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Epidemic processes are common out-of-equilibrium phenomena of broad interdisciplinary interest.
Recently, dynamic message-passing (DMP) has been proposed as an efficient algorithm for simulating
epidemic models on networks, and in particular for estimating the probability that a given node will
become infectious at a particular time. To date, DMP has been applied exclusively to models with
one-way state changes, as opposed to models like SIS and SIRS where nodes can return to previously
inhabited states. Because many real-world epidemics can exhibit such recurrent dynamics, we
propose a DMP algorithm for complex, recurrent epidemic models on networks. Our approach
takes correlations between neighboring nodes into account while preventing causal signals from
backtracking to their immediate source, and thus avoids “echo chamber effects” where a pair of
adjacent nodes each amplify the probability that the other is infectious. We demonstrate that this
approach well approximates results obtained from Monte Carlo simulation and that its accuracy is
often superior to the pair approximation (which also takes second-order correlations into account).
Moreover, our approach is more computationally efficient than the pair approximation, especially
for complex epidemic models: the number of variables in our DMP approach grows as 2mk where m
is the number of edges and k is the number of states, as opposed to mk2 for the pair approximation.
We suspect that the resulting reduction in computational effort, as well as the conceptual simplicity
of DMP, will make it a useful tool in epidemic modeling, especially for high-dimensional inference
tasks.

I. INTRODUCTION

Mathematical models of epidemic processes are intrin-
sically non-linear and multiplicative. These models in-
clude the spread of disease [1, 2], transmission of social
behaviors [3–6], cascades of banking failures [7, 8], forest
fires [9–11], the propagation of marginal probabilities in
constraint satisfaction problems [12, 13] and the dynam-
ics of magnetic and glassy systems [14].

The classical approach to modeling epidemics, such as
the SIR model where each node is Susceptible, Infectious,
or Recovered, assumes that at any given time each indi-
vidual exists in a single state or “compartment” [1, 2].
To make these models analytically tractable, it is often
assumed that the population is well mixed, so that inter-
action between any two individuals is equally likely; in
physical terms, we assume the model is mean-field (also
known as mass-action mixing in the epidemiology liter-
ature). Despite this unrealistic assumption, mean-field
models capture some essential features of epidemics, such
as a threshold above which we have an endemic phase
with a non-zero fraction of infected individuals, and be-
low which we have outbreaks of size o(n) so that the
equilibrium fraction of infected individuals is zero.

In reality, contacts between individuals in the popula-
tion are often highly structured, with some pairs of indi-
viduals much more likely to interact than others due to
location or demographics [6, 15]. To relax the mean-field
assumption, while retaining some measure of tractabil-
ity, we can assume that individuals interact on a net-
work, whose structure captures the heterogeneity in the

population [16, 17]. However, replacing the mean-field
approximation with a contact network substantially in-
creases a model’s complexity.

One reasonable goal is to compute the one-point
marginals, e.g., for each node i the probability Ii(t) that
i is infectious at time t. In addition to being of direct
interest, these marginals help us perform tasks such as
inferring the originator of an epidemic, determining an
optimal set of nodes to immunize in order to minimize
the final size of an outbreak, or calculating the probabil-
ity that an entire group of nodes will remain uninfected
after a fixed time [18–22].

We can always compute these marginals by perform-
ing Monte Carlo experiments. However, since we need
to perform many independent trials in order to collect
good statistics, this is computationally expensive on large
networks. This problem is compounded if we need to
scan through parameter space, or if we want to explore
many different initial conditions, vaccination strategies,
etc. Therefore, it would be desirable to compute these
marginals using, say, a system of differential equations,
with variables that directly model the probabilities of
various events.

The most naive way to do this, as we review below, uses
the one-point marginals themselves as variables. How-
ever, this approach completely ignores correlations be-
tween nodes. At the other extreme, to model the system
exactly, we would need to keep track of the entire joint
distribution: but if there are n individuals, each of which
can be in one of k states, this results in a coupled system
with kn variables. This exponential scaling quickly ren-



2

ders most models computationally intractable, even on
moderately sized networks.

In between these two extremes, we can approximate
the joint distribution by “moment closure,” assuming
that higher-order marginals can be written in terms of
lower-order ones. This gives a hierarchy of increasingly
accurate (and computationally expensive) approxima-
tions, familiar in physics as cluster expansions. At the
first level of this hierarchy we assume that the nodes are
uncorrelated, and approximate two-point marginals such
as [Ii(t) ∧ Ij(t)] (the probability that i and j are both
infectious at time t) as Ij(t)Ij(t). At the second level,
commonly referred to in the epidemiology literature as
the pair approximation, we close the hierarchy at the
level of pairs [Ii(t) ∧ Ij(t)] by assuming that three-point
correlations can be factored in terms of two-point corre-
lations. For a comprehensive review of these methods,
see [17, 23].

In this paper, we study an alternative method, namely
Dynamic Message-Passing (DMP). As in belief propa-
gation [26, 27], here variables or “messages” are defined
on a network’s directed edges: for instance, Ij→i denotes
the probability that j was infected by one of its neighbors
other than i, so that the epidemic might spread from j
to i. However, unlike belief propagation, where the pos-
terior distributions are updated according to Bayes’ rule,
here we write differential equations for the messages over
time.

For many epidemic models, such as SI (susceptible-
infectious), SIR (susceptible-infectious-recovered) and
SEIR (susceptible-exposed-infectious-recovered), only
one-way state changes can occur. For example, in the
SIR model, once an individual has left the Susceptible
class and become Infectious, they cannot return to be-
ing Susceptible; once they become Recovered, they are
immune to future infections, and might as well be Re-
moved. For these non-recurrent models, DMP is known
to be be an efficient algorithm to estimate Ii(t), and it
is exact on trees [28]; it can also be applied to threshold
models [30–32] and used for inference [18].

