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For a quantum dot system of fixed geometry, in the presence of random impurities the average
conductance over an appropriate range of the Fermi energy decreases as the impurity strength is
increased. Can the nature of the corresponding classical dynamics in the dot region affect the rate
of decrease? Utilizing graphene quantum dots with two semi-infinite, single-mode leads as a proto-
typical model, we address the device stability issue by investigating the combined effects of classical
dynamics and impurities on the average conductance over the energy range of the first transverse
mode. We find that, for chaotic dot systems, the rate of decrease in the average conductance with the
impurity strength is in general characteristically smaller than that for integrable dots. We develop
a semiclassical analysis for the phenomenon and also obtain an understanding based on the random
matrix theory. Our results demonstrate that classical chaos can generally lead to a stronger stability
in the device performance, strongly advocating exploiting chaos in the development of nanoscale
quantum transport devices.

PACS numbers: 72.80.Vp,05.45.Mt,73.23.-b,73.63.-b

I. INTRODUCTION

In the development of nano-scale quantum devices, an
important issue is stability against random perturbations
such as various types of impurities. While the impurities
can be reduced to certain extent through the improve-
ment and refinement of the underlying fabrication pro-
cess, it is of interest to uncover alternative mechanisms to
enhance the device stability. The purpose of this paper is
to show that classical chaos can be exploited to generate
devices that are relatively more stable in the quantum
regime than those exhibiting integrable dynamics in the
classical limit.

To be concrete, we study quantum dot systems, an es-
sential type of structures in nano-electronic devices. Such
a system consists of a central scattering region, or a dot
region, and a number of electronic waveguides (leads).
Incoming electrons from one lead undergo scattering in
the dot region and become outgoing in all leads. For
quantum dots a fundamental phenomenon is universal
conductance fluctuations [1–5] with respect to variations
in parameters such as the Fermi energy or the strength of
an external magnetic field. In particular, for mesoscopic
systems in the ballistic transport regime, at low temper-
atures the conductance fluctuations tend to be indepen-
dent of the sample size and impurities [1] and thus can
serve as a probe of quantum chaos [5], a field aiming to
uncover and understand the quantum manifestations of
classical chaos [6]. For over two decades quantum dot sys-
tems have become a paradigm to study quantum chaotic
scattering [7, 8], and there has been a large body of liter-
ature on the effects of distinct types of classical dynamics
on conductance fluctuations [9–19]. A basic result is that,
for systems with integrable or mixed classical dynamics,
the conductance curves typically contain a large number
of Fano resonances [20–24], leading to sharp conductance
fluctuations. But if the system has fully developed classi-

cal chaos, conductance fluctuations will be smooth. This
result enables conductance fluctuations to be modulated
through the control of the underlying classical dynam-
ics [25, 26].

To address the problem of device stability with re-
spect to random impurities, in this paper we shall not
be concerned with conductance fluctuations. Instead,
we consider ensemble of random impurities of system-
atically varying strength and investigate their effects on
some appropriately averaged value of the conductance.
For this purpose we consider quantum-dot systems of
two semi-infinite leads, each supporting a single trans-
verse mode, and focus on the average conductance over
the corresponding single-mode Fermi-energy range. This
energy range is classically small but quantum mechani-
cally large, rendering applicable semiclassical treatment
of the scattering dynamics [27]. To contrast the role of
classical dynamics, we choose two types of geometric do-
mains for the dot region: stadium and rectangle, which
generate classical chaotic and integrable dynamics, re-
spectively. As the strength of the random impurities
is increased from zero, the average conductance will de-
crease due to localization of wavefunctions. However, we
find that the integrable dot system exhibits a much faster
decrease in the average conductance than that for the
chaotic dot system, implying a stronger conductance sta-
bility for the latter. We develop a semiclassical theory to
qualitatively explain this phenomenon, and also provide
an understanding based on the random matrix theory
through analyzing the local density of states in the dot
region and the energy level statistics in the correspond-
ing closed system. Our finding strongly advocates the use
of chaotic geometry in quantum dot structures, which is
consistent with previous results on smooth conductance
fluctuations in classically chaotic systems. In fact, we
generally believe that classical chaos has the benefit of
bringing in greater stability for quantum devices.
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Due to the recent interest in two-dimensional Dirac
materials [28], we choose to study quantum dot systems
made of graphene [29–35]. There were previous exper-
imental [36–38] and theoretical [39] studies of universal
conductance fluctuations in graphene systems. Theoret-
ically and computationally, the effects of disorders were
also studied [40–44]. In general, investigating the role of
classical chaos in such systems belongs to the emergent
field of relativistic quantum chaos [45–52].

