoupled simulations, we take q = 1 to estimate the first Fourier mode of the
individual phase response curves, and in Panel C we see that the result agrees well with the average effective
PRC of the population. For the network with both noise and coupling, we find in panel F that the magnitude
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FIG. 2. The top panels show histograms representing the number of neurons with each value of baseline current
(ISM), leak current conductance, and relative stimulus magnitude, ζ, applied to each neuron. The bottom left panel
shows the spread of ζiZi(θ) which represents the effective PRC for each neuron. The boundaries of the shaded
region represent maximum and minimum resulting values, the dashed lines represent boundaries of the 25th and 75th

percentiles, and the thick black line gives the average value for the 1000 neuron population. A histogram representing
the natural periods of oscillation for each neuron is shown in the bottom-right panel.

and phase of the first Fourier mode are slightly worst than the result from the noiseless, uncoupled network,
but the estimate is still quite good. We note that in both examples, the raw phase data from panels B and
E do not come close to matching the shape or the magnitude of the individual phase response curves.
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FIG. 3. (Color Online) Panels A-C show results for a population of heterogeneous, uncoupled, noiseless neurons.
Panels D-F show results for a population of heterogeneous, coupled, noisy neurons. Panels A and D show an individual
neural trace from each population. Panels B and E show the raw data using ψ = 1 as black dots (p = 105 and p = 137
measurements, respectively) while the red line gives a five mode Fourier fit of the raw data. Panels C and F show
the resulting PRCs (black lines) and the averaged effective PRC (grey line) for reference.
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IV. CHOOSING A SIGNAL FOR ROBUST MEASUREMENT OF PRCS

The signal s(θ) which each oscillator contributes to the population observation is necessary for determining
the distribution before and after the application of the pulsatile stimulus and hence, for finding the PRC. For
experimental applications, it is likely that s(θ) cannot be obtained with absolute certainty. In this section,
we show that PRCs can still be obtained rather robustly if an approximation to the true value of s(θ) is
known. To begin, consider the infinite time average of (3)

lim
T→∞

1

T

∫ T

0

s(t)dt = lim
T→∞

1

T

∫ T

0

[
1

N

N∑

i=1

s(θi(t))

]
dt. (20)

We assume that external perturbations are small so that θi(t) is well approximated by θi(0) + ωit. We may
then manipulate (20) as follows:

lim
T→∞

1

T

∫ T

0

s(t)dt = lim
T→∞

(
1

T

∫ T

0

[
1

N

N∑

i=1

s(θi(0) + ωit)

]
dt

)
,

=
1

N

N∑

i=1

lim
T→∞

(
1

T

∫ T

0

[
s(θi(0) + ωit)

]
dt

)
,

=
1

2π

∫ 2π

0

s(θ)dθ

(
1

N

N∑

i=1

1

)
,

=
1

2π

∫ 2π

0

s(θ)dθ. (21)

Therefore, when choosing the signal s(θ), its mean is well approximated by s(t), provided a long enough
measurement is taken. Therefore, it is only necessary to estimate the shape and magnitude of the signal s(t),
as the mean can be determined from the experimental data. Figure 4 replicates the results from Section III
using the homogeneous network and the heterogeneous, noisy, coupled network for two different choices of
s(θ). For the first choice, we take s(θ) to be the true transmembrane voltage, to which we add a Wiener
process. The second choice is a simple piecewise linear approximation to an action potential. For both
signals, we vertically shift the resulting s(θ) so that (21) is satisfied. As long as s(θ) is reasonably close to
the true signal, s∗(θ), the PRC calculation results are not significantly degraded.
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different choices of s(θ) as bold lines with the true (resp. population average) s∗(θ) shown as a dashed line. Bottom
panels show the calculated PRCs in black using the s(θ) function directly above. Grey lines represent the true (resp.
population average) PRC.