However, for many real-world diseases individuals can
return to previously inhabited states. In these recurrent
models, such as SIS (susceptible-infectious-susceptible),
SIRS (susceptible-infectious-recovered-susceptible), and
SEIS (susceptible-exposed-infectious-susceptible), indi-
viduals can cycle through the states multiple times, often
resulting in multiple waves of infection traveling through
the population. The most obvious examples of recurrent
models are seasonal influenza, where due to the evolution
of the virus individuals are repeatedly infected during
their lifetime [41], vaccination where protective immunity
wanes over time [42], and diseases curable by treatment
which does not result in antibody-mediated immunity,
such as gonorrhea [47]. In all three cases, individuals
leave the Susceptible class, only to return at some point
in the future (although for influenza, it is worth men-
tioning that if the evolutionary rate of the virus is func-
tionally related to the number of susceptible individuals,
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pair-approximation, which closes the hierarchy in the level of two point functions.

My PhD work: There is a third way, i.e. message-passing approach for epidemic processes.

FIG. 1. A piece of Bethe tree with 3 neighbors.

It based on a bethe approximation of prob-
lems defined in regular lattice in statistical
physics. The idea is rooted in the fact that
many problems that seem to elude solution
in dimension of interest (2 or 3 in particu-
lar) can be solved in bethe lattice. Bethe lat-
tice is a tree (of infinite number of nodes by
construction), where each node has exactly
z neighbors. It cannot be embedded in any
finite-dimensional regular lattice. However,
it is known in statistical physics that lattice
dimension has no qualitative effect on problems above some critical dimension. Thus, bethe lattice can provide quali-
tative insight even in regular lattice of sufficiently higher dimension. One example of the problem that is related to the
asymptotic time property of epidemics is percolation, where the upper critical dimension is known to be four[CITE].

A crucial property of bethe lattice that makes it possible to find solution is following: if one of the node is deleted,
say i, then the whole network is divided exactly into z disjoint cluster, where each of its z neighbors lies on a different
one. So if xj!i refers to the size of cluster j belongs to, when i is deleted from the network, i.e. a message that j
sends to i. Then size xi of cluster that i belongs to when it is added back in is simply the sum of messages i get from
its neighbors.

Similarly, a good variable to consider for epidemics is a message xi!j , which is the probability that node i is in
state x if the node j had been deleted. It is then becomes possible to calculate probability xi that i is in state x, thus
effectively cutting the hierarchical dependence of correlation. Only requirement is that if there are k compartmental
disease state, then k messages directed from i to j are needed. Since messages are not symmetric, i.e message from i
to j is not the same as message from j to i for any given x, all together the number of messages scales as 2mk there
are m edges.

However, messages can break the hierarchical coupling of correlations exactly only in trees [1–5]. But, approximation
based on assuming that messages are uncorrelated even in networks with many loops, i.e. for example real social
networks, is shown to work well [3–5]. What is particularly handy is that messages and thus marginal probabilities
can be computed dynamically in time directly, thus the naming dynamic message passing (DMP). More over DMP
can be applied to wide varieties of complex epidemics models. For example, Karrer and Newman developed message-
passing approach for non-markovian models, where individuals exposed to infection go through incubatory phase
before actually infecting other healthy individuals [1].

Similarly, I, along with my PhD adviser Cris Moore, showed that it can easily be generalized to more complex
models like threshold models, where healthy individuals get infected only when they are infected by threshold T
neighbors [3]. Such threshold models attracted attention from sociologist Mark Granovetter in the context of cascade
of social influence or behavior because our decision are often influenced by peer pressure. [more on results here?]

Recently, a systematic message-passing approach has been developed for epidemics that can be applied to even more
complex models [4]. But, to date, message-passing has been applied exclusively to non-recurrent models, i.e. state
cannot reverse back to previously occupied state like SI (susceptible-infected), SIR (suceptible-infected-recovered).

It is because it is not yet known if the underlying construction of message-passing approach can be applied exactly
in trees to recurrent models like SIS, where individuals can come back to previously occupied state many times. One
reason is that microscopic irreversibility of non-recurrent models makes the infected cluster to grow monotonically.
More specifically number of infected nodes n(t) grows sub-multiplicatively, i.e. n(t)  n(t1)n(t� t1) in non-recurrent
models, which in statistical physics defines a connective constance (or an epidemics threshold) of networks or lattices.

But in reversible models like SIS, total number of infection n(t) is not an increasing or decreasing function in time,
and as a result there might be no infected individuals. This is a global attractor, where dynamics of the whole system
ceases and thus becomes globally irreversible. There is thus no systematic exact approach to handle the meta-stable
global state of recurrent epidemic models even on trees.

One way to address this is to put a lower bound on n(t), i.e. there is at least one infected individuals n(t) � 1. This
seems non-trivial. The other reasonable stitching of the problem is to make healthy individuals to spontaneously be
infected CITE.