In Sec. II, we describe our graphene quantum dot sys-
tems and the computational method. In Sec. III, we
present results of the average conductance versus the
impurity strength and contrast the cases of classically
chaotic and integrable dot systems. In Sec. IV, we de-
rive a semiclassical theory to explain, qualitatively, the
numerical finding that the chaotic dot exhibits a pro-
nouncedly slower decrease in the average conductance
with the impurity strength. In Sec. V, we develop an
understanding based on the random matrix theory. In
Sec. VI, we present conclusions.

II. MODEL AND COMPUTATIONAL METHOD

Quantum-dot structure with distinct classical dynam-

ics. In order to investigate the effects of classical dy-
namics on the conductance of the device in the presence
of random impurities, we use the tight-binding approxi-
mation and the Landauer formalism [53] in combination
with the standard Green’s function (GF) method [54],
which enables a systematic calculation of the conduc-
tances for quantum dots of arbitrary geometry. To be
concrete, we choose two standard geometrical shapes for
the junction region of the dot structure: one of the sta-
dium shape with chaotic dynamics in the classical limit,
and another of the rectangular shape with classical in-
tegrable dynamics, as shown in Figs. 1(a) and 1(b), re-
spectively. In each case there are random impurities in
the dot region. For simplicity, we assume that, in both
devices, the semi-infinite leads that are connected to the
dot region are made up of perfect ribbons without any
disorder.

Hamiltonian. The tight-binding Hamiltonian of the
graphene quantum dot system is

H =
∑

〈i,j〉

−tij(c
†
i cj +H.c.) +

∑

i

Vic
†
i ci, (1)

where tij = t is the electronic hopping energy between
two nearest neighboring sites in the lattice, 〈i, j〉 signi-
fies that the summation is with respect to all nearest-

neighbor pairs, c†i and ci are the creation and annihila-
tion operators at the ith site, respectively. The last term
in Eq. (1) describes the effects of impurities of strength
Vi on the ith site, where Vi is uniformly distributed in the
range [−W/2,W/2], with W being the overall impurity
strength.
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l
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FIG. 1. (Color online) Geometrical dimensions of the

quantum dots. (a) Stadium with classical chaotic dynamics
and (b) rectangle with classical integrable dynamics.

Green’s function formalism. We use the standard
Green’s function (GF) formalism [54] to calculate the
conductance of the quantum-dot system. We calcu-
late the surface retarded Green’s functions of the leads
and their self-energy functions [55, 56]: ΣLα

(E), where
α = 1, 2 denote the left and right leads, respectively. The
GF of the device can be obtained through

GD(E) = [EI −H − ΣL1(E)− ΣL2(E)]−1. (2)

The quantum transmission of the system is given by

Tαβ(E) = Tr[ΓLα
GDΓLβ

G†
D], where ΓLα

= i[ΣLα
−Σ†

Lα
]

and the subscript αβ indicates that the transmission is
from the βth lead to the αth lead. The conductance can
be obtained by the classic Landauer formula:

Gαβ(E) =
2e2

h
Tαβ(E). (3)

The local density of states (LDOS) at the ith site can be
obtained as ni = −(1/π)Im[GD(i, i)], where GD(i, i) is
the diagonal matrix element of the Green’s function at
the ith site. The local current element within the linear
response regime is given by [57]

Ii→j(Ef ) =
4e

~
Im[HijG

n
ji(Ef )], (4)

where Gn
ji(Ef ) is the (j, i)th element of the matrix

Gn(Ef ) = Gr
D(Ef )[ΓL1f(µL1) + ΓL2f(µL2)]G

a
D(Ef ),

with Gr
D and Ga

D being the retarded and advanced
Green’s functions, respectively. Here we assume zero
temperature so that the Fermi distribution f(µL1(2)

) is a
step function. The quantity µL1(2)

is the chemical poten-

tial of the left (right) lead . To ensure linear response, the
chemical potentials of both sides are chosen to be close
to the Fermi energy of the device. To be concrete we use
a slightly higher potential in the left lead than the right
lead.
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To obtain statistically reliable results for quantum
transmission (conductance), for each fixed Fermi energy
and impurity strength, we average the conductance us-
ing 1000 random realizations of the impurity configura-
tion, making the computation quite demanding. To be
feasible, we simulate relatively small devices, with the
following geometric parameters: lead width w ≈ 36.92Å
and 15.62Å, device width d ≈ 78.7Å, and device length
l ≈ 151.94Å, as shown in Fig. 1. The areas of the stadium
and rectangular devices are approximately equal. In or-
der to speed up the computation, we use the recursive
Green’s function (RGF) method to calculate the conduc-
tance by dividing the device into many small layers and
calculating the Green’s function of each layer under the
self energies of all other layers and leads. This way, we
replace the inverse of a large matrix by the inverses of
many small matrices, leading to a remarkable improve-
ment in the computational efficiency.
In our computations, for the integrable device, the top

