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While the wing kinematics of many flapping insects have been well characterized, understanding
the underlying sensory, neural, and physiological mechanisms that determine these kinematics is
still a challenge. Two main difficulties in understanding the physiological mechanisms arise from
the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the
intricate mechanics the insect wing-hinge, which is among the most complicated joints in the animal
kingdom. These difficulties call for the application of reduced-order approaches. Here, this strategy
is used to model the torques exerted by the wing-hinge along the wing-pitch axis of maneuvering
fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle.
Furthermore, we model the air flows using simplified quasi-static aerodynamics. Our findings suggest
that flies take advantage of the passive coupling between aerodynamics and the damped torsional
spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The
damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll
correction maneuvers through modulation of the spring damping and elastic coefficients. These
results, in conjunction with the previous literature, indicate flies can accurately control their wing-
pitch kinematics on a sub-wing-beat time-scale by modulating all three effective spring parameters
on longer time-scales.

I. INTRODUCTION

Insects were the first animals on Earth to evolve flight
about 350 million years ago and can perform a wide ar-
ray of extreme aerial maneuvers with exquisite accuracy
and robustness [1, 2]. The mechanisms of insect flight are
multi-layered, spanning a wide range of length and time
scales: genetics and cellular mechanisms, sensory mecha-
nisms, neural networks, muscular morphology and actu-
ation, wing kinematics and aerodynamics, all combine to
elicit a complex and graceful animal behavior. Develop-
ing an understanding of flapping flight at each of these
layers presents unique challenges. At the neuro-muscular
level for example, efforts are being made to determine
how neural circuits are configured to provide precise ac-
tivation of wing muscles with fast feedback at the single
wing-stroke timescale [3–10].
The level of flight mechanics, which is the focus of this

work, requires developing an understanding of how the
wing kinematics and aerodynamic mechanisms enable in-
sects to generate the forces and torques required to fly,
maneuver, and mitigate the aerodynamic instabilities in-
herent to their flapping [11–22]. However, understand-
ing the underlying mechanisms that generate these wing
kinematics remains a challenge for two main reasons.
First, the interaction of the wing with its own unsteady
flow field is highly complex [12, 15, 16, 23–28], similarly to
other fluid-structure problems [29–32]. Second, the wing-
hinge of insects is among the most complicated joints in
the animal kingdom [33, 34]. In flies, for example, it
consists of multiple steering muscles, tendons and both
flexible and rigid parts. These elements intertwine into a
transmission mechanism that both redirects power from
the main flight muscles to the wing and allows fine-tuned
control over the wing motion [5, 7, 34–36]. Although the
morphology of the wing hinge is known and the neural

activation patterns of several steering muscles have been
measured [4–7], the dynamics of the wing hinge is still
unclear, both due to its mechanical complexity as well as
the intricate neural activity of each of its muscles. Only
recently it has become possible to visualize muscles of
the wing hinge in action [37].

Remarkably, this seemingly intractable behavior can
often be summarized by a reduced-order approach in
which the wing-hinge and the fluid-structure interactions
are represented by simplified models. This strategy has
been used very successfully to estimate the aerodynamic
forces arising from complex flows using quasi-static mod-
els [12, 14, 38] and describe some basic aspects of an-
imal locomotion control with linear control theory [19–
22, 39–48]. This reduced order approach is useful because
it provides a framework for characterizing the complex
behaviors and a well defined functional target that can
guide the process of determining the underlying mecha-
nism generating the behavior.

Here, we take such an approach in explaining the kine-
matics of the wing-pitch angle of maneuvering fruit flies.
This degree-of-freedom describes the rotation of a wing
about its leading edge. Hence, the wing-pitch angle di-
rectly determines the wing’s angle-of-attack, which is, to-
gether with the wing speed, a key parameter governing
the magnitude and direction of the aerodynamic force
generated by the wing [14].