One encouraging news is the insight we have gathered from random walk theory, i.e. Polya’s walk. It can be
said that conservative mapping (i.e. infection does not multiply, or that a node can infect only one of its neighbor)
of non-recurrent epidemics is related to self-avoiding random walk, i.e. walker can visit the site only once. Many
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FIG. 2. A simple example of a network with two nodes and an edge between them. The di↵erential system on the second row is
for the SI model, i.e. ⇢ = 0 in the context of present SIS model, to highlight some crucial di↵erences among these approaches.
One crucial assumption of r -DMP system (rightmost) is that if i gets infected by j, it cannot again subsequently infect back j
again. This assumption is represented by diode-like arrow or edge from j to i.

node j is infectious and might infect i because it got infected by one of its neighbors other than i.
The governing system of di↵erential equations for messages is then given by

dIj!i

dt
= �⇢Ij!i + �Sj

X

k2@j\i

Ik!j (1)

where @j \ i refers to all the neighbors of node j excluding node i. Given these messages, we compute the marginal
probability that a node is infectious from its incoming messages,

dIi

dt
= �⇢Ii + �Si

X

j2@i

Ij!i. (2)

Here, note that the main assumption we are making here, and thereby our DMP approach, is the following:
given that i is susceptible, node j being in an infectious state having been infected from neighbors other than i is
uncorrelated. Together with Eq. 1 and Eq. 2, i.e. the r -DMP system, the casual flow of infection can thus be thought
as happening in a diode-like directed edge of the network like in Fig. 1. This directional nature of the messages avoids
an “echo chamber” of information flow which we will now discuss.

A. Echo Chamber and a simple toy example

Consider a simple but pathological case where there are only two nodes, {i, j}, with an edge between them, as shown
in Fig. 2. For the purpose of illustration, lets consider the SI model (susceptible-infectious), where infectious nodes
do not recover back to susceptible, i.e. set the recovery rate ⇢ = 0 in the context of current SIS model. Now then,
assume that j is initially infected with very small probability Ij(0) = �j , and i is initially susceptible, i.e. Ii(0) = 0.

Given this, we know that the pair-approximation is exact as there are only two nodes, and therefore it takes all
correlations into account. Now, suppose we ignore correlations between the states of node i and j, i.e. hSiIji ⇡ SiIj
as in the first-moment closure. Then we have

dIi

dt
= �SiIj ,

dIj

dt
= �SjIi. (3)

So, at time dt, Ii(dt) is �dt�j . But, we see that Ij also increases at the rate proportional to Ii because we have
assumed that Ij is uncorrelated to Ii. So for any subsequent time, this echo infection echoes back and forth, thereby
amplifying the actual infection. In fact, in long time limit, both Ii(1) = Ij(1) = 1, even though j was initially
infected with small probability �j .

The system of r -DMP above is meant to prevent exactly this echo infection. Indeed, it allows j to infect i only
when j has been infected from neighbors other than i. It thus brings the flow of information, i.e the contagion, to i
through j from j’s other neighbors, as in Fig. 1. Note that although preventing sequential reinfection seems like a
strong assumption, it is generally considered a rare phenomenon in human and animal infectious diseases [2, 35].

But, the r -DMP system above also overestimates Ii in the long time limit, i.e. Ii(1) = 1 too, when it is applied
to the two node SI example described earlier by setting ⇢ = 0. Applying Eq. (2) for Fig. 2, we see that i becomes

FIG. 1. We define messages on the directed edges of a network
to carry causal information of the flow of contagion, e.g. Ij→i

is the probability that j is Infectious because it received the
infection from a neighbor k other than i. This prevents signals
from immediately backtracking to the node they came from,
and thus prevents what we term “echo chamber” infections.
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pair-approximation, which closes the hierarchy in the level of two point functions.
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It based on a bethe approximation of prob-
lems defined in regular lattice in statistical
physics. The idea is rooted in the fact that
many problems that seem to elude solution
in dimension of interest (2 or 3 in particu-
lar) can be solved in bethe lattice. Bethe lat-
tice is a tree (of infinite number of nodes by
construction), where each node has exactly
z neighbors. It cannot be embedded in any
finite-dimensional regular lattice. However,
it is known in statistical physics that lattice
dimension has no qualitative effect on problems above some critical dimension. Thus, bethe lattice can provide quali-
tative insight even in regular lattice of sufficiently higher dimension. One example of the problem that is related to the
asymptotic time property of epidemics is percolation, where the upper critical dimension is known to be four[CITE].

A crucial property of bethe lattice that makes it possible to find solution is following: if one of the node is deleted,
say i, then the whole network is divided exactly into z disjoint cluster, where each of its z neighbors lies on a different
one. So if xj!i refers to the size of cluster j belongs to, when i is deleted from the network, i.e. a message that j
sends to i. Then size xi of cluster that i belongs to when it is added back in is simply the sum of messages i get from
its neighbors.

Similarly, a good variable to consider for epidemics is a message xi!j , which is the probability that node i is in
state x if the node j had been deleted. It is then becomes possible to calculate probability xi that i is in state x, thus
effectively cutting the hierarchical dependence of correlation. Only requirement is that if there are k compartmental
disease state, then k messages directed from i to j are needed. Since messages are not symmetric, i.e message from i
to j is not the same as message from j to i for any given x, all together the number of messages scales as 2mk there
are m edges.

However, messages can break the hierarchical coupling of correlations exactly only in trees [1–5]. But, approximation
based on assuming that messages are uncorrelated even in networks with many loops, i.e. for example real social
networks, is shown to work well [3–5]. What is particularly handy is that messages and thus marginal probabilities
can be computed dynamically in time directly, thus the naming dynamic message passing (DMP). More over DMP
can be applied to wide varieties of complex epidemics models. For example, Karrer and Newman developed message-
passing approach for non-markovian models, where individuals exposed to infection go through incubatory phase
before actually infecting other healthy individuals [1].

Similarly, I, along with my PhD adviser Cris Moore, showed that it can easily be generalized to more complex
models like threshold models, where healthy individuals get infected only when they are infected by threshold T
neighbors [3]. Such threshold models attracted attention from sociologist Mark Granovetter in the context of cascade
of social influence or behavior because our decision are often influenced by peer pressure. [more on results here?]