and bottom boundaries have the zigzag orientation. The
chaotic dot shape is cut from the rectangular device with
the same boundary orientation. While the orientation
of the graphene lattice, i.e., zigzag or armchair, can af-
fect the band structure and the conductance, the lattice
orientation is unimportant in our setting because of the
random disorders. A previous work showed that, for a
graphene nanoribbon, although the effect of orientation
can be quite significant, when strong short-range disor-
ders are present there is little difference in the average
conductances associated with the zigzag and armchair
orientations [58]. For the case of weak short-range dis-
orers, the differences between these two orientations can
also be neglected for nanoscale devices. The geomet-
rical shapes of the graphene systems in our study are
more complicated than nanoribbons. For example, for a
chaotic dot structure, different segments of the bound-
ary can have different lattice orientations. The lattice
orientation thus will have little effect on our results.

III. RESULTS

The typical behaviors of the ensemble-average conduc-
tance versus the Fermi energy and the impurity strength
are shown in Figs. 2(a) and 2(b), for classically chaotic
and integrable geometries, respectively. The correspond-
ing contour plots are shown in Figs. 2(c) and 2(d).
For fixed energy values, two types of behaviors arise
in the variation of the conductance with the impurity
strength: (1) the conductance increases first as the im-
purities become stronger, reaches a maximum, and then
decreases, and (2) the conductance decreases monotoni-
cally with the impurity strength. The first case is some-
what counterintuitive, as exemplified in Fig. 2(e) for
E/t ≈ 0.115, 0.233 for the chaotic dot and in Fig. 2(f) for
E/t ≈ 0.185 for the integrable geometry. This resonance-
like phenomenon was reported previously [44], where the
initial conductance enhancement can be attributed to the

breakdown of the edge states in graphene by weak impu-
rities. However, for strong impurity the quantum states
are localized, reducing the conductance. Here we find,
for all cases where such a resonance phenomenon occurs,
the conductance value for the zero impurity case must
be close to zero. That is, when the system is free of any
random impurity, the system is already in some pointer
state, providing a “room” for impurity to break the state
and consequently to enhance the conductance. Two ex-
amples of the pointer states in the absence of any im-
purity are shown in Figs. 2(g) and 2(h), respectively, for
the chaotic and integrable dots. If, for certain Fermi en-
ergy, in the absence of any impurity the quantum state
is not a pointer state so that the conductance has a rela-
tively large value, introducing impurities into the system
can only serve to reduce the conductance, ruling out any
possible increase in the conductance and consequently
resonance.
To address the conductance stability and to better un-

derstand the effect of the interplay between random im-
purities and classical dynamics on conductance, we exam-
ine the average conductance as a function of the impurity
strength. In particular, for a fixed value of the impurity
strength, we average the conductance over the Fermi en-
ergy in the range defined by the first transmission mode
of the graphene device, which is about 0.24t in our cases.
For the dot parameters as in Fig. 2, the normalized aver-
age conductance behaviors are shown in Fig. 3(a), where
the blue (dashed) and red (solid) curves correspond to the
integrable and chaotic cases, respectively. We see that, as
the impurity strength is increased, the average (or over-
all) conductance decreases monotonically for both cases.
However, for the chaotic dot, the slope of the decreasing
trend is smaller than that for the integrable dot. This
behavior persists with respect to variations in the device
parameters. For example, Fig. 3(b) shows a case with
the lead width reduced to w ≈ 15.62Å. These results
indicate that the conductance of the chaotic dot is more
“stable” with respect to variations in the strength of ran-
dom impurities.

IV. SEMICLASSICAL UNDERSTANDING OF

THE INTERPLAY BETWEEN RANDOM

IMPURITIES AND CLASSICAL DYNAMICS

Our main numerical result is that classical chaos makes
the average conductance of the quantum dot less sen-
sitive to random impurities than integrable dynamics.
In particular, as demonstrated in Fig. 3, the derivative
of the average conductance with respect to the impu-
rity strength, d〈G〉(W )/dW , is negative but its absolute
value is small for the chaotic dot and relatively large for
the integrable dot. It is possible to obtain a qualitative
understanding of the behavior of the derivatives using a
semiclassical argument.
For a general open Hamiltonian system, the elements