V. BURSTING NEURON PRCS

For a second test, we consider a more complex network of 400 bursting Hindmarsh-Rose model [30] neurons
which was modified in [31] to include a synaptic current:

V̇i = ni − aV 3
i + bV 2

i − hi + I

+ ǫsyn

N∑

j=1

ξj(Vi − Vsyn) + ǫηηi(t) + u(t),

ṅi = c− dV 2
i − ni(t),

ḣi = r(σ(Vi − V0)− hi),

ξ̇i = αsynT∞(Vi)(1− ξi)− βsynξi, i = 1, . . . , 400. (22)

Here, Vi, ni, and hi represent transmembrane voltage and gating variables, ξi is a synaptic variable which
could represent a neurotransmitter, ηi(t) = N (0, 1) is i.i.d. noise with zero mean and variance 1, and u(t)
is an external input. We take ǫsyn = 0.03, ǫη = 0.01 and all other parameters identical to those in [31]
except for βsyn = 0.0304 and αsyn = 1.304 which were modified so that the synaptic variable ξ(θ) changed
on a slower time scale as compared to the transmembrane voltage V (θ). For this choice of parameters, in
the absence of synaptic coupling and noise, each neuron settles to a limit cycle with a period of T =430 ms
consisting of nine-spike bursts followed by a period of quiescence. Here, we use pulses of u(t) = 0.4 for 5 ms
so that ψ = 2. We take s(θ) to be the synaptic variable, which is shown in Panel A of Figure 5, but note
that similar results can also be achieved by using the transmembrane voltage. Panel B shows s̄(t) for one of
p = 106 measurements, centered about t = τ . We note that because of the small noise and coupling terms,
s̄(t) is not perfectly T -periodic for t 6= τ . Panel C shows a fit of five Fourier modes to raw data of ∆Θ/ψ
plotted as a function of Θ. In panel D, the true PRC calculated using the direct method [3] on a single
neuron is shown in grey, and the PRC estimated from the methodology above with M = 1000 and q = 5 is
shown in grey. The structure of the true PRC is much more complex than in the previous model, but the
estimated PRC accurately captures the slowly varying part. To capture the rapid fluctuations in the earlier
part of the cycle, we would need to include more Fourier modes in the calculation, but because of noise and
network coupling structure, it is not possible to accurately calculate these modes for this model. In panel E,
we show that the calculated PRC (black) is very close to the first five Fourier modes of the true PRC (grey).
The fit from panel C (red) is also shown for comparison and is not a good approximation of the true PRC.
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FIG. 5. (Color Online) Panel A shows the synaptic variable, ξ, as a function of θ, which we take to be s(θ) in (22).
Panel B shows an example measurement of s̄ for a perturbation at t = τ . Panel C shows raw data of ∆Θ/ψ plotted
against Θ with a five mode Fourier fit to the data in red. In panel D, The true PRC is shown in grey with the
PRC calculated from the data using q = 5 in black. Panel E shows the first five Fourier modes of the true PRC, the
calculated PRC, and the fit from the raw data in grey, black, and red, respectively. We predict the entrainment of
(22) to the signal u(t) shown in panel F. In panel G, Γ(ϕ) is calculated using the red and black curves from panel E,
with resulting functions shown in red and black, respectively. Predicted stable fixed points are denoted with ∗’s for
each curve. The stable fixed points predicted from the black curve accurately predict entrainment as verified from
simulations of individual cells from (22) in panel H.

While we cannot calculate the higher order modes which give rise to the rapidly varying part of the PRC,
these are not necessary in many applications. In one such example, we use the calculated PRC to predict
entrainment of individual neurons from (22) to the external stimulus u(t) = 0.0025 cos(ωot)+ 0.005 sin(ωot),
where ωo = 2π/T , shown in panel F. If we assume that u(t) is small enough so that θ(t) ≈ θ(0) + ωot, using
standard averaging techniques [32], we can reduce the dynamics of individual cells from (22) to

ϕ̇ = Γ(ϕ), (23)

where ϕ ≡ θ/ωo − t (mod T ) and Γ(ϕ) = 1
T

∫ T

0 Z(ωot + ϕ)u(t)dt. Panel G shows Γ(ϕ) calculated using
the PRC obtained from the methodology described in Section II as a black line, which predicts three stable
fixed points of (23) marked by ∗’s. These fixed points are verified in panel H from numerical simulations of
individual, noiseless neurons from (22). For comparison, using the red curve from panel C to calculate Γ(ϕ)
predicts only one stable fixed point.