Recently, a systematic message-passing approach has been developed for epidemics that can be applied to even more
complex models [4]. But, to date, message-passing has been applied exclusively to non-recurrent models, i.e. state
cannot reverse back to previously occupied state like SI (susceptible-infected), SIR (suceptible-infected-recovered).

It is because it is not yet known if the underlying construction of message-passing approach can be applied exactly
in trees to recurrent models like SIS, where individuals can come back to previously occupied state many times. One
reason is that microscopic irreversibility of non-recurrent models makes the infected cluster to grow monotonically.
More specifically number of infected nodes n(t) grows sub-multiplicatively, i.e. n(t)  n(t1)n(t� t1) in non-recurrent
models, which in statistical physics defines a connective constance (or an epidemics threshold) of networks or lattices.

But in reversible models like SIS, total number of infection n(t) is not an increasing or decreasing function in time,
and as a result there might be no infected individuals. This is a global attractor, where dynamics of the whole system
ceases and thus becomes globally irreversible. There is thus no systematic exact approach to handle the meta-stable
global state of recurrent epidemic models even on trees.

One way to address this is to put a lower bound on n(t), i.e. there is at least one infected individuals n(t) � 1. This
seems non-trivial. The other reasonable stitching of the problem is to make healthy individuals to spontaneously be
infected CITE.

One encouraging news is the insight we have gathered from random walk theory, i.e. Polya’s walk. It can be
said that conservative mapping (i.e. infection does not multiply, or that a node can infect only one of its neighbor)
of non-recurrent epidemics is related to self-avoiding random walk, i.e. walker can visit the site only once. Many
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FIG. 2. Two simple, yet illustrative, cases of networks, where
the darker node is initially Infectious. As we discuss, in these
simple cases one can see the motivation for our approach to
prevent infection signals from backtracking.

then the recovery rate may not be independent from the
state of one’s neighbors.) Unfortunately, the DMP ap-
proach of [28] cannot be directly extended to recurrent
models, since their equations for messages only track the
first time an individual makes the transition to a given
state.

The purpose of this paper is to develop a novel DMP
algorithm for recurrent models of epidemics on networks,
which we call rDMP. We will show that rDMP gives very
good approximations for marginal probabilities on net-
works, and is often more accurate than the pair approx-
imation. Moreover, whereas the pair approximation re-
quires keeping track of mk2 variables, if there are m edges
and k states per node, rDMP requires just 2mk variables.
For complex models where k is large—for instance, for
diseases with multiple stages of infection or immunity,
or multiple-disease epidemics where one disease makes
individuals more susceptible to another one—rDMP pro-
vides a substantial reduction in the computational effort
required. Finally, the rDMP approach is conceptually
simple, making it easy to write down the system of dif-
ferential equations for a wide variety of epidemic models.

II. MESSAGE-PASSING AND PREVENTING
THE ECHO CHAMBER EFFECT

As shown in Fig. 1, the variables of rDMP are mes-
sages along directed edges of the network (in addition to
one-point marginals). For instance, Ij→i is the probabil-
ity that j is Infectious because it was infected by one of
its other neighbors k. The intuition behind this is the
following, where we consider the SIS model as an exam-
ple. If i is Susceptible, the rate at which j will infect
i is proportional to the probability Ij that j is infected.
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But when computing this rate, we only include the con-
tribution to Ij that comes from neighbors other than i.
In other words, we deliberately neglect the event that j
receives the infection from i, and immediately passes it
back to i, even if i has become Susceptible in the inter-
vening time.

This choice avoids a kind of “echo chamber” effect,
where neighboring nodes artificially amplify each others’
probability of being Infectious. For instance, consider a
simple but pathological case of the SI model where there
are only two nodes in the graph, i and j, with an edge
between them as shown in Fig. 2. If the transmission
rate is λ, and if we assume the nodes are independent
(i.e., if we use first-order moment closure) we obtain the
following differential equations,

dIi

dt
= λSiIj

dIj

dt
= λSjIi , (1)

where Si(t) = 1− Ii(t) and similarly for j.
Now suppose that j is initially Infectious with proba-

bility δ, and that i is initially Susceptible, i.e., Ij(0) = δ
and Ii(0) = 0. Since in the SI model nodes never recover,
the infection will eventually spread from j to i, but only
if i was Infectious in the first place. Thus the marginals
Ii(t) and Ij(t) should tend to δ as t→∞.

However, integrating Eq. (1) gives a different result.
Once Ii becomes positive, dIj/dt becomes positive as well,
allowing i to infect j with the infection that it received
from j in the first place. As a result, Ij(t) approaches
1 as t → ∞. Thus the “echo chamber” between i and
j leads to the absurd result that j eventually becomes
Infectious, even though with probability 1− δ there was
no initial infection in the system.

In the rDMP approach, we fix this problem by replac-
ing Ii and Ij with the messages they send each other,

dIi

dt
= λSiIj→i ,

dIj

dt
= λSjIi→j ,

so that i can only infect j if i received the infection from
some node other than j. In this example, there are no
other nodes, so if Ij→i(0) = δ and Ii→j(0) = 0, then
Ij(t) = δ for all t as it should be.

Note that we do not claim that rDMP is exact in this
case. In particular, as in (1), Ii(t) tends to 1 as t →
∞. This is because, unlike the system of [28], rDMP
assumes that each time j infects i is independent from
the previous.

In this two-node example, of course, the pair approx-
imation is exact, since it maintains separate variables
such as [Sj ∧ Ik] for each of the joint states of the two
nodes. However, the pair approximation is subject to
other forms of the “echo chamber effect”. Consider a
network with three nodes, as in Fig. 2 (right), where j is

a common neighbor of i and k. The pair approximation
assumes that, conditioned on the state of j, the states
of i and k are independent; however, in a recurrent epi-
demic model, i and k could be correlated, for instance if j
infected them both and then returned to the Susceptible
state. As a result, the pair approximation is vulnera-
ble to a distance-two echo chamber, where i and k infect
each other through j. As in the two-node case, rDMP
prevents this.