Several pioneering studies have suggested that wing-
pitch kinematics are passively determined by a balance
between aerodynamic and elastic torques, as well as the
inertia of the moving wing [49–56]. Subsequently, a num-
ber of studies have used torsional-spring models to de-
scribe wing-pitch kinematics in mechanical [57–64] and
computational [63, 65–72] models of flapping wings, as
well as to describe wing-pitch kinematics of free-flying
fruit flies [73]. For example, the latter study showed that
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the torques produced by the wing hinge to control wing-
pitch can be effectively modeled as those arising from a
damped torsional spring. Furthermore, the study showed
that simple modification of the spring rest angle gen-
erates wing-pitch asymmetries that result in body yaw
turns.
Here, we measure the body and wing kinematics of

fruit files during roll correction maneuvers and model
their wing-hinge as a torsional spring with three param-
eters: elastic coefficient, damping coefficient, and pitch
rest-angle. We find that the fly’s wing-pitch kinemat-
ics are accurately explained by an interplay between the
spring torque and aerodynamic torque. Moreover, the
torsional-spring model explains the measured, sub-wing-
beat modulation of the wing-pitch angle during roll ma-
neuvers as resulting from an increase in both the spring
damping and elastic coefficient that occurs on a slower,
single wing-beat timescale. Thus, in addition to modula-
tion of the rest angle reported in prior work, we find that
flies can modulate all three spring parameters to control
wing pitch. These results also give rise to a number of
open questions regarding the physiological origin of the
three spring parameters, their mode of actuation, and
their dependence on the wing stroke angle.

II. EXPERIMENTAL METHODS

We mechanically perturbed fruit flies (Drosophila

melanogaster) in mid-air, filmed their correction maneu-
vers using high-speed video, and measured their body
and wing kinematics. To exert mid-air roll perturbations
we glued a 1.5− 2mm long magnetic carbon-steel pin to
the back of each fly, on the dorsal surface of its thorax,
and applied short magnetic field pulses that rolled the
flies (Fig. 1a). The pin did not interfere with the motion
of the wings and added 20% to the fly’s mass, which did
not alter its flight as compared with control experiments
with untreated flies. The change in the body center of
mass position due to the pin was small, about 3.5% of
the body length. Further experimental details, includ-
ing the small effect of the pin on the body inertia ten-
sor, are discussed in [21]. In each experiment ∼15 pre-
pared flies were released in a transparent cubic chamber
of side length 13cm, equipped with two Helmholtz coils
that are used to generate a vertical magnetic field [19, 21].
Three synchronized fast cameras (Phantom v7.1, Vision
Research) were focused on a cubic sub-volume at the cen-
ter of the chamber. The cameras were orthogonal to each
other and operated at 8000framess−1 and 512×512 pixel
resolution.
Recording was initiated by an optical trigger detect-

ing when a fly enters the filming volume and triggering
the cameras as well as a 5ms (1 wing-beat) vertical mag-
netic pulse generated by the two Helmholtz coils. Con-
trolling the voltage across the coils enables us to vary
the magnetic field strength up to ∼10−2Tesla, which is
about 1000 times stronger than the Earth’s magnetic
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FIG. 1. (Color online) Roll correction maneuver following
a mid-air impulsive perturbation. (a) Superimposed images
from 3 orthogonal cameras of the fly during the maneuver.
The 3D-rendered fly represents the measured kinematics. The
perturbation location (red (dark gray) line) is shown on the
fly’s center-of-mass trajectory in green (light gray). In the
second snapshot the fly is deflected 45◦ to its right with re-
spect to its pre-perturbation roll angle. (b) Definition of body
Euler angles with respect to the lab frame. x̂b is the long
body axis. (c) Definition of the body frame (x̂b, ŷb, ẑb) and
wing Euler angles, measured in the body frame with respect
to the stroke plane shown in shaded blue (dark gray). The
wing pitch angle ψ describes the rotation of the wing about
its vein, or leading edge, vector is shown for the right wing
by a curved arrow. A pitch angle of ψ=0◦ implies that the
wing is parallel to the wing stroke plane with the leading edge
ahead of the wing surface. (d) Body Euler angles versus time.
Perturbation was applied between 0 − 5ms in yellow (black
vertical lines). White and gray stripes represent forward and
back strokes, respectively. Roll was measured manually at the
middle of each half-stroke and smoothed by a spline (dashed
black line). Measurement errors are smaller than the symbols
size. The snapshots above the plot show top side-views of
9 consecutive wing-strokes of the maneuver, taken when the
wings are at their forward-most position. The perturbation
wing-beat is numbered 0.
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field. Since fruit flies fly with their body axis pitched up
at ∼45◦ and since the moment of inertia along their body
axis is smaller than along the other axes, the largest de-
flection is generated along the body roll axis, with smaller
perturbations along pitch and yaw (Fig. 1) [21].
We analyzed 10 flight sequences from 9 individual flies

