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We provide the first experimental evidence that adding links to a network’s structure can hinder
synchronization. Our experiments and theoretical analysis of networks of time-delayed optoelec-
tronic oscillators uncover the scenario of loss of identical synchronization upon connectivity modifi-
cations. This counterintuitive loss of synchronization can occur even when the network structure is
improved from a connectivity perspective. Utilizing a master stability function approach, we show
that a time delay in the coupling of nodes plays a crucial role in determining a network’s synchro-
nization properties, and that this effect is more prominent in directed networks than in undirected
networks, especially for large networks. Our results provide insight into the impact of structural
modifications in networks with equal coupling delays and open the path to design changes to the
network connectivity to sustain and control the performance of real-world networks.
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I. INTRODUCTION

Synchronization crucially affects the performance of
many real-world complex networks. Synchrony between
nodes is often desirable, such as in the transmission of in-
formation in sensor networks [1, 2]; however, it can also
be pathological as in the case of epileptic seizures caused
by synchronously firing neurons [3]. Hence, an impor-
tant open question with practical consequences is how
modifications of the network linking structure affect its
ability to synchronize [4]. Recent work has revealed that
enhancements to the network connectivity can lead to
synchronization failure. Indeed, in networks with com-
munity structure, adding links to enhance the commu-
nity can lead to a fragile synchronization [5, 6], and in
power-grid models adding new lines can cause a break
of synchrony [7–10]. Moreover, even structural improve-
ments such as decreasing the network diameter by intro-
ducing new links can lead to synchronization loss [11].
Despite recent progress, the problem of determining the
importance of individual links on dynamics has yet to be
resolved.

This problem is further complicated when considering
real networks, in which a time delay in the coupling is
often present due to the finite propagation time of sig-
nals. Examples of such networks include gene-regulatory
networks [12], neural networks [13], and power systems
engineering [14]. While it has long been understood that
the introduction of time delays can substantially affect
the dynamical properties of a network [15], the ubiquity
of time delay in physical networks and the complexity of
the behaviors that often result have led to much recent in-
terest in the synchronization of oscillator networks with

time-delayed coupling [16–20]. As we will show in our
real experimental networks, the presence of time delay in
the coupling plays a fundamental role in determining the
impact of adding a single link on a network’s synchro-
nization properties.

In this work we provide a first experimental demonstra-
tion of the counterintuitive phenomenon that adding a
link to the network structure can hinder synchronization.
Our experimental and theoretical analysis on optoelec-
tronic oscillators with time-delayed coupling reveal the
mechanism for synchronization loss: once extra connec-
tions are included, the spectrum of the network Laplacian
can undergo changes leading to the appearance of insta-
bilities in global synchronization. Such drastic changes
can occur even when the network structure is improved.
Additionally, by combining recent results on the master
stability function approach and the spectral theory of
networks, we demonstrate that a time delay in the cou-
pling of nodes plays a crucial role in determining a net-
work’s synchronization properties, and that this effect is
more prominent in directed networks than in undirected
networks.

II. EXPERIMENTAL SETUP

For concreteness in experimental demonstrations, we
consider three network configurations with four nodes
each, shown in Fig. 1. The coupling links of the initial
network are shown as solid black lines, and the added
link is shown as a dashed gray (red online) line, with the
arrows indicating the direction of the coupling.

The experiment consists of a network of four identical
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FIG. 1. (color online) Schematics of the directed four node
networks considered. (a)Directed Network 1. (b) Directed
Network 2. (c) Undirected Network. The addition of the
dashed gray (red online) link causes a decrease in the stability
of global synchronization. All links are weighted equally. The
self-feedback and coupling delay time τ and roundtrip gain β
are the same for each node.

optoelectronic, time-delayed feedback loops, which have
been studied previously [21–24]. An extensive review of
the dynamics and applications of such oscillators is given
in Ref. [25]. Each node consists of a laser diode whose
beam passes through a Mach-Zehnder modulator (MZM)
before being converted to an electrical signal by a pho-
todiode. This signal is one input to the digital signal
processing board (DSP). The incoming coupling signals
are optically combined and converted to an electrical sig-
nal by a second photodiode. This electrical signal serves
as the second input to the DSP, which then implements
the time delay, coupling, and digital filtering. The digital
filter is a two-pole bandpass filter with cutoff frequencies
ωH/2π = 100 Hz and ωL/2π = 2.5 kHz and sampling rate
24 kSamples/s. The DSP output is amplified to achieve
a total feedback strength β, which effectively controls the
complexity of the node dynamics. This amplified electri-
cal signal is then used to drive the MZM. A schematic of
the apparatus can be found in Ref. [22]. The equations
governing the dynamics of the optoelectronic network are
derived in Ref. [21] and are given by

u̇i(t) = Eui(t)− Fβ cos2(xi(t− τ) + φ0), (1)

xi(t) = G
(
ui(t)− ε

∑
j

lijuj(t)
)

(2)

where

E =

[
−(ωL + ωH) −ωL

ωH 0

]
, F =

[
ωL

0

]
, and G =

[
1 0

]
.