Preventing backtracking completely may seem like a
strong assumption, and in recurrent models it is a priori
possible, for instance, for a node to re-infect the neighbor
it was infected by. Despite the well-documented impor-
tance of recurrent infections for diseases including (but
certainly not limited to) seasonal influenza [41], Plasmod-
ium malaria [49], and urinary tract infections [48], little is
known about the source of recurrent infections. For cer-
tain sexually transmitted diseases such as gonorrhea [47]
and repeated ringworm infections [50], there is evidence
that backtracking plays a significant role; on the other
hand, it may be that recurrent infections are caused by
different strains, each of which is acting essentially with-
out backtracking. Thus while our non-backtracking as-
sumption is clearly invalid in some cases, we believe it is
a reasonable approach for most recurrent state infections.

III. THE rDMP EQUATIONS FOR THE SIS,
SIRS, AND SEIS MODELS

In this section, we illustrate the rDMP approach for
several recurrent epidemic models. We start with the
simplest, which is the SIS model where each node is either
Infectious (I) or Susceptible (S). Infectious nodes infect
their Susceptible neighbors at rate λ, and their infections
wane back into the Susceptible state at rate ρ. We denote
the probability that node i is Infectious or Susceptible by
Ii and Si respectively. The objective then is to efficiently
and accurately compute these probabilities as a function
of time t.

We define variables or “messages” that live on the di-
rected edges (i, j) of the network. The directed nature of
these messages prevent infection from backtracking from
an Infectious node back to its infection source, e.g., if
node i infects node j, then we prevent j from re-infecting
i. In addition to tracking the one-point marginal Ij , we
define a message Ij→i from j to i as the probability that j
is in the Infectious state as a result of being infected from
one of its neighbors other than i. Given these incoming
messages, the rate at which Ii evolves in time is given by

dIi

dt
= −ρIi + λSi

∑

j∈∂i
Ij→i, (2)

where ∂i denotes the neighbors of i. Similarly, the rate
at which Ij→i evolves in time is given by

dIj→i

dt
= −ρIj→i + λSj

∑

k∈∂j\i
Ik→j , (3)
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where k ∈ ∂j \ i denotes the neighbors of j excluding i.
For the SIRS model, we let ρ and γ denote the transi-

tion rates from Infectious to Recovered and from Recov-
ered to Susceptible respectively. Then the rDMP system
for the SIRS model is given by

dIj→i

dt
= −ρIj→i + λSj

∑

k∈∂j\i
Ik→j , (4)

which is coupled with the one-point marginals through

dSi

dt
= γRi − λSi

∑

j∈∂i
Ij→i

dIi

dt
= −ρIi + λSi

∑

j∈∂i
Ij→i

dRi

dt
= ρIi − γRi . (5)

In the SEIS model, upon becoming exposed to an in-
fected neighbor, Susceptible nodes first go through a la-
tent period called the Exposed state. In this state, in-
dividuals are infected but not yet Infectious. Exposed
nodes become Infectious at the rate ε, and Infectious
nodes again wane back to Susceptible at rate ρ. The
rDMP system for the SEIS model is

dEj→i

dt
= −εEj→i + λSj

∑

k∈∂j\i
Ik→j ,

dIj→i

dt
= −ρIj→i + εEj→i , (6)

which is coupled with the one-point marginals as

dSi

dt
= ρIi − λSi

∑

j∈∂i
Ij→i

dEi

dt
= −εEi + λSi

∑

j∈∂i
Ij→i

dIi

dt
= −ρIi + εEi . (7)

Note that here we track messages for the Exposed state,
in addition to one-point marginals, since they act as pre-
cursors for the Infectious messages. There is no need to
track messages for the Susceptible state, since it does not
cause state changes in its neighbors.

Generalizing these equations to more complex epi-
demic models with k different states, as opposed to three
or four, is straightforward. Even in a model where ev-
ery state can cause changes in a neighbor’s state—for
instance, where having Susceptible neighbors speeds up
the rate of recovery, or where Exposed nodes can also in-
fect their neighbors at a lower rate—the total number of
variables we need to track in a network with n nodes and
m edges is at most 2mk in addition to the nk one-point
marginals. In contrast, the pair approximation requires
mk2 states to keep track of the joint distribution of every
neighboring pair.

IV. EXPERIMENTS IN REAL AND
SYNTHETIC NETWORKS

In this section we report on numerical experiments for
rDMP for the SIS and SIRS models on real and synthetic
networks. As a performance metric, we use the average
L1 error per node between the marginals computed from
rDMP and the true probabilities computed (up to sam-
pling error) using continuous-time Monte Carlo simula-
tions. That is,

LrDMP
1 (t) =

1

n

∑

i

∣∣IMC
i (t)− IrDMP

i (t)
∣∣ , (8)

We use this metric to compare the performance of rDMP
with the independent-node approximation and the pair
approximation, or equivalently first- and second-order
moment closure [17, 23]. As we will see, for a wide
range of parameters, rDMP is more accurate than either
of these approaches, even though it is more computation-
ally efficient than the pair approximation.

In Fig. 3, we show results for the SIS model on
Zachary’s Karate Club [33]. On the left, we plot the
marginal probability that a particular node is Infectious
as a function of time, estimated by rDMP and by first-
and second-order moment closure, and compared those
estimates with the true marginals given by Monte Carlo
simulation. On the right, we show the average L1 error
for the three methods. Here λ = 0.1, ρ = 0.05, and the
initial condition consists of a single infected node (shown
in red in the inset). The Monte Carlo results were av-
eraged over 105 runs. We see that rDMP is significantly
more accurate than the other two, except very early in
the simulation..

