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We study isolation as a means to control epidemic outbreaks in complex networks, focusing on the
consequences of delays in isolating infected nodes. Our analysis uncovers a tipping point: if infected
nodes are isolated before a critical day dc, the disease is effectively controlled, whereas for longer
delays the number of infected nodes climbs steeply. We show that dc can be estimated explicitly in
terms of network properties and disease parameters, connecting lowered values of dc explicitly to
heterogeneity in degree distribution. Our results reveal also that initial delays in the implementation
of isolation protocols can have catastrophic consequences in heterogeneous networks. As our study
is carried out in a general framework, they have the potential to offer insight and suggest proactive
strategies for containing outbreaks of a range of serious infectious diseases.
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Epidemics have a major impact on our society. Nearly
fifteen million annual deaths worldwide can be attributed
to infectious diseases [1], and more than three hundred
new diseases emerged in a span of sixty years [2]. Previ-
ous studies on epidemics have focused mainly on epidemic
thresholds [3–5], rates of spreading [8], and total numbers
of infected individuals during the outbreak [6, 7]. Immu-
nization as a means to prevent or lessen the severity of
outbreaks has also been studied [9–12], and for diseases
ranging from smallpox to influenza, immunization is ef-
fective. But when an outbreak occurs for which the pop-
ulation is not immunized the task of containing it can be
daunting in today’s highly interconnected world [13].

Drastic measures must be taken to contain outbreaks
of serious diseases. A well documented strategy, that was
widely used during the recent outbreaks of both SARS
and Ebola, is the isolation of infected individuals [14–
18]. While immediate isolation of all those potentially
infected can extinguish an outbreak, in practice there are
a number of factors which induce delays in the system;
firstly, it takes time for public health officials to recog-
nize the urgency of the situation. Secondly, local medical
facilities may be under equipped. Finally, individuals of-
ten fail to recognize that they are infectious, or choose
not to seek medical attention for as long as possible, in-
fecting people with whom they come into contact in the
meantime. These phenomena were, unfortunately, all too
evident in the recent Ebola outbreak [16, 17].

While some delay in the removal of infected individuals
is unavoidable, after too long of a delay no isolation pol-
icy can be effective [15]. Education and preparedness can
shorten these delays, but the latter can also incur major
economic costs, and aggressive tactics to enforce isolation
can be controversial. As governments weigh the costs
and benefits of preparedness and emergency responses,
an important question is: How much delay can be tol-
erated without substantial impact on the effectiveness of
isolation?

In this Letter, we address this question in the frame-

work of complex networks. We consider two sources of
delays: d0 represents the initial delay, i.e., the number
of days between the infection of “patient zero” and the
start of an isolation policy, while d represents the aver-
age number of days between a node’s infection and its
removal, simulating the inadvertent delays after an iso-
lation policy has been declared.

Our main message is that there is a tipping point that
can be estimated in terms of network and disease param-
eters. That is, there is a critical day dc such that for
d < dc, the total number of infected nodes is small and
does not scale with system size, while it climbs steeply for
d > dc, and a large fraction of the population is infected.
Moreover, our analysis reveals that the more heteroge-
neous the network structure, the more detrimental time
delays can be, and the differences are especially stark for
d0. Thus for scale-free networks, smaller values of both
d0 and d are required to achieve the same desired effects.

A novelty of this work is its stress on time sensitiv-
ity: it reveals that the effectiveness of isolation must be
evaluated alongside realistic time delays in its implemen-
tation. Our findings are based on the use of branching
processes to model disease propagation in early stages of
an outbreak. Using these probabilistic tools, we can ana-
lyze the effects of isolation delay in a general framework.
So our results are not tied to a specific disease and offer
insight into how to maximize the delays while keeping
the number of infected nodes to a minimum.

Model description. We consider a variant of the SIS
model [20]. Each node of the network represents an in-
dividual and each link is a connection establishing the
node’s neighbors. Individuals exist in one of two discrete
states, healthy, or infected. At each time step, which we
think of as a day, a healthy, hence susceptible, node j
is infected with probability pj = 1 − e−βnj , where β is
infection rate and nj is its number of infected neighbors.
At the same time, each infected node recovers with rate
γ. We assume γ < β � 1 are chosen above the epidemic
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threshold, i.e., the disease invades the entire population.
This model is extensively studied in the literature of com-
plex networks [7, 9, 11].