of the quantum S-matrix can be expressed via classical
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FIG. 2. (Color online) Dependence of the average conductance on the Fermi energy and impurity strength.
(a,b) Three-dimensional plot of the conductance versus the Fermi energy and the impurity strength for classically chaotic and
integrable dots, respectively. (c,d) The corresponding contour plots. (e) Two cases of resonance-like phenomenon for the chaotic
geometry for E/t ≈ 0.115 (red solid line), 0.233 (blue dashed line). (f) Conductance resonance for the integrable geometry
for E/t ≈ 0.185. (g,h) Examples of pointer states in absence of any random impurity for the chaotic and integrable cases,
respectively. The device structural parameters are: lead width w ≈ 36.92Å, dot width d ≈ 78.7Å, and dot length l ≈ 151.94Å.
(i) Conductances versus the Fermi energy of the chaotic (red solid line) and integrable (blue dashed line) devices without
impurities. For both devices, the width of the first transmission mode is about 0.24t. The results are in units of G0 = 2e2/h.

quantities through the Miller [27] formula:

Sµν(E) =
∑

s

[P (s)
ν→µ(E)]1/2 exp [

i

~
Φ(s)(E)−

iπ

2
ξ(s)],

(5)
where µ and ν denote quantum states, “(s)” denotes a

classical path, P
(s)
ν→µ(E) is the classical transition proba-

bility from state ν to state µ along (s), ξ(s) is the Maslov
index, and the sum is over all the classical paths con-
necting states ν and µ. Let (Iν , θν) and (Iµ, θµ) be the
action-angle variables associated with states ν and µ, re-
spectively. The classical transition probability is given

by [27] P
(s)
ν→µ(E) = (1/2π)|∂Iµ/∂θν|

−1
s . In the study of

quantum chaotic scattering, a seminal result [8, 9] is that
the energy autocorrelation function of an S-matrix ele-
ment, defined as Cµν(ε) ≡ 〈S∗

µν(E)Sµν(E + ε)〉, can be
obtained through Eq. (5) as a Fourier transform of the

classical particle decay probability:

Cµν(ε) =

∫

dt〈Pµν(E, t)〉E exp (iεt/~), (6)

where t is the time that a classical particle dwells in the
scattering (dot) region, 〈Pµν(E, t)〉 is the classical proba-
bility that a ν → µ transition occurs with the correspond-
ing delay time in the interval [t, t+ dt], and the average
〈·〉E is over a classically small but quantum mechanically
large energy interval. For our single-mode quantum dot
system in the presence of random impurity of strength
W , we have µ = ν = 1 so we write 〈P (t;E,W )〉, , which
is the probability density for a particle to have dwelling
time in the range [t, t+ dt]. The average conductance is
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FIG. 3. (Color online) Effect of lead width on conduc-

tance stability. Average conductance over the energy range
of the first transmission mode of the lead versus the impurity
strength for (a) lead width w ≈ 36.92Å and (b) lead width
w ≈ 15.62Å. The blue (dashed) and red (solid) curves cor-
respond to classically integrable and chaotic dot structures,
respectively. We use 〈G〉0 = 〈G〉(W = 0) to normalize the
average conductance. Note that 〈G〉0 should be distinguished
from the natural conductance unit G0.

given by

〈G〉(W )∼ Cµν(0) (7)

∼ | lim
ε→0

∫

dt〈Pµν (t;E,W )〉E exp (iεt/~)|.

For a chaotic dot, regardless of the presence of ran-
dom impurities, the particle decay law is exponential:
〈P (t;E,W )〉E ∼ e−t/τ(W ), where τ(W ) is the average
lifetime that a classical particle stays in the dot region.
Due to classical chaos, the scattering is random in the
dot region. If there are no stable periodic orbits (as in
the stadium dot), scattering is already sufficiently ran-
dom so that the introduction of impurities will enhance
the randomness only incrementally, causing insignificant
decrease in the average lifetime. It is thus reasonable
to assume little dependence of the average lifetime τ on
W : dτ(W )/dW . 0. Numerically it may be nontrivial
to calculate the particle decay law in the presence of im-
purities - see Appendix for a detailed description of our
procedure and numerical parameters.
Substituting the exponential decay law into Eq. (7),

we obtain 〈G〉(W ) ∼ τ(W ) so that

d〈G〉(W )/dW . 0, (8)

which explains the slow decrease in the average conduc-
tance with the impurity strength for the chaotic dot.
For an integrable dot without random impurities, the

classical particle decay is algebraic, as shown in Fig. 4(a).
When random impurities are present, the decay law is a
mixture of algebraic and exponential behaviors, as shown
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FIG. 4. (Color online) Classical scattering dynamics for

the integrable quantum dot. (a,b) For the integrable dot,
particle dwelling time distribution without and with random
impurities, i.e., W/K = 0.0 and W/K = 0.2 (where K is the
kinetic energy of the classical particle), respectively, on a dou-
ble logarithmic scale. We see that the former exhibits an al-
gebraically decaying behavior and the latter shows a mixture
of algebraically and exponentially decaying behavior. (c) The
probability of having particles with long dwelling time versus
the impurity strength. A detailed description of the numerical
procedure and the parameters is given in Appendix.