that were subject to roll perturbations of 35−70◦. This
range of perturbation angles was achieved by setting the
amplitude of the current pulse through the Helmholtz
coils during each experiment, such that increasing the
current resulted in larger perturbation torque. In each
maneuver, the fly performed a steady flight before and
after the correction maneuver. Using a custom image
analysis algorithm, we extracted a 3D kinematic descrip-
tion of the fly (Fig. 1a) consisting of its body position
and orientation (defined in Fig. 1b) as well as the Euler
angles – wing-stroke angle φ, wing elevation angle θ and
wing-pitch angle ψ – for both wings (defined in Fig. 1c).
Importantly, the wing Euler angles are define with re-
spect to the stroke place in the body frame of reference,
which is the relevant frame of reference for discussing
wing actuation. While in some insects, such as locusts,
wing deformation is considerable and induces significant
aerodynamic effects [74], in D. melanogaster wing flex-
ibility is small and the aerodynamic forces are well de-
scribed by a flat rigid wing [14, 55]. Our measurements of
D. melanogaster indicate that wing bending is negligible
during most of the wing stroke and reaches no more than
5◦ during the wing’s rapid (< 0.3ms) rotation between
the down-stroke and up-stroke. Hence, in analyzing the
wing kinematics we assume a flat rigid wing defined by its
vein and chord vectors. Our motion tracking algorithm
is based on using the movies from the three cameras to
reconstruct a 3D hull of the fly for each frame, segment-
ing the hull into a body and two wings, and extracting
the position and orientation of each part. The algorithm
is described in detail in [21, 75].

III. RESULTS

A. Wing-pitch angle is modulated during roll

maneuvers

Recently it has been shown that the main mechanism
flies use to correct for roll perturbations is an asymmetric
change of the stroke amplitude between both wings [21].
Here, we show that in addition to actuating the stroke
angles, flies also modulate their wing-pitch angles and
that these two degrees of freedom are strongly coupled.
Hence, before discussing the role of wing-pitch and the
way it is modulated, we will briefly review the kinematics
of the wing-stroke angle during roll correction maneuvers.
A typical roll correction maneuver, in which a fly re-

covered from a 45◦ right roll perturbation, is shown in
Fig. 1a. The body Euler angles, roll (ρ), yaw (φb), and
pitch (θb), are plotted in Fig. 1d. Prior to the pertur-
bation the fly was flying forward and slightly sideways

with a stable roll angle of 20◦. Following the 5ms mag-
netic torque (yellow strip) the roll angle increased to a
maximum of 65◦ at t=13ms after the onset of the pertur-
bation. The fly actively corrected and by t=30ms rolled
back to ρ=0◦, maintaining forward flight.

To correct for the perturbation the fly flapped asym-
metrically for 3−4 wing-beats such that the right wing
increased its stroke amplitude and the left wing decreased
its stroke amplitude (the wing stroke angle φ is defined
in Fig 1c). As soon as 3ms after the onset of the pertur-
bation an amplitude asymmetry of 3◦ was observed and
by 5ms the asymmetry increased to 11◦. The asymme-
try is evident in the top-view snapshots above Fig. 1d,
taken each time the wings reach their forward-most po-
sition along the stroke. The wing stroke angles and their
amplitude for both wings are plotted as a function of
time in Fig. 2a,b. The extrema of the stroke amplitudes
were observed around t=13ms, when the right wing am-
plitude (red) increased by 27◦ at its peak and the left
wing amplitude (blue) decreased by 18◦ at its minimum.
The stoke amplitude asymmetry is the main mechanism
flies use to generate roll corrective torque and it is well
described by the output of a proportional-integral (PI)
controller model, as has been recently reported in [21].
After t=23ms the stroke amplitude asymmetry was re-
versed and the left wing stroke amplitude was larger
than the right stroke amplitude, corresponding to a roll
counter-torque that brakes the body roll velocity, allow-
ing for faster corrective torque and, hence, faster cor-
rection time. Similar counter torques are typical also
in body-pitch correction maneuvers following impulsive
perturbations [22].

The measured wing kinematics show that in addition
to the wing-stroke angle, the wing-pitch and elevation
angles undergo substantial changes as well (Figs. 2c,d).
Here, we take advantage of previously developed reduced
order models for the pitch torques to determine how in-
sects are changing the wing pitch angles ψ during a roll
correction maneuver. This angle describes the rotation of
each wing about its leading edge, or wing vein (Fig. 2c)
and determines the wing angle of attack, a crucial aero-
dynamic parameter for generating aerodynamic forces.