We consider exclusively epidemics with point sources,
that is to say, we initialize the model by setting exactly
one node as infected; this is our “patient zero”. In the
absence of any isolation protocols, the system evolves
according to the rules above.

Next we define what it means to impose an isolation
protocol with delay d = 1, 2, . . . (assuming for the mo-
ment d0 = 0). Suppose the ith node is infected on day t.
If it recovers on or before day t+ d, then no action is re-
quired. If at the end of day t+ d it is still not recovered,
then we put it in isolation, i.e. we remove it from the
network, in the sense that from step t+ d+ 1 on, node i
cannot infect any other node: it does not count toward nj
for any node j even though it is infected [24]. The period
of isolation can be long but finite (after which the node
is assumed to have recovered) or it can be indefinite; it
does not matter much since we are primarily interested
in short-time dynamics. For the same reason, our results
are not appreciably affected whether our recovered nodes
are susceptible, or forever immune to this disease, as in
the SIR model. We also consider an initial delay of d0
days before the protocol above is implemented.

Whether or not an isolation protocol is imposed, we
keep track of the following statistics: Consider an infec-
tion starting from node i. We let Xi(t) be the random
variable giving the number of nodes that have been in-
fected at or before time t (whether or not they have re-
covered), and let

ρi(t) =
1

N
E[Xi(t)]

where N is the total number of nodes in the network.
Finally, we average over all point sources, letting

ρ(t) =
1

N

∑
i

ρi(t) and ρ∗ = lim
t→∞

ρ(t) .

Effects of delays with parameter d. Our first goal is to un-
derstand the behavior of ρ∗ in terms of network structure
and the delay d. To this end, we consider two different
kinds of networks: random Erdós-Renyi (ER) networks
[22], and Barabási-Albert scale-free (SF) networks [21].
In our simulations, we use N = 104, β = 0.04, γ = 0.01.
Our simulation results, which are shown in Fig 1, suggest
that there is a critical value dc that depends on network
structure: isolation protocols with d < dc are very effec-
tive, whereas ρ∗ climbs steeply for protocols using d > dc.

While a precise analysis of ρ∗ is quite involved, we
propose that early spread dynamics can be modeled ef-
fectively as branching processes.

Suppose the outbreak starts on day 0 at a node we
will refer to as node 0. A simple computation shows
that under the model rules above and an isolation pro-
tocol of d ≥ 1, each neighbor of node 0 has probability
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FIG. 1: [Color Online] Effects of the isolation delay d on
the maximum value ρ∗. Simulations reveal that there is a
critical value dc that depends on network structure: isolation
protocols with d < dc are very effective, whereas ρ∗ climbs
steeply for protocols using d > dc. (a) shows plots for three
ER networks with mean degrees 〈k〉 equal to 4 (•), 6 (3)
and 8 (2). Inset shows evolution of ρ(t) as functions of t for
mean degrees 〈k〉 equal to 4 (full line), 6 (dashed doted) and
8 (dashed). (b) shows corresponding plots for SF networks
with the same mean degrees. The SF network has degree
distribution p(k) ∝ k−α, with α = 3.

p ≈ (1 − γ)βd of getting infected: Neglecting first the
recovery rate of node 0, a neighbor stays healthy for d
days with probability p ≈ (1− β)d, so the probability of
its getting infected is p ≈ 1 − (1 − β)d ≈ dβ. Including
the recovery rate of node 0 gives an additional factor of
1 − γ. Thus the expected number of neighbors of node
0 who will be infected is (1− γ)βd · 〈k〉 where 〈k〉 is the
mean degree of the network. Each neighbor will infect,
on average, another (1 − γ)βd · 〈k − 1〉 of its neighbors,
and the transmission is continued at this rate.