VI. CONCLUSIONS

This study provides an experimentally feasible methodology for calculating PRCs of individual components
from aggregate population data. We have applied this methodology to a model of both periodically spiking
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and bursting neurons and show that it can accurately calculate the slowly varying modes of the PRCs in
the constituent elements. We explicitly show in Appendix B that in the limit as the truncated order ǫ terms
from (4) are small, the Fourier coefficients are also accurate to leading order ǫ. Nevertheless, when noise and
coupling in the system is relatively large, we can still obtain accurate results. Furthermore, using techniques
based solely on the direct method [3], as is typically used to measure PRCs, can yield potentially misleading
results in the examples presented here.

In each of the examples given here, we are only able to calculate the first few modes of the individual PRCs
before either noise, heterogeneity or truncated order ǫ effects from the phase reduction begin to significantly
degrade the calculation. We do not provide analytical limits on the number of modes we can take, but
heuristically we find that as we continue to take more and more modes, the solution becomes dominated by
the higher order modes (i.e. the methodology produces PRCs that oscillate rapidly). In a setting where the
individual phase PRCs are unknown, the procedure could be repeated for increasing values of q (yielding
solutions with different numbers of Fourier modes) until the higher order Fourier begin to dominate the
solution, indicating that the results are no longer valid.

The proposed methodology is shown to work well for the systems tested here, but modifications could
improve the accuracy of the calculation. For example, we have chosen a Fourier basis functions to calculate
the probability distribution and PRC in (16) because of the intrinsic periodicity of the solutions, and the
effect of using different bases has not been investigated here. Furthermore, for simplicity of implementation,
we have used a least-square fitting technique to determine the Fourier coefficients, and have not investigated
the effect of using different curve fitting techniques. When we considered heterogeneity, coupling and noise
in the periodically spiking population of neurons, we were still able to obtain a reasonably accurate estimate
of the average phase response curve of the system. It may be possible to improve this estimate by explicitly
accounting for these effects in the underlying partial differential equation (4). Most likely this would require
specific estimates of the underlying coupling structure and noise strength.

It may be interesting to adapt the proposed methodology for use in excitable systems which through
coupling may admit stable periodic oscillations [22]. The constituent elements of these populations are
excitable, not periodic, so that perturbations to the individual elements can be understood in terms of
isostable response curves [33]. Such systems have relevance to problems in cardiology [34], [35], [36], [37],
systems of chemical oscillators [38], waves of spreading depression in the brain [39], [40]. It is possible that
isostable response curves could be calculated using a similar strategies for these excitable systems.

Phase reduction has a rich history in the nonlinear sciences, and has led to a greater understanding of
many physical, chemical, and biological systems. The methodology presented here could allow for the use of
phase reduction in large systems where it is not feasible to directly observe the individual elements, allowing
for their study in a more useful coordinate system. In addition, the algorithm presented here is relatively
simple and can be readily implemented with modern mathematical software.

Support for this work by National Science Foundation Grant NSF-1264535 is gratefully acknowledged.

Appendix A: Phase Response Functionals of the Advection Equation

Consider the advection equation, which might describe the probability density ρ(t, θ) of a large group of
identical phase oscillators, each with phase θ ∈ [0, 2π), on a one dimensional ring, c.f [26]:

∂ρ

∂t
= −ω∂ρ

∂θ
+ P (t, θ). (A1)

Here, ω is the natural frequency of each oscillator so that the natural period T = 2π/ω and P (t, θ) is a time
and phase dependent perturbation. When P ≡ 0, equation (A1) has a T -periodic traveling wave solution

ρ(t, θ) = ρo(θ − ωt), (A2)

where ρo = ρ(0, θ). In the analysis to follow, we will define this periodic solution as γ.