in Fig. 4(b). Especially, as the impurity strength is in-
creased, random scattering becomes progressively signifi-
cant so that the “weight” of the exponential decay gradu-
ally dominates. A plausible mathematical expression for
the decay law is

〈P (t;E,W )〉E ∼ {
at−αc , t0 < t < tc

b exp [−(t− tc)/βc], t > tc,
(9)

where a, b, αc, and βc are all positive constants and tc
is the “crossover” time, above which there is a transition
from algebraic to exponential decay as t is increased. The
relative magnitudes of the constants can be estimated,
as follows. The value of the algebraic decay exponent
αc is typically between 1 and 2 for two degrees of free-
dom Hamiltonian systems [59–62]. For relatively weak
impurities, the crossover from algebraic to exponential
behaviors occurs at some large time tc, which should be
much larger than the exponential decay lifetime βc be-
cause the particles tend to leave the scattering region fast
once the algebraic behavior is over and random scatter-
ing from the impurities dominates. It is thus reasonable
to assume βc ≪ tc. At the crossover time tc, we have
b ≈ at−αc

c . Since the decay is relatively slow for t < tc,
the probability for particle to stay in the dot region can
be appreciable for t = tc. We thus have b ≈ at−αc

c . 1.
As the impurity strength W is increased, we expect tc

to decrease. With the aid of numerical simulation, we can
reason that dtc(W )/dW < 0 must hold and |dtc(W )/dW |
is far from being negligible. Specifically, we numerically
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calculate, for a set of systematically varying values of W ,
the classical probability Pt>t̄(W ) that a particle stays in
the scattering region for t > t̄ > tc. As W is increased,
we expect Pt>t̄(W ) to decrease. A typical example is
shown in Fig. 4(c), where we observe that Pt>t̄(W ) de-
creases rapidly with W . Write Pt>t̄(W ) = f(W ) > 0,
the probability that a particle has a dwell time longer
than t̄, where df(W )/dW < 0 but |df(W )/dW | is large
[f(W ) can be obtained numerically]. Utilizing Eq. (9),
we have

f(W ) =

∫ ∞

t̄

b exp {−[t− tc(W )]/βc}dt

= aβc[tc(W )]−αc exp {−[t̄− tc(W )]/βc},

which gives

dtc(W )

dW
=

df(W )/dW

f(W )
·

1

1/βc − αc/tc(W )
.

Since αc ∼ 1 and βc ≪ tc(W ), we see that the sign
of the derivative dtc(W )/dW is the same as the sign
of df(W )/dW , which is negative. In addition, we have
|dtc(W )/dW )| ≈ |df(W )/dW · βc/f(W )|.
Substituting Eq. (9) into Eq. (7), we obtain the average

conductance for the integrable dot system in the presence
of impurities as

〈G〉(W ) ∼ a
[tc(W )]1−αc

1− αc
− a

[t0]
1−αc

1− αc
+ aβc[tc(W )]−αc ,

which gives

d〈G〉(W )

dW
∼ a[tc(W )]−αc [1−

αcβc

tc(W )
] ·

dtc(W )

dW
(10)

∼ e[t̄−tc(W )]/βc · [1−
αcβc

tc(W )
]
df(W )

dW

≡ A(W ) ·
dtc(W )

dW
.

Since t̄ > tc, αc ∼ 1, and βc ≪ tc(W ), the factor A(W )
in Eq. (10) is positive and not negligibly small. We thus
have

d〈G〉(W )

dW
< 0 and |

d〈G〉(W )

dW
| ∼ |

dtc(W )

dW
| (large).

(11)
Relations (8) and (11), for chaotic and integrable quan-
tum dots, respectively, represent a semiclassical under-
standing of the results in Fig. 3.