Here we have assumed that the relevant parts of the
network has the structure of a tree, and the number of off-
spring is close to i.i.d.. Under these assumptions, the dy-
namics of our model are well approximated by a branch-
ing process with the branching numbers above. Let E[Y∗]
denote the expected total number of progeny for such a
branching process. Then E[Y∗] =∞ if and only if d ≥ dc
where

dc =
1

(1− γ)β · 〈k − 1〉 . (1)

For d < dc, E[Y∗] = 1 + E[Y1]
∑∞
n=0[(1− γ)βd · 〈k − 1〉]n
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where Y1 is the number of offspring of generation 1, giving

E[Y∗] = 1 +
(1− γ)βd · 〈k〉

1− (1− γ)βd · 〈k − 1〉 .

Plugging in d = dc − a, a > 0, one obtains

E[Y∗] ≈
dc
a
.

Thus for d ≤ dc− 1
2 , for example, E[Y∗] = O(dc). Return-

ing to our network, this means ρ∗ = O( 1
N ) for d ≤ dc− 1

2 ,
and ρ∗ = O(1) for d ≥ dc. Notice also that dc depends
only on infection and recovery rates and mean degree,
and is independent of system size.

For 〈k〉 = 4, 6, 8, the computation above gives dc ≈
8.4, 5 and 4 respectively. These values compare well with
our simulation results for ρ∗ for the ER networks in Fig 1
a). While early dynamics are well described by a branch-
ing process, as ρ∗ gets larger, it becomes increasingly
likely that some of the neighbors of a newly infected node
have already been infected, leading to a decline in branch-
ing number.

For the SF networks, on the other hand, the criti-
cal values for dc revealed by simulations are significantly
smaller than for ER networks; see Fig 1 b). We attribute
that to the presence of hubs, or highly connected nodes,
in the network, and propose below a second order cor-
rection to the estimation of dc for networks with heavy-
tailed degree distributions.

The idea is to consider not only first neighbors but also
second neighbors, i.e. nodes that are linked to a given
node in exactly 2 steps. Continuing to study the tree
along which the infection spreads, we let i be one of the
infected nodes. For a second neighbor, the probability of
getting infected by node i is p ≈ [(1 − γ)βd]2. Thus the
number of offspring (every two generations) is approxi-
mately [(1−γ)βd]2N2(i) where N2(i) is the mean number
of second neighbors of node i. Taking the average over all
nodes, the mean number of offspring is [(1− γ)βd]2〈N2〉,
and 〈N2〉 ≈ 〈k2〉 [23]. Assuming that the number of
second neighbors infected is significantly larger than the
number of first neighbors infected, the argument above
gives a revised value of

dcorc ≈ 1

(1− γ)β · (µ2 + σ2)
1
2

(2)

where µ and σ2 are the mean and variance of the net-
work’s degree distribution.

For the SF networks simulated with 〈k〉 = 4, 6, 8,
we have computed that σ2 ≈ 36, 72 and 123 respec-
tively. Plugging into the formula above, we obtain
dcorc ≈ 3.5, 2.4, 1.8, in excellent agreement with the sim-
ulation results in Fig 1 b). Comparing (2) with (1), we
see that the larger σ2 (relative to µ2), the larger the dis-
crepancy between dcorc and dc. For our ER networks the
correction is about 5%, which is immaterial.

Effects of initial delays with parameter d0. As explained
earlier, this d0-day delay is intended to capture the time
it takes for public health authorities to recognize the need
for imposing isolation protocols. We remark that our dis-
cussion of d0 here is simplified by the absence of an in-
cubation period, the length of which must be factored in
when computing tolerable initial delays in real-life situ-
ations; our d0 corresponds to longer (and more realistic)
initial delays when incubation period is taken into ac-
count. Fig 2 shows, for an ER and an SF network, the
effects of initial delays on ρ∗.
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FIG. 2: Effects of initial delay d0 before the imposition of
isolation protocols. Our simulations show effects are much
more severe for SF than for ER networks. In the left column
we show plots of ρ∗ as functions of d for an ER and SF network
with mean degree 〈k〉 = 6, for d0 = 7 (◦) and 21 (2). In the
right column we show the corresponding plots for ER and SF
networks with 〈k〉 = 8.