Here ui is a 2×1 vector describing the state of the digi-
tal filter at node i, and xi(t) is the observed variable, the
normalized voltage of the electrical input to the MZM.
The nodes are diffusively coupled by the Laplacian cou-
pling matrix L = (lij); the diagonal element lii ≥ 0 is the
sum of the incoming coupling strengths to node i, and
the off-diagonal element lij is the opposite of the cou-
pling strength from node j to node i. Diffusive coupling
ensures the existence of the globally synchronized state.
Since we consider only identical coupling strengths, we
have lii = nin, the number of incoming links to node i. In

this experiment, the time delay of the self-feedback and
coupling are set to be τ = 1.5 ms; however, simulation
shows that the stability of global synchronization is inde-
pendent of the delay times, as long as the self-feedback
and coupling delays are equal. The effect of changing
the coupling delay while keeping the self-feedback delay
constant is not investigated here but has been studied
previously [24]. We choose the phase bias φ0 = π/4 so
that for small feedback strength, the MZM is operated
in the linear regime. This ensures that for small β the
system displays nearly sinusoidal periodic dynamics. At
large β the MZM nonlinearity becomes important and
the system behaves chaotically. The dynamics of an in-
dividual, uncoupled oscillator in each of these regimes
is shown in the insets to Fig. 2. The global coupling
strength ε is chosen such that global synchronization is
stable for the initial network. The dynamics of an un-
coupled node can be modeled by setting ε = 0, since the
second term in Eq. (2) represents the diffusive coupling
scheme.

In order to distinguish synchronized states from desyn-
chronized states, we define the global synchronization er-
ror

θ(t) =
1

N(N − 1)

∑
i,j

|xi(t)− xj(t)|, (3)

where N is the total number of nodes. For globally
synchronized states θ ideally approaches zero, while for
desynchronized states θ is non-zero. In practice, due
to experimental mismatch and noise, real networks that
synchronize approach a synchronization floor that is
small but non-zero.

III. DIRECTED NETWORKS

We first consider the general case of directed net-
works. We demonstrate the destabilization of global syn-
chrony upon the addition of a new link with two different
classes of node dynamics, periodic (β = 1.35) and chaotic
(β = 4.5), shown in the insets of Fig. 2. Figure 2 shows
the simulated global synchronization error for both the
periodic and chaotic cases of the two network configura-
tions. The nodes start from random initial conditions.
The initial network coupling is turned on at t = 40 ms,
and synchronous dynamics are observed. At t = 120
ms, the new link is added, destabilizing the synchronized
state. Moreover, our results show that both synchro-
nization and desynchronization are not transient. Thus,
our simulations show that the globally synchronized state
can be destabilized by the addition of a single link to the
network.

We now test these predictions in a real experimental
network of optoelectronic oscillators. For each trial of
the experiment, the nodes are started from random ini-
tial conditions by recording the random electrical feed-
back at the input to the DSP board for 10 ms before
enabling feedback. Feedback without coupling is then
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FIG. 2. (color online) Simulated loss of synchrony upon the
addition of a link for the two networks shown. The new link
is added at t = 120 ms, indicated by the dashed line. The
synchronous dynamics are periodic (β = 1.35) for (a) and (c)
and chaotic (β = 4.5) for (b) and (d). The ε values used
for (a)-(d) are 0.85, 0.49, 0.90, and 0.53, respectively. Inset:
Dynamics of a single uncoupled node.