V. UNDERSTANDING BASED ON RANDOM

MATRIX THEORY

In situations where a quantum dot exhibits fully de-
veloped chaos in the classical limit and/or has station-
ary random impurities, electrons injected from the leads
will scatter elastically from the dot boundaries and/or
from the random impurities. If the mean free path of
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FIG. 5. (Color online) Transport statistics for chaotic

and integrable graphene quantum dots. The width of
the leads is w = 6.5a with single mode transport in the energy
range 0 ≤ E/t ≤ 0.796. For both cases, the ratio of the height
and width is h/d = 1.8. For the chaotic (integrable) dot sys-
tem, there are 12014 (13464) atoms in the scattering region.
(a) Transmission coefficient distribution P (T ) for the chaotic
(blue circles) and integrable (red squares) dots. The gray
solid curves correspond to the RMT prediction [Eq. (12)]. (b)
Differences in the transmission distribution between the two
cases. (c,d) LDS patterns showing the electron distribution
in the physical space, where the gray arrows depict the direc-
tions of the local currents. The energy values for the chaotic
and integrable cases are E/t = 0.1048 and E/t = 0.048, re-
spectively.

the electron is much shorter than the size of the dot, i.e.,
lMFP ≪ d, the transport is diffusive and the time of elec-
trons dwelling in the dot region satisfies τdwell ≫ τerg,
where τerg is the time required for a typical classical tra-
jectory to explore the phase space in an ergodic man-
ner [63–65], due to chaos and/or random scattering. The
scattering matrix is effectively random, which can be de-
scribed through the Wigner-Dyson random-matrix the-
ory (RMT). In RMT, the transmission coefficient distri-
bution for a single mode is given by [66–68]

P (T ) =
βT

2
T βT /2−1, (12)

where the range of the transmission is 0 ≤ T ≤ 1
and βT = 1 if there is no magnetic field present, and
P (T ) approaches a circular distribution. A previous
work [66] demonstrated that the distribution is highly
non-Gaussian, especially for systems where the number
of transmission modes is less than three. However, for
leads that permit many modes, the transmission distri-
bution approaches Gaussian.
For simplicity, we consider a single-mode quantum-dot

system that is fully chaotic in the classical limit. Inte-
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grating Eq. (12) for transmission in the range [0, 1], we
obtain the average conductance as

〈G〉single/G0 = 〈T 〉 =
βT

βT + 2
=

1

2
+

βT − 2

2βT + 4
, (13)

where the first term 1/2 is the “classical” conductance for
the chaotic cavity with the physical meaning that a clas-
sical particle has equal probability to transmit through
and to reflect back from the dot region. The second
term is the correction due to quantum interference, also
known as the weak localization effect [63] for βT = 1,
which vanishes when the time-reversal symmetry is bro-
ken (βT = 2), e.g., when a perpendicular magnetic field
is present. If there is spin-orbit coupling (βT = 4), the
second term becomes positive and the transmission is en-
hanced, a phenomenon known as weak anti-localization.
Figure 5(a) shows the numerically obtained statistics

of the transmission for the chaotic (red circle) and inte-
grable (blue square) graphene quantum-dot systems. In
order to make the effects of chaotic geometry more pro-
nounced, we consider relatively large devices, each having
over 10000 atoms, and choose narrow waveguide width so
that the coupling between the leads and the dot region
is relatively weak. For the chaotic dot system, the trans-
mission distribution agrees well with the prediction in
Eq. (12), especially in the low transmission regime, as
shown in Fig. 5(a). The corresponding average conduc-
tance is 〈G〉stad/G0 = 0.3457, which is approximately
equal to the theoretical prediction 〈G〉βT=1/G0 = 1/3.
For the integrable dot system, the transmission distribu-
tion deviates from that for the chaotic case in the low-
and high-transmission regimes. However, in the interme-
diate transmission regime (e.g., 0.2 < T < 0.8), there is
no apparent difference between the two cases, as shown
in Fig. 5(a). The mean conductance of the integrable
dot system is 〈G〉rect/G0 = 0.4544, which is larger than
that for the chaotic dot system. From Fig. 5(a), we see
that, for the integrable dot system, there are fewer (more)
counts of low (high) transmission values as compared
with the chaotic dot system. The differences can be seen
more clearly in Fig. 5(b). The reason is that, the inte-
grable dot system has a high degree of geometric symme-
try, for which quantum pointer states [56, 69] can form,
leading to Fano resonances [20–22, 70, 71] in the trans-
mission (e.g., as a function of the Fermi energy). The
resonances contribute to more counts of much higher-
than-average transmission values. Symmetry breaking
can lead to chaos. For a chaotic dot, the probability for
pronounced pointer states to form is significantly lower
than that for an integrable dot system so that sharp Fano
resonances are much less likely. In this case, the trans-
mission fluctuations tend to be more smooth, giving rise
to few counts of extreme transmission values.
The distribution of transmission P (T ) in Fig. 5(a) is

different from that of the transmission eigenvalues ρ(Tn)
obtained from the fixed-energy transmission coefficient
between different modes [72]. A transmission matrix can
then be constructed with elements tmn and Tn being the
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FIG. 6. (Color online) Behaviors of unnormalized con-

ductance. For lead width w ≈ 36.92Å, unnormalized average
transmission over the energy range of the first transmission
mode of the graphene lead versus the impurity strength, for
the chaotic (red solid line) and integrable (blue dashed line)
dot systems. For sufficiently strong disorder, the difference in
the average transmission values for the two cases diminishes.