For purposes of investigating ρ∗, systems with d0 >
0 can be modeled as branching processes with ρ(d0)N
nodes in the zeroth generation. The critical delay dc is
unchanged, and for any d, if we let Ed0 [X∗] denote the
total number of infected nodes with initial delay d0, then

Ed0 [X∗] = ρ(d0)N · E0[X∗] .

When E0[X∗] = O(1), ρ∗ remains small for d0 not so
large, and for fixed d < dc, ρ∗ is proportional to ρ(d0).
This is seen in the picture for the ER network in Fig 2.

For SF networks, ρ∗ can be very large for even mod-
erate size d0, as can be seen in Fig 2. Once a hub is
reached during the initial time period when the epidemic
spreads unchecked, ρ(d0) can be so large that the situa-
tion is out of control. In the SF network used in Fig 2,
where N = 104 and 〈k〉 = 6, the diameter of the network
is 5, and 1% of the nodes have degrees larger than 40.
Designating this top 1% of nodes as hubs, we find that
nearly 50% of nodes are immediate neighbors of hubs,
and nearly 97% lie within distance 2 of a hub. Thus it
is quite easy to reach a hub during this initial period of
unchecked growth. This is what makes initial delays so
much more dangerous for SF networks than for ER ones.
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Distributions of numbers of infected nodes. Up until now
we have focused on ρ∗, which involves averaging over all
point sources i of outbreaks and all sample paths of the
spread dynamics. To investigate the role played by hubs
and to identify situations that are potentially explosive, it
is instructive to view %t as a random variable in i (the first
infected node) and the sample path (noise realization), so
that E(%t) = ρ(t). We find that while in ER networks the
probability density function (PDF) ν of %t has a profile
consistent with exponential growth, the situation is quite
different for SF networks, where some infection sources
and sample paths lead quickly to containment and others
lead to full-blown epidemics; see Fig 3.
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FIG. 3: [Color Online] PDF ν of %t for t = 30 (2) and t = 90
(◦). All networks have 〈k〉 = 6, d0 = 0 and d = 5. In a) the
distribution for ER network exhibit an exponential behavior.
In b) the distribution for SF networks show a bimodal behav-
ior. In the inset of b), we show a Guassian fit of high-end of
the distribution %t for t = 90.

For the SF network at t = 90, there is the following
clear dichotomy: %t falls in A = [0, 0.01] with probability
∼ 1/3 and in B = [0.2, 0.28] with probability ∼ 2/3.
Moreover, there is a clear dependence on the structural
role of the node where the infection starts. For outbreaks
that originate from hubs, %t ∈ B with probability 1, while
for first neighbors of hubs, the corresponding probability
is roughly 0.8. In fact, an overwhelming proportion of
the nodes for which %t ∈ A are low degree nodes, their
mean degree being about 4. These statistics suggest that
imposing more stringent protocols on hubs and neighbors
of hubs can be an effective strategy.

The bimodal distributions of %t for SF networks in Fig
3 can be explained as follows: Nodes with small degrees
are natural barriers for disease transmission. For exam-
ple, in an SF network with 〈k〉 = 4, many nodes have de-
gree ≤ 2. For d0, d not so large, such nodes offer a good
chance to stop the propagation. On the other hand, once
a hub is reached, the spread will likely continue for some
time even with quite small d, leading to the Gaussian-like
distribution at the high end. Finally, the accessibility of
hubs in SF networks discussed earlier explains why with
high probability one of these two scenarios will prevail.

In summary, we have shown that isolation can be an ex-
tremely effective measure if taken quickly, namely, before
a critical day dc, and have uncovered the value of dc in

terms of the network structure and disease parameters.
We have also demonstrated the perils of initial delays
in SF networks. Our analysis extends naturally to net-
works with communities: as a random walker is initially
trapped within its community [25], we can extend our
analysis by taking into account local community struc-
tures. We expect that in scale-free networks with as-
sortative mixing, dc is further reduced as a consequence
of correlations hubs and low degree nodes. Furthermore,
we can weaken our assumption on local tree structures by
introducing effective numbers of free neighbors to tackle
small-world networks. Our results are general and pro-
vide a theoretical basis for assessing the impact of delays
on the effectiveness of isolation protocols. They serve as
a starting point for case studies once specific details of
the disease are incorporated.
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