enabled for 90 ms in order for transients to die out. At
the end of this period, coupling is turned on. Since the
network structure of our apparatus cannot be changed
during an experiment, we first test the stability of global
synchrony on the initial network. Then starting from
different random initial conditions, we test the stability
with the new link added. Figures 3 and 4 show experi-
mental measurements for the periodic and chaotic cases
on Network 1 and Network 2, respectively. We find in all
cases that the experiment and simulation agree: global
synchronization is stable in the initial networks and un-
stable in the networks with the added link.
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FIG. 3. (color online) Experimental results for Direct Net-
work 1. In all cases, the nodes are initially uncoupled. The
coupling scheme depicted to the left is implemented at t=40
ms as indicated by the dashed line. For the periodic case,
ε = 0.85 and for the chaotic case ε = 0.49, which are the same
values used in simulation.
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FIG. 4. (color online) Experimental results for Direct Net-
work 2. In all cases, the nodes are initially uncoupled. The
coupling scheme depicted to the left is implemented at t=40
ms as indicated by the dashed line. For the periodic case,
ε = 0.90 and for the chaotic case ε = 0.53, which are the same
values used in simulation.

To investigate the transition from stability to instabil-
ity of the globally synchronized state we use the master
stability function (MSF) approach [26, 27] and its exten-
sion to time-delayed systems [19, 20]. Linearizing Eqs.
(1) and (2) about the globally synchronous state, we ob-
tain the variational equation

δu̇(t) = Eδu(t) + Fβ sin(2xs(t− τ) + 2φ0)

×G(1− εγk)δu(t− τ),
(4)

where the γk are the eigenvalues of the Laplacian cou-
pling matrix L and xs stands for the synchronized solu-
tion (either periodic or chaotic). The zero eigenvalue cor-
responds to perturbations parallel to the synchronization
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FIG. 5. (color online). Transition of global synchrony from
stable to unstable upon the addition of a link. (a),(b) MSF
and Laplacian eigenvalue spectra for Network 1. (c),(d) MSF
and Laplacian eigenvalue spectra for Network 2. The eigen-
values of the original network are represented by , and those
of the network with the link added are represented by . The
thick line denotes the zero contour of the MSF: inside global
synchrony is stable; outside it is unstable.

manifold, while non-zero eigenvalues correspond to per-
turbations transverse to the synchronization manifold.
For γk = 0, the sign of the largest Lyapunov exponent
(LLE) of Eq. (4) determines the dynamical properties
of the synchronized nodes: a negative, zero, or positive
LLE indicates fixed point, periodic, or chaotic dynam-
ics, respectively. Hence, we consider only non-zero γk
in order to determine the stability of global synchroniza-
tion. The MSF is the LLE of Eq. (4) as a function
of the complex number z; for a given network topology,
global synchronization is stable for values of the coupling
strength ε for which the MSF is negative for all z = εγk.
We note that while the unperturbed Laplacian matrix of
Network 2 is non-diagonalizable (and therefore has only
two non-zero eigenvalues), it has been shown that the
MSF formalism still determines the stability of global
synchronization [27].

Figure 5 shows the zero contour of the MSF for both
periodic (β = 1.35) and chaotic (β = 4.5) nodes. It turns
out that the zero contours (points where the LLE is zero)
are circles in the complex plane centered at z = 1 whose
radii generally decrease with increasing β. This zero
contour is critical for determining the stability [19, 20].
When all εγk are inside the circle, the LLE is negative
and global synchronization is stable. However, when an
eigenvalue moves outside as an effect of structural modifi-
cations, the LLE of the corresponding mode becomes pos-
itive and global synchronization is unstable. Therefore,
in this setting, the condition for stability of the consid-
ered network with time-delayed coupling is |1−εγk| < r0,

for all nonzero eigenvalues, where r0 is the radius of the
zero contour of the MSF, which depends on the dynam-
ical properties of the synchronized nodes [19, 20].

Figure 5 also shows all εγk of the initial and final net-
works. As before, we have chosen ε such that global
synchrony is stable in the initial network. Consequently,
the εγk of the unperturbed networks are inside the zero
contours. However, when improving the network con-
nectivity by adding a link, one or more of the εγk move
outside the contour, resulting in the destabilization of
global synchrony.

IV. UNDIRECTED NETWORKS

Undirected networks are a special case in which the
coupling is reciprocal. Because of this additional symme-
try, the spectrum and the eigenvectors of the Laplacian
are real. Therefore, the motion of the eigenvalues upon
the addition of extra links can occur only along the real
axis. Hence, in undirected networks, upon the addition
of a link we can in principle observe only two paths to
instability: A) the smallest γk can decrease across the
left boundary of the zero contour, or B) the largest γk
can increase across the right boundary of the zero con-
tour. While both mechanisms are a result of eigenvalues
leaving the stability circle, they correspond to different
physical mechanisms of desynchronization. The former
corresponds to the intuitive case in which the coupling
strength is too small to support synchronization of the
modified network; it has recently been shown that this is
impossible for undirected networks [11]. The latter case
B), however, is possible for undirected networks and cor-
responds to the case in which the coupling is too strong
to permit global synchrony in the modified network.