eigenvalue of the matrix t†t for a fixed Fermi energy,
where m and n are mode indices. Since we focus on the
single-mode case (Nchannel = 1), the matrix is reduced
to a number.

We observe, however, that for the stadium dot system,
there are more counts of very high transmission values
than predicted, which can be understood again by resort-
ing to the consideration of symmetry. In particular, the
theoretical curve describes the situation of fully devel-
oped classical chaos [68] without any geometric symme-
try. The chaotic (stadium) dot used in our computation
does in fact possess certain geometry. The finite width
of the leads and their symmetric locations on both sides
of the device allows ballistic transport channels [73, 74]
to be bridged, leading to nearly unity maximum trans-
mission.

Figures 5(c) and 5(d) show, for the chaotic and inte-
grable dot systems, respectively, a set of typical patterns
of LDOS and local currents. For the integrable system,
there are current channels of direct transport through
which electrons transmit with little scattering [52, 75–
77], as indicated by the current direction in Fig. 5(d).
In the absence of random impurities, the average trans-
mission value is thus higher for the integrable system.
As impurities are introduced into the system, even in
the integrable system there are random scatterings. As
the impurity strength is increased, the average transmis-
sion value decreases. For sufficiently strong impurities,
the difference between the chaotic and integrable geome-
tries diminishes, leading to approximately the same av-
erage transmission value. An example of this behavior is
shown in Fig. 6. Thus, in the same range of variation of
the impurity strength, the average transmission for the
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FIG. 7. (Color online) Energy level statistics of chaotic

and integrable quantum dots as predicted by the

random matrix theory. Level spacing statistics for (a,c)
chaotic and (b,d) integrable closed billiard systems. The ra-
tio of the height and the width for both geometries in (a,b)
is the same as that of the geometries used to calculate the
transmission in Fig. 5. There are 11777 carbon atoms in the
unfolded stadium system and 13340 atoms in the rectangu-
lar system. In (a,b), the unfolded level-spacing distributions
P (S) are shown, with the corresponding spectral rigidity ∆3

for energy levels in the range of 0.1 < En/t < 1 shown in (c,d).
The impurity strength is W = 0.2t. Each data point is the
result of averaging over 100 random impurity configurations.

integrable system needs to decrease by a larger amount,
leading to a larger slope of decrease in the average nor-
malized transmission, as exemplified in Fig. 3.

To gain further insights, we investigate the integrable
and chaotic dot structures from the angle of energy level-
spacing statistics. For the corresponding closed systems
(e.g., by making the lead width tend to zero), we can
calculate a large number of energy levels. In the ab-
sence of any random impurity, the level-spacing distribu-
tions for the underlying systems are GOE [Gaussian or-

thogonal ensemble, P (S) = (π/2)Se−πS2/4] and Poisson
(P (S) = e−S) for chaotic and integrable geometries [47],
respectively, where S stands for the normalized nearest-
neighbor level spacing. When there are random impuri-
ties and as the impurity strength is increased, we expect
the difference in the level spacing statistics for the two
cases to diminish. Figures 7(a) and 7(b) show P (S) for
the chaotic and integrable dot systems, respectively. In
each panel, the blue circles and the red crosses are for the
cases where random impurities are absent and present,
respectively, where the results are obtained using 100 ran-
dom impurity configurations. We see that, even in the
presence of relatively weak impurities (W = 0.2t), the
level-spacing statistics of both the chaotic and integrable
systems are GOE. This convergence to GOE statistics

can be more clearly seen through the spectral rigidity,
as shown in Figs. 7(c) and 7(d). These results suggest
the equivalent effects of classical chaos and impurities:
both generating random scattering in both classical and
quantum regimes. For an integrable dot system, there is
thus a dramatic change in the underlying quantum scat-
tering as impurity is introduced and its strength is in-
creased: from little to significant random scattering. As
a result, the average transmission and other device prop-
erties tend to exhibit significant changes. However, for
a chaotic dot system, the presence of impurities hardly
changes the quantum scattering dynamics. From this
perspective, chaotic dot systems possess a higher degree
of stability against random impurities than integrable dot
systems.
We note that, the quantum pointer states are localized