As a further illustration, in Fig. 4 we show the steady-
state marginal Ii for each node i (measured by running
the system until t = 50, at which point Ii(t) is nearly con-
stant), with the same parameters and initial condition as
in Fig. 3. We show the true marginal of each node on
the y-axis, and the marginals estimated by rDMP and
the pair approximation on the x-axis. If the estimated
marginals were perfectly accurate, the points would fall
on the line y = x. Both methods overestimate the
marginals to some extent, but rDMP is more accurate
than the pair approximation on every node. Thus rDMP
makes accurate estimates of the marginals on individual
nodes, as opposed to just the average across the popula-
tion.

To investigate how rDMP compares with the pair ap-
proximation across a broader range of parameters, in
Fig. 5 we vary the ratio between waning rate ρ and the
transmission rate λ. Since we can always rescale time by
multiplying λ and ρ by the same constant, we do this by
holding λ = 0.1 as before, and varying ρ. We then mea-
sure the difference in the L1 error of the two methods,
LrDMP
1 − Lpair

1 .
In the blue region, rDMP is more accurate than the

pair approximation; in the red region, it is less so. We
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FIG. 3. Results on the SIS model. On the left, the marginal probability that node 29 in Zachary’s Karate club (see inset on
right) is Infectious as a function of time. We compare the true marginal derived by 105 independent Monte Carlo simulations
with that estimated by rDMP, the independent node approximation, and the pair approximation. In the inset, we show the
fraction f of Infectious nodes as a function of time. On the right is the L1 error, averaged over all nodes; we see that rDMP
is the most accurate of the three methods. Here the transmission rate is λ = 0.1, the waning rate is ρ = 0.05, and vertex 0
(colored red) was initially infected.

FIG. 4. A scatterplot of the steady-state marginals Ii for the
n = 33 nodes in Zachary’s Karate Club, with the same pa-
rameters as in Fig. 3. The vertical axis is the true marginal
computed by Monte Carlo simulations; the horizontal axis
is the estimated marginals from rDMP (black ?) and the
pair approximation (blue ×). Both methods overestimate the
marginal, but rDMP is closer to the true value (the line y = x)
for every node.

see that rDMP is more accurate except at early times
(as in Fig. 3) or when ρ is small compared to λ, i.e., if
the model is close to the SI model where Infectious nodes
rarely become Susceptible again. The intuition for these
findings, as discussed in Sec. II, is that rDMP assumes
that repeated infection events along the same directed
edge are independent, and as a result rDMP underper-
forms pair approximation at early times and when the

FIG. 3. Results on the SIS model. On the left, the marginal probability that node 29 in Zachary’s Karate club (see
inset on right) is Infectious as a function of time. We compare the true marginal derived by 105 independent Monte
Carlo simulations with that estimated by rDMP, the independent node approximation, and the pair approximation.
On the right is the L1 error, averaged over all nodes; we see that rDMP is the most accurate of the three methods.
Here the transmission rate is � = 0.1, the waning rate is ⇢ = 0.05, and vertex 0 (colored red) was initially infected.

FIG. 4. A scatterplot of the steady-state marginals Ii

for the n = 33 nodes in Zachary’s Karate Club, with the
same parameters as in Fig. 3. The vertical axis is the
true marginal computed by Monte Carlo simulations; the
horizontal axis is the estimated marginals from rDMP
(black ?) and the pair approximation (blue ⇥). Both
methods overestimate the marginal, but rDMP is closer
to the true value (the line y = x) for every node.

averaged over the network. In the insets, we show
the marginal probability R29 for the Recovered state
and the corresponding average L1 error. Here the
transmission rate is � = 0.1, the waning rate from
Infectious to Recovered is ⇢ = 0.05, and the rate

FIG. 4. Comparison with a scatter plot of steady-state infection probability in the Zachary club. Horizontal axis
is the steady-state infection probability calculated by DMP (black-asterisk) or the pair-approximation (blue-cross),
whereas vertical axis is the result from the Monte Carlo simulation. Each point refers to the steady-state infection
probability of one of the individuals in the club. Same parameters as in Fig. 3. Closer a point is to the green dashed
diagonal line, more accurate or closer DMP or the pair-approximation is to the actual Monte Carlo simulation.Same
parameters as in Fig. 3.

FIG. 5. A contour plot of the di↵erence D(t, ⇢
�
) between LDMP

1 (t) and Lpair
1 (t) for increasing values of the parameter

⇢
�
, i.e. D(t, ⇢

�
) = LDMP

1 (t) � Lpair
1 (t) in the Zachary’s network. A positive D(t, ⇢

�
) (colored red) means the error

from DMP is worse than that from the pair-approximation, whereas DMP outperforms the pair-approximations in
the blue regions. Same parameters as in Fig. 3, but we sweep through various value of the recovery rate ⇢.

where LDMP
1 is defined in Eq. (9). So if D(t, �

� ) is positive (negative), the error from r -DMP is more (less)
than that from the pair-approximation. In Fig. 5, keeping all the parameters the same as in Fig. 3 except
⇢, we indeed see that r -DMP is only positive (colored red) at early times when ⇢ is relatively low.

In Fig. 6, we compare the performance in a single instance of an Erdős-Rényi graph (inset of the figure)
with 100 nodes and a single initially infectious node. Transmission rate � = 0.2, and recovery rate ⇢ = 0.10,
and Monte Carlo results were averaged over 103 runs. We see that r -DMP does the best, except at early
times when pair-approximation marginally outperforms r -DMP.