We define ψ=0◦ when the wing surface is parallel to
the stroke plane with the leading edge closer to the fly’s
head. The direction in which ψ increases is indicated by
a curved arrow in Fig. 1c, such that a wing with ψ=90◦ is
vertical to the stroke plane with the leading edge above
the wing surface. To highlight changes in the spatial
dependence of ψ during each stroke of the maneuver, we
make a Lissajous-Bowditch plot of ψ as a function of
the wing-stroke angle, φ, for each wing-beat separately
(Fig. 2e). Each of the six plots in Fig. 2e shows a cycle
in the (φ, ψ) plane corresponding to a single wing-beat
during the maneuver. Each wing-beat starts when the
wings are at their backward-most position, corresponding
to a local maximum of φ (marked by black squares), and
the motion in the (φ, ψ) plane is clockwise. The inset on
each plot is a top view snapshot of the fly taken when φ
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FIG. 2. (Color online) Wing kinematics. (a) The stroke angle φ for both wings as a function of time in ms. Throughout the
entire figure, red (light gray) indicates the right wing and blue (dark gray) indicates the left wing data The magnetic pulse
perturbation is indicated by a yellow strip between t=0 − 5ms. White and gray stripes indicate forward and back stroke,
respectively. (b) The peak-to-peak amplitude of the stroke angle Φ for each half-stroke. (c) The wing pitch angles ψ. (d)
Wing elevation angles θ. (e) The wing pitch angle ψ as a function of the stroke angle φ for both wings, plotted separately
for six wing-beats during the roll correction maneuvers. The data in each plot starts when the wings are at their back most
position (black squares with red/blue (light/dark gray) outline), and time propagates clockwise as shown by the curved arrow
on the left-most plot. Inset images show top-view snapshots of the fly taken when the wings are in their forward-most position
(minimum φ) during each wing-beat. The wing-beat numbering is the same as in Fig. 1.

obtain their local minimum at the forward-most position
of each wing-beat, same as in Fig. 1d.

The first wing-beat in Fig. 2e (labeled 0) started before
the onset of the perturbation pulse and represents a typ-
ical motion in the (φ, ψ) plane. Both wings flapped sym-
metrically, starting at the back with φ≈180◦ and ψ≈ 90◦,
then ψ rotated rapidly forward as the wings started their
forward stroke. During the forward stroke, which corre-
sponds to the bottom part of the loop, φ decreased for
both wings while ψ was maintained at ≈30◦, resulting
in an angle-of-attack of similar value. As the wings ap-
proached their forward-most position, namely the local
minimum of φ around 25◦, the wings rotated backwards
about their leading edge increasing ψ to 90◦. When the
wings started to move backwards (φ increasing, top part
of loop) they also rotated rapidly in pitch, further in-
creasing ψ almost to 180◦, where the wing surfaces are
almost horizontal. As the back-stroke continued, ψ de-
creased to ≈130◦, corresponding to an angle-of-attack

of 50◦ flapping backwards. This overshoot of the wing
towards ψ≈180◦ that looks like a “hump” in the ψ(φ)
curve is highly reproducible in non-maneuvering flight of
D. melanogaster. At the end of the back-stroke, ψ started
a rapid decrease back to 90◦ as part of the back-flip of
the wing before the next stroke.

As the correction maneuver progressed, the top and
bottom limits of φ values on the ψ(φ) plots show the
increase of the right wing stroke amplitude and the de-
crease of the left wing stroke amplitude, as in Fig. 2b.
Remarkably, along with the φ asymmetry, we observe a
strong asymmetry in the pitch angle ψ between the two
wings: while the left wing kept the characteristic non-
maneuvering shape, the “hump” structure of the right
wing almost disappeared. This effect increased gradually
with the increase of stroke amplitude (wing-beats 1− 3)
and correspondingly decreased until the end of the ma-
neuver, where both wings flapped symmetrically again
(wing-beats 4− 5).
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FIG. 3. (Color online) Lissajous-Bowditch plots of ψ as a
function of φ (a) before and (b) during each of the 10 mea-
sured correction maneuvers. Each loop on the (φ, ψ) plane
corresponds to one wing-beat cycle of one wing. Red (light
gray) curves correspond the the “bottom” wing in each ma-
neuver, which is the wing that increases its stroke amplitude.
Blue (dark gray) curves correspond to the “top” wing, which
reduces its stroke amplitude. A square symbol on each curve
indicates the point of maximum ψ in the front half stroke.
A circle on each curve indicates the point of