states with long lifetimes and less interactions with the
environment. They are related to the stable classical pe-
riodic orbits and eigenstates of a closed dot [19]. Previous
works showed that change in the geometry of the device,
e.g., from integrable to chaotic, can lead to a reduction
of the number of quantum pointer states [25]. Random
disorders can also reduce the number of quantum pointer
states. However, if a strong magnetic field is present, the
nature of the classical dynamics and/or random disor-
ders will have less pronounced effects on quantum trans-
port [17, 18, 76]. One set of the quantum pointer states
are associated with the stable orbits within the KAM is-
lands in the classical phase space. The probability that
these states can be affected significantly by random disor-
ders is small. The corresponding quantum pointer states
can then be quite persistent.

VI. CONCLUSION

The role of classical chaos in suppressing quantum fluc-
tuations has been recognized in the contexts of quantum
chaotic scattering [7–9] and transport through quantum
dots [25, 26] for more than two decades. For integrable
or mixed classical dynamics, there are stable periodic
orbits in the phase space. The corresponding bounded
states typically have little interactions with the leads,
giving rise to sharp Fano resonances in the dependence
of the conductance on the Fermi energy [21–24, 69]. How-
ever, fully developed chaos gives rise to strong ergodicity
of classical orbits, enabling strong interaction between
the quantum states in the scattering regions and in the
leads. It is then difficult for long-lived quantum states
to form in the dot region, leading to near-zero probabil-
ity for pointer states and Fano resonance. As a result,
conductance fluctuations tend to be much more smooth
then those in integrable or mixed quantum dots. In this
sense, while chaos usually generates random dynamical
behaviors classically, quantum mechanically it can lead
to suppressed fluctuations. A similar phenomenon arises
in the context of quantum resonant tunneling, both non-
relativistically [78, 79] and relativistically [49].
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This paper deals with the interplay between chaos, ran-
dom impurities, and quantum behaviors. The main find-
ing is that chaos can be exploited to stabilize quantum
behaviors in the presence of impurities, which is consis-
tent with previous works on conductance fluctuations and
resonant tunneling. Especially, we focus on the average
conductance and ask how it may be affected by random
impurities for two cases where the corresponding classi-
cal dynamics are chaotic and integrable, respectively. In
general, as the impurity strength is increased, the av-
erage conductance will decrease, and we find that the
decreasing behavior tends to be much less pronounced
for the chaotic quantum dot. That is, for a wide range of
the impurity strength, the average conductance changes
only a little if there is chaos in the classical limit. We
develop a physical understanding of this phenomenon us-
ing both semiclassical and random-matrix theories. Our
work provides a further case where chaos can be advan-
tageous from the standpoint of making stable quantum
devices.
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APPENDIX: CLASSICAL SIMULATION OF

SCATTERING DYNAMICS IN THE PRESENCE

OF RANDOM IMPURITIES

We simulate the dynamics of the classical particles in
the quantum dot system in the presence of impurities
that are modeled by Gaussian random potentials, using
the standard leap-frog method for numerically solving

Hamiltonian systems [80]. The method is able to main-
tain the time reversibility of the system and conserve the
energy during the simulation. The Hamiltonian of the
classical system can be written as

HLF = K(vx, vy) + U(x, y),

where

K(vx, vy) =
1

2
m(v2x + v2y),

U(x, y) =
∑

i

V ′
i exp [−

(x− xi)
2 + (y − yi)

2

2σ2
i

],

xi and yi are the coordinates of the center of the ith Gaus-
sian potential, V ′

i is its strength uniformly distributed
within [−W/2,W/2], and σi characterizes the range of
the ith potential.
In our simulations, we use the width of the device to

rescale the length. For example, if in the quantum sim-
ulations there are about 4000 atoms in the dot, classi-
cally we distribute N ′ = 4000 random Gaussian poten-
tials throughout the scattering region. We set d′ = 1.0
and l′ = 1.8. We assume the range of each potential
to be the same and σi = σ can be approximately cal-
culated from

√

d′ · l′/(2πN ′) = 0.0085. Without loss of
generality, we use σ = 10−3 in our simulations. We keep
the kinetic energy K of the particles to be the same for
all cases and change the ratio of W/K to simulate the
particle dynamics in the presence of random impurities
of systematically varying strength. In particular, in the
interior of the dot region, the classical evolution is ob-
tained by solving the Hamilton’s equations of motion us-
ing the leap-frog method. The boundaries are assumed
to be hard so that at any boundary point of collision the
particle trajectory is simply reflected.
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