It will be useful to define a group phase, Θ, such that when P ≡ 0, dΘ/dt = ω. To this end, we define
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Θ ∈ [0, 2π) as

Θ(ρ(t, θ)) = arctan2(a, b),

a(t) =
1

π

∫ 2π

0

ρ(t, θ) sin θdθ,

b(t) =
1

π

∫ 2π

0

ρ(t, θ) cos θdθ, (A3)

where arctan2 is the signed arctangent function, so that the first Fourier mode of the distribution ρ(t, θ) is

given by
√
a2 + b2 cos(θ − Θ). Notice that this definition of the group phase allows us to not only define

phase in relation to the traveling wave solution, γ, but also for any perturbed solution of (A1).
Changing to group phase coordinates using the chain rule, we find

dΘ

dt
=

〈
∇Θ(ρ),−ω∂ρ

∂θ
+ P (t, θ)

〉

= ω + 〈∇Θ(ρ), P (t, θ)〉. (A4)

Here, ∇Θ is the group phase response functional (GPRF) which represents the gradient of the group phase
field and 〈·, ·〉 is the L2 inner product. Note that equivalence in (A4) comes from the fact that dΘ/dt = ω
when P ≡ 0. In order to use (A4) we need an explicit expression for the GPRF. Following a similar derivation
of an adjoint equation for the calculation of GPRFs for limit cycle oscillators [22], evaluating the vector field
at ργ(Θ) which we define as the intersection of the Θ level set and the trajectory γ, we have

dΘ

dt
= ω + 〈∇Θ(ργ(Θ)), P (t, θ)〉. (A5)

To proceed, we assume that P ≡ 0 for t > 0 and give a small perturbation ∆ρ at time t = 0 to the trajectory
ρ(t, θ) ∈ γ. Letting ρǫ(t, θ) = ργ(t, θ) + ∆ρ(t, θ) be the perturbed initial condition, we have

∂∆ρ(t, θ)

∂t
= J(ρ(t, θ)) ·∆ρ(t, θ) +O(||∆ρ(t, θ)||2)

= −ω ∂

∂θ
·∆ρ(t, θ) +O(||∆ρ(t, θ)||2), (A6)

where J ≡ −ω ∂
∂θ
. We also define the phase shift associated with the perturbation ∆ρ(t, θ) as ∆Θ =

Θ(ρǫ(t, θ))−Θ(ρ(t, θ)) and write

∆Θ = 〈∇ρ(t,θ)Θ,∆ρ(t, θ)〉+O(||∆ρ(t, θ)||2), (A7)

where ∇ρ(t,θ)Θ is the gradient of Θ evaluated at ρ(t, θ). After the initial perturbation at t = 0, ∆Θ is

independent of time, and taking time derivatives of (A7) and neglecting O(||∆ρ(t, θ)||2) terms gives

〈
∂∇ρ(t,θ)Θ

∂t
,∆ρ(t, θ)

〉
= −

〈
∇ρ(t,θ)Θ,

∂∆ρ(t, θ)

∂t

〉

= −
〈
∇ρ(t,θ)Θ,−ω

∂

∂θ
·∆ρ(t, θ)

〉

= −
〈
ω
∂

∂θ
· ∇ρ(t,θ)Θ,∆ρ(t, θ)

〉
. (A8)

Equivalence in the last line comes from the fact that ω ∂
∂θ

is the adjoint of −ω ∂
∂θ

on the periodic domain.
Equation (A8) holds for arbitrary perturbation ∆ρ(t, θ) and therefore gives the relation

∂∇ρ(t,θ)Θ

∂t
= −ω ∂

∂θ
· ∇ρ(t,θ)Θ. (A9)

Equations of the form (A9) are sometimes referred to as “adjoint equations” for calculating phase response
functionals (or phase response curves) [22], [6]. The GPRF for this system will be a T -periodic solution to



13

(A9) which also satisfies 〈∇ρ(t,θ)Θ,−ω∂ρ/∂θ〉 = ω, as was required by (A4). Furthermore, because the phase
Θ was defined to be a function of the first Fourier mode of the distribution ρ, any perturbations to higher
modes will not effect the group phase. Therefore,

〈∇ρ(t,θ)Θ, p sin(nθ) + q cos(nθ)〉 = 0, ∀ p, q ∈ R, ∀n = 2, 3, 4, . . . , (A10)

which means that the GPRF must be of the form

∇ρ(t,θ)Θ = α sin(θ − ϑ), (A11)

with α ∈ R and ϑ ∈ [0, 2π). Recalling that when P ≡ 0, dΘ/dt = ω, one can verify that for the group phase
defined in (A3), the GPRF is given by

∇ρ(t,θ)Θ =
sin(θ −Θ)

π
√
a2 + b2

. (A12)