We also evaluated the performance of all three methods in various other networks like random-regular
graphs, random geometric graphs, scale-free networks, Newman-Watts-Strogatz small world network [cite],
and a social network of dolphins [21]. We find that r -DMP outperforms the first-moment-closure approach

7

FIG. 5. The di↵erence between LrDMP
1 and Lpair

1 on
Zachary’s Karate Club for various values of the ratio
⇢/�. We rescale time so that � = 0.1 as before. In the

blue region, LrDMP
1 < Lpair

1 and rDMP is more accurate;

in the red region, LrDMP
1 > Lpair

1 . We see that rDMP
is more accurate except at early times or when ⇢/� is
small.

from Recovered to Susceptible is � = 0.2. The initial
condition consisted of a single infected node, and
Monte Carlo results were averaged over 105 runs.
As for the SIS model, rDMP is significantly more
accurate than the independent node approximation,
and is more accurate than the pair approximation
except at early times.

We found similar results on many other families of

6

FIG. 5. The difference between LrDMP
1 and Lpair

1 on Zachary’s
Karate Club for various values of the ratio ρ/λ. We rescale
time so that λ = 0.1 as before. In the blue region, LrDMP

1 <
Lpair

1 and rDMP is more accurate; in the red region, LrDMP
1 >

Lpair
1 . We see that rDMP is more accurate except at early

times or when ρ/λ is small.

model is close to SI.

In Fig. 6, we simulate the SIS model on an Erdős-Rényi
graph (left figure) with n = 100 and average degree 3,
with λ = 0.4, ρ = 0.1, and a single initially Infectious
node. As with the Karate Club, rDMP does a better job
of tracking the true fraction of Infectious nodes, except at
early times when the pair approximation is superior; in
particular, it does a better job of computing the steady-
state size of the epidemic.

In Fig. 7 we show results for the SIRS model on
Zachary’s Karate Club. As in Fig. 3, on the left we show
the marginal probability I29 that node 29 is Infectious; on
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FIG. 6. The fraction f of Infectious nodes as a function of time in the SIS model on an Erdős-Rényi graph (inset)
with n = 100 and average degree 3. Here � = 0.4, ⇢ = 0.1, and the initial condition consists of a single Infectious
node (colored red). Monte Carlo results were averaged over 103 independent runs. Except at early times, rDMP
tracks the true trajectory more closely.

FIG. 7. The SIRS model on the Karate Club. On the left, we show the true and estimated marginal probability that
a node 29 is Infectious (main figure) or Recovered (inset) as a function of time. On the right is the average L1 error
for the Infectious and Marginal states. The transmission rate is � = 0.1, and the transition rates from Infectious
to Recovered and from Recovered to Susceptible are ⇢ = 0.05 and � = 0.2 respectively. Node 0 (colored red) was
initially infected. Monte Carlo results were averaged over 105 runs. As for the SIS model, rDMP is significantly more
accurate than the first-order model where nodes are independent, and is more accurate than the pair approximation
except at early times.

of dolphins [29]. Namely, rDMP outperforms the first-order approximation where nodes are independent,
and outperforms the pair approximation across a wide range of parameters and times.
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FIG. 6. On the left, we show the fraction f of Infectious nodes as a function of time in the SIS model on an Erdős-Rényi graph
(inset) with n = 100 and average degree 3. Here λ = 0.4, ρ = 0.1, and the initial condition consists of a single Infectious node
(colored red). Monte Carlo results were averaged over 103 independent runs. On the right is same as the figure on the left,
except we show the results from a larger but random geometric graph with 105 nodes, where the average clustering coefficient is
0.6. Monte Carlo results here were averaged over 100 independent runs. Except at early times, rDMP tracks the true trajectory
more closely.

FIG. 7. The SIRS model on the Karate Club. On the left, we show the true and estimated marginal probability that a node
29 is Infectious (main figure) or Recovered (inset) as a function of time. On the right is the average L1 error for the Infectious
and Recovered (inset) states. The transmission rate is λ = 0.1, and the transition rates from Infectious to Recovered and from
Recovered to Susceptible are ρ = 0.05 and γ = 0.2 respectively. Node 0 (colored red) was initially infected. Monte Carlo results
were averaged over 105 runs. As for the SIS model, rDMP is significantly more accurate than the first-order model where nodes
are independent, and is more accurate than the pair approximation except at early times.

the right, we show the L1 error for Ii averaged over the
network. In the insets, we show the marginal probability
R29 for the Recovered state and the corresponding aver-
age L1 error. Here the transmission rate is λ = 0.1, the
waning rate from Infectious to Recovered is ρ = 0.05, and
the rate from Recovered to Susceptible is γ = 0.2. The
initial condition consisted of a single infected node, and
Monte Carlo results were averaged over 105 runs. As for
the SIS model, rDMP is significantly more accurate than
the independent node approximation, and is more accu-

rate than the pair approximation except at early times.