Consider the undirected network of time-delayed oscil-
lators depicted in Fig. 1(c), where the coupling links of
the initial network are shown as solid black lines, and the
added link is shown as a dotted (red online) line.

Results of simulating Equations (1) and (2) for this
network configuration are presented in Fig. 6. As before,
the nodes start from random initial conditions. The ini-
tial network coupling is turned on at t = 40 ms, and syn-
chronous dynamics are observed. At t = 120 ms, the new
link is added, destabilizing the synchronized state. Our
simulations predict the desynchronization of the network
upon the addition of the link for both periodic (β = 1.35)
and chaotic (β = 3.0) node dynamics. Typical uncoupled
node dynamics are shown in the inset of Fig. 6. The
values of ε were chosen such that the initial networks
synchronize.

We also test these predictions in a real experimen-
tal network of optoelectronic oscillators. We first test
the stability of global synchrony on the initial network.
Then, starting from different random initial conditions,
we test the stability with the new link added. Figure 7
shows experimental measurements for the periodic and
chaotic cases on the undirected network. We find that
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FIG. 6. (color online) Simulated loss of synchrony upon the
addition of a link for the undirected network shown. The new
link is added at t = 120 ms, indicated by the dashed line.
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and chaotic (β = 3.0) for (b). Inset: Dynamics of a single
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scheme depicted to the left is implemented at t=40 ms as
indicated by the dashed line. For the periodic case, ε = 0.55
and for the chaotic case ε = 0.50.

the experiment and simulation agree: Global synchro-
nization is stable in the initial network and unstable in
the network with the added link.

We now investigate the stability of the network us-
ing the MSF, calculated from Eq. (4) and presented in
Fig. 8. The addition of the undirected link causes the
largest eigenvalue to increase across the right boundary
of the zero contour. Thus, the network experiences loss
of global synchrony due to the coupling being too strong

Final

Initial

Final

Initial

Im
(ε
γ
)

Re(εγ) Re(εγ)

Periodic Chaotic 

a

0 1 2 30 1 2 3
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5 b

FIG. 8. (color online) MSF and Laplacian eigenvalue spectra
for the Undirected Network. (a) Periodic node dynamics (β =
1.35). (b) Chaotic node dynamics (β = 3.0). The eigenvalues
of the original network are represented by , and those of
the network with the link added are represented by . The
black line denotes the zero contour of the MSF: Inside global
synchrony is stable; outside it is unstable.

to permit synchronization of the modified network.

V. EFFECTS OF DIRECTIONALITY IN LARGE
NETWORKS

In the previous examples we considered rather small
networks. If the network is large it seems reasonable to
assume that the effect of adding a single link is compara-
bly small. This is true for undirected networks. Indeed,
for a single eigenvalue λ of the Laplacian L, and the cor-
responding family of eigenvalues λ(ε) of the perturbed
Laplacians Lε = L+ εδ we have that

λ(ε) = λ+ λ′(0)ε+O(ε2),

with

λ′(0) =
〈x, δy〉
〈x,y〉

where x and y are normalized left and right eigenvec-
tors of L corresponding to λ and 〈·, ·〉 is the Euclidean
inner product, see Ref. [11]. Now for undirected net-
works we have that y = x, and hence λ′(0) ≤ ε‖δ‖. So,
independent of the coupling topology, the slope of the
eigenvalue can be bound by the size of the perturbation.
In the case of a directed network however, this is not
true. More precisely, the case can occur where the left
and right eigenvectors x and y are almost orthogonal,
leading to a large slope of the eigenvalue.

To illustrate this essential difference between directed
and undirected networks consider the example network
from Fig. 9. In the undirected network obtained by ig-
noring the links’ directions in Fig. 9(a), the spectral gap
is λ2 = 1.4345. Increasing the weight on the bold (red)
link in Fig. 9(b) in both directions by one yields a slight
increase of about 8 × 10−4. On the other hand, the di-
rected network in Fig. 9(a) has a simple spectral gap
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FIG. 9. (color online) A network of 14 nodes. Adding the
link as indicated in b) decreases the spectral gap essentially.
For the underlying undirected network, increasing the weight
on the same link increases the spectral gap by 4 orders less.