Appendix B: Measuring Phase Response Curves in an Almost Advective Equation

Here, we will show that using the methodology presented in the main text to estimate phase response
curves, Z(θ), will yield results that are accurate to leading order ǫ regardless of whether the true dynamics
evolve according to

∂ρ

∂t
= −ωρθ − [Z(θ)ρθ + Zθρ]ψδ(t− τ) (B1)

or

∂ρ

∂t
= −ωρθ − [Z(θ)ρθ + Zθρ]ψδ(t− τ) +O(ǫ), (B2)

where the O(ǫ) terms represent small but unknown perturbations. In the main text, all results are obtained
using (B1), and those results will be used for comparison here.
To begin, in the presence of the O(ǫ) terms, suppose that at t = τ−T the probability distribution is ρo(θ).

Using the asymptotic expansion (5) from Section II A of the main text, at time t = τ− the solution of (B2)
will be

ρ(τ−, θ) = ρo(θ) + ǫ

∫ τ

τ−T

[ρ(1)(t, θ) +O(ǫ)]dt. (B3)

Therefore, ρ(τ−, θ) = ρo(θ) + O(ǫ). To calculate G(θ,Θ1), where Θ1 ≡ Θ(τ−), we need to know Θ(τ−),
which can be found by calculating Fourier coefficients of (B3):

a =
1

π

∫ 2π

0

ρo(θ) sin(θ)dθ +
ǫ

π

∫ 2π

0

{∫ τ

τ−T

[ρ(1)(t, θ) +O(ǫ)]dt

}
sin(θ)dθ = a∗ +O(ǫ),

b =
1

π

∫ 2π

0

ρo(θ) cos(θ)dθ +
ǫ

π

∫ 2π

0

{∫ τ

τ−T

[ρ(1)(t, θ) +O(ǫ)]dt

}
cos(θ)dθ = b∗ +O(ǫ), (B4)

where a∗ and b∗ are the Fourier coefficients if we were using (B1). Therefore, the group phase is Θ1 =
arctan2(a∗ +O(ǫ), b∗ +O(ǫ)) which through Taylor expansion can be shown to be equal to arctan2(a∗, b∗)+
O(ǫ) = Θ∗

1 +O(ǫ), where Θ∗
1 would be the group phase if we were using (B1). Then from (A12),

G(θ,Θ1) =
sin(θ −Θ∗

1 +O(ǫ))

π
√
a∗2 + b∗2 +O(ǫ)

=
sin(θ −Θ∗

1)

π
√
a∗2 + b∗2

+O(ǫ). (B5)

Note that equivalence in (B5) comes from Taylor expansion and assumes that
√
a∗2 + b∗2 is large compared

to ǫ. Using the phase reduction for (B2), the effect on the δ-function pulse on the group phase will be

∆Θ = − ψ

π
√
a∗2 + b∗2

〈
sin(θ −Θ∗

1) +O(ǫ),
∂

∂θ

(
ρo(θ) + ǫρ(1)(τ−, θ) +O(ǫ2)

)
Z(θ)

+
∂

∂θ
Z(θ)

(
ρo(θ) + ǫρ(1)(τ−, θ) +O(ǫ2)

)〉

=⇒ ∆Θ+O(ǫ) = − ψ

π
√
a∗2 + b∗2

〈sin(θ −Θ∗
1), ρ

′
o(θ)Z(θ) + Z ′(θ)ρo(θ)〉 , (B6)
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where ′ ≡ ∂/∂θ. Note that equivalence in the last line of (B6) requires that the derivatives of the O(ǫ) terms
are still O(ǫ). We observe that the right hand side of (B6) is of the same form as (15) from the main text.
Therefore, including the O(ǫ) terms from (B2) will cause the effect of the δ-function pulse to differ by O(ǫ).
In Section IIA from the main text, we show that to leading order ǫ, we can measure the phase of a

distribution that evolves according to (B2) by measuring s̄(t) for one period. Therefore, for an initial
distribution ρ(τ − T, θ), if we apply the methodology from the main text to measure the phase response
curve of the system,

Θ1 = Θ∗
1 +O(ǫ). (B7)