We found similar results on many other families of net-
works, including random regular graphs, random geomet-
ric graphs, scale-free networks, Newman-Watts-Strogatz
small world networks, and a social network of dol-
phins [34]. Namely, rDMP outperforms the first-order
approximation where nodes are independent, and out-
performs the pair approximation across a wide range of
parameters and times.
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V. LINEAR STABILITY, EPIDEMIC
THRESHOLDS, AND RELATED WORK

Systems of differential equations for rDMP, such as (3),
do not appear to have a closed analytic form due to their
nonlinearities. On the other hand, we can compute quan-
tities such as epidemic thresholds by linearizing around a
stationary point, such as {I∗j→i = 0} where the initial out-
break is small. Given a perturbation εj→i = Ij→i − I∗j→i,
the linear stability of the system, i.e., whether or not
εj→i diverges in time, is governed by the eigenvalues of
the Jacobian matrix J of the right hand side of (3) at the
stationary point I∗i . The Jacobian for (3) at {I∗j→i} is

J(j→i),(k→j′) = −δkjδij′ρ+ λ(1− I∗j )B(j→i),(k→j′) . (9)

where

B(j→i),(k→j′) = δjj′(1− δik) , (10)

and δij is 1 if i = j, and 0 otherwise. This definition of B
is another way of saying that the edge k → j influences
edges j → i for i 6= k, but does not backtrack to k.
This corresponds to our assumption that infections, for
instance, do not bounce from k to j and back again and
create an “echo chamber effect.” For this reason, B is also
known in the literature as the non-backtracking matrix
[36] or the Hashimoto matrix [25].

Now, for a small perturbation ~ε away from a stationary
point {I∗j→i}, the linearized system of (3) becomes

d~ε

dt
= J~ε, (11)

If J has any eigenvalues with positive real parts, then
‖~ε(t)‖ grows exponentially in time. So, the fixed point
{Ij→i} is stable as long as the leading eigenvalue J1 of J
has negative real parts.

One trivial, but important, stationary point to test is
I∗j→i = 0 for all edges. A small perturbation around ~0
corresponds to a small initial probability that each node
is infected. From (9), J becomes

J = λ
(
B− ρ

λ
1
)
, (12)

where 1 is the 2m× 2m identity matrix. So, the leading
eigenvalue of J becomes positive when the largest eigen-
value B1 of B is greater than ρ/λ. In other words, if

R0 =
λ

ρ
B1 ≥ 1 , (13)

where R0 is the reproductive number, even a small initial
probability of infection will lead to a widespread endemic
state, where the infection becomes extensive. If (13) does
not hold, a small initial probability of infection will in-
stead decay back to an infection-less state.

Since B is not symmetric, not all of its eigenvalues
are real. However, by the Perron-Frobenius theorem, it’s

leading eigenvalue is real; moreover, it is upper bounded
by A1, the leading eigenvalue of the adjacency matrix
A. Interestingly, if we examine the linear stability of the
first-order approximation where nodes are independent,
[17], the epidemic threshold for the SIS model is given by

λ

ρ
A1 ≥ 1 . (14)

Since B1 ≤ A1, the threshold (13) gives a better upper
bound for the true epidemic threshold than we would get
from the first-order approximation.

A similar threshold for the SIR model in sparse net-
works, or equivalently for percolation, using B1 was re-
cently demonstrated in [37]. (We note that when back-
tracking is allowed, it has important consequences for
epidemic thresholds on power-law networks [38].)

Whereas the leading eigenvector of B governs the epi-
demic threshold, the spectral gap between B’s top two
eigenvectors governs how quickly the epidemic converges
to the leading behavior (at least until we leave the linear
regime). Qualitatively, this depends on bottlenecks in the
network such as those due to community structure, where
an epidemic spreads quickly in one community but then
takes a longer time to cross over into another. Indeed,
the second eigenvector of the non-backtracking matrix B
was recently used to detect community structure [36].

Similarly, just as the leading eigenvector of B was re-
cently shown to be a good measure of importance or “cen-
trality” of a node [40], it may be helpful in identifying
“superspreaders”—nodes where an initial infection will
generate the largest outbreak, and be the most likely to
lead to a widespread epidemic.

VI. CONCLUSION

Modern epidemiological studies often require recurrent
models, where nodes can return to their previous inhab-
ited states multiple times. For example, consider diseases
such as influenza where individuals are infected multiple
times throughout their lives, or whooping cough where
vaccine effectiveness wanes over time; in both cases, in-
dividuals return to the Susceptible class. In this paper
we have extended Dynamic Message-Passing (DMP) to
recurrent epidemic models. Our rDMP approach defines
messages on the directed edges of a network in such a
way as to prevent signals, such as the spread of infec-
tion, from backtracking immediately to the node that
they came from. By preventing these “echo chamber ef-
fects,” rDMP obtains good estimates of the time-varying
marginal probabilities on a wide variety of networks, es-
timating both the fraction of infectious individuals in
the entire network, and the probabilities that individual
nodes become infected.

Like the pair approximation, rDMP takes correlations
between neighboring nodes into account. However, our
experiments show that rDMP is more accurate than the
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FIG. 8. Same as in Fig. 3, but with transmission rate λ = 0.1 and waning rate ρ = 0.54. A well known upper bound on the
epidemic threshold of the SIS model can be computed from the leading eigenvalue A1 of the adjacency matrix (the Jacobian
matrix of first-moment-closure approach) of a network. In other words, if ρ

λ
< A1, it is known from the first-moment-method

that an infection-free state becomes unstable and epidemics become widespread and endemic. Here we show the results from
SIS model in Zachary’s Karate Club, where A1 ≈ 6.7. Even though ρ

λ
= 5.4 < A1 which is well below the threshold from the

first-moment method, the contagion fades away eventually, which is correctly captured by our DMP approach.

pair approximation for a wide variety of network struc-
tures and parameters. Moreover, rDMP is computation-
ally less expensive than the pair approximation, espe-
cially for complex epidemic models with a large number
of states, using O(mk) instead of O(mk2) variables for
models with k states on networks with m edges.

Finally, rDMP is conceptually simple, allowing the
user to immediately write down the system of differ-
ential equations for a wide variety of epidemic models,
such as those with multiple stages of infection or immu-
nity [43, 44], or those with multiple interacting diseases
[45, 46]. We expect that given its simplicity and accuracy,
it will be an attractive option for future epidemiological

studies.
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