λ2 = 0.8464 where adding a directed link as indicated
in Fig. 9(b) yields a drastic decrease of the spectral gap
by 0.5722 (at the same time the maximal eigenvalue in-
creases by 3 ·10−3). And indeed, the left and right eigen-
vectors of the Laplacian are almost orthogonal with a
degree of 89.7◦. For the sake of illustration we have cho-
sen an example with fourteen nodes. However, this same
mechanism can be used for much larger directed networks
in order to obtain a considerable decrease of the spectral
gap just by adding a simple link.

For a global nonlinear estimate on the behavior of the
eigenvalues under perturbations, the Bauer-Fike theorem
implies that for undirected networks the eigenvalue can-
not move much. That is, consider the spectral gap λ2
of the Laplacian L and let λ̃2 denote the spectral gap
of perturbed Laplacian L̃ = L + εδ. Next, recall that
the Laplacian L can be written in its spectral decompo-
sition L = SΛS−1. Then we obtain that |λ2 − λ̃2| ≤
κ(S)‖δ‖, where ‖ · ‖ is the induced Euclidean norm and
κ(S) = ‖S‖‖S−1‖ is the condition of the matrix S. For
undirected networks, we have ‖S‖ = ‖S−1‖ = 1. So the
change of the spectral gap can be bound by the size of
the perturbation, independently of the topology of the
network. In directed networks however, the topology can
play a major role in terms of the eigenvectors of L as the
matrix S can get close to noninvertible.

VI. DISCUSSION

For certain classes of coupling functions such as in
the Kuramoto model and the power-grid model (more
generally, for the classes studied in Refs. [27–29]) the
MSF is unbounded. That is, the stability condition is
εRe(γ2) > γc for some γc > 0, where γ2 is the Laplacian
spectral gap. Hence, scenario A) is the only one possi-
ble for synchronization loss: network modifications must
decrease the real part of the smallest eigenvalue in order

to destabilize the synchronous state. As noticed in [11],
under this stability condition there is a sharp distinc-
tion between undirected and directed networks. Because
in undirected networks it is not possible to decrease the
smallest eigenvalue by adding a link, this destabilization
scenario occurs exclusively in directed networks.

In systems with time-delayed coupling, the MSF is
bounded in every direction by the stability circle, so the
stability of synchronization is determined by the eigen-
value with the largest complex magnitude. This has dras-
tic consequences for both undirected and directed net-
works. The presence of time delay in the coupling creates
an instability that permits undirected networks to desta-
bilize under the addition of a link which increases the
largest eigenvalue, as observed in our experiments. The
general case of directed networks is significantly more
complicated by the time delay because the eigenvalues
can be complex. Hence, in addition to scenarios A) and
B) mentioned above, the eigenvalues can leave the stabil-
ity region by changing any combination of the real and
imaginary parts of the eigenvalues, as our experiments
have demonstrated. A major challenge is to predict
which network modification will lead to synchronization
loss for an arbitrary network. If we restrict to modifica-
tions with small weights, by using perturbation of eigen-
values [11] it is possible to determine all the links that will
lead to synchronization loss. For links with large weight,
tracking both the motion of eigenvalues and eigenvectors
is well known to be a difficult nonlinear problem. In gen-
eral, the addition of a few links can lead to large changes
in the network eigenvalues, even for large networks [28].

The networks considered here all have uniform cou-
pling delays. In some real-world networks, the coupling
delays are not equal for all links, which complicates and,
in some cases, inhibits synchronization, except for the
simplest case of periodic oscillators or fixed-point steady-
state solutions. In such cases, the effect of adding or
subtracting of links must be considered in the broader
context of how network inhomogeneity affects the syn-
chronization [30–34].

In conclusion, we have examined the loss of synchrony
upon the addition of a link in both undirected and di-
rected networks of four optoelectronic oscillators with
time-delayed couplings. We have found that the pres-
ence of time delay in the coupling plays a crucial role
in the synchronization behaviors of both types of net-
works. While our experiment is restricted to network of
4 nodes, our analysis is general and can be applied to
networks of arbitrary size. The destabilization scenario
is purely dynamical and directly related to the changes
in the network spectrum which cause the appearance of
unstable modes. We have discussed the synchronization
loss mechanisms in terms of the network structure, node
dynamics and coupling functions. These results shed
light on recent findings where synchronization loss was
observed as a consequence of connectivity improvements
[5–7, 10, 11]. Furthermore, they offer strategies to de-
sign network modifications that guarantee the network’s
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overall synchronization performance.
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