Using the coefficients from (B4) the true value of the group phase at τ−, Θ̃(τ−), is equal to Θ∗
1 +O(ǫ), and

using (B6) we can say that after the pulse Θ̃(τ+) = Θ∗
1 +∆Θ∗ +O(ǫ), where ∆Θ∗ is the change in group

phase if the distribution evolved according to (B1). Again, we will be able to measure the group phase of
ρ(τ+, θ) to leading order ǫ, so that

Θ2 = Θ∗
1 +∆Θ∗ +O(ǫ) (B8)

and

∆Θ = Θ2 −Θ1 = ∆Θ∗ +O(ǫ). (B9)

Therefore, b = b∗ +O(ǫ), where b is a vector of readings of ∆Θ, and b∗ is what would have been measured
if the distribution evolved according to (B1).
We now turn our attention to the values in the A matrix given by (18) from the main text. In equation

(13) from Section II B from the main text, we show that we can calculate the Fourier coefficients of ρo to
leading order in ǫ. Therefore, the truncated distribution from equation (16) of the main text can be written
as

ρf (θ) = ρo(θ)−
∞∑

k=q+1

Bρ,k sin(k(φρ − θ)) +O(ǫ)

= ρ∗f (θ) +O(ǫ), (B10)

where Bρ,k sin(k(φρ−θ)) is the kth Fourier mode of ρo(θ) and ρ
∗
f (θ) is the function ρf (θ) that would have been

calculated if the probability distribution evolved according to (B1). Therefore, the values in A calculated
from equation (18) from the main text become

Ak,1 = −ψ〈G(θ,Θ∗) +O(ǫ), (ρ∗f,k +O(ǫ))′〉 = A∗
k,1 +O(ǫ)

Ak,2v = −ψ〈G(θ,Θ∗) +O(ǫ), sin(vθ)(ρ∗f,k +O(ǫ))′ + v cos(vθ)(ρ∗f,k +O(ǫ))〉 = A∗
k,2v +O(ǫ)

Ak,2w+1 = −ψ〈G(θ,Θ∗) +O(ǫ), cos(wθ)(ρ∗f,k +O(ǫ))′ − w sin(wθ)(ρ∗f,k +O(ǫ))〉 = A∗
k,2w +O(ǫ), (B11)

whereA∗
i,j is the value ofAi,j that would have been calculated if the probability distribution evolved according

to (B1). Therefore, to calculate the Fourier coefficients c of Z(θ) we must solve

(A∗ + ǫE)c = b∗ + ǫβ (B12)

so that c = (A∗ + ǫE)†b∗ + ǫ(A∗ + ǫE)†β. Here, ǫE represents the O(ǫ) terms from (B11) and ǫβ represents
the O(ǫ) terms from (B9).
Consider the difference between c and c∗ = A∗†b∗, and let D = (A∗ + ǫE). Then

c− c∗ = D†b∗ + ǫD†β −A∗†b∗

||c− c∗|| = ||(D† −A∗†)b∗ + ǫD†β − ǫA∗†β + ǫA∗†β||
= ||(D† −A∗†)(b∗ + ǫβ) + ǫA∗†β||
≤ ||D† −A∗†|| · ||b∗ + ǫβ||+ ǫ||A∗†|| · ||β||. (B13)

Because the difference between the true Fourier coefficients and c∗ is O(ǫ), if we can show that ||D† −A∗†||
is an order ǫ term, then the difference between c and the true Fourier coefficients will also be O(ǫ).
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To proceed, we assume that we have taken enough independent measurements of ∆Θ so that A∗ has full
rank. Then, let UΣV T be the singular value decomposition of A so that

Σ =

[
Σ11

0

]
, UTEV =

[
E11

E21

]
, UTDV =

[
D11

D21

]
=

[
Σ11 + ǫE11

ǫE21

]
. (B14)

Using a combination of Theorem 2.2 and Theorem 3.8 from [41], if we assume ǫE is small enough so that it
is an acute perturbation of A∗, as defined in [41], we can write

||D† −A∗†|| ≤ ǫ||Σ−1
11 ||2||A

∗† ||(||E11||+ ||E21||)
1− ǫ||E11||2||Σ−1

11 ||2
. (B15)

Therefore, ||D† − A∗†|| can be bounded as an O(ǫ) term, and from (B13), c is at most O(ǫ) away from c∗

which is in turn O(ǫ) away from the true Fourier coefficients of Z(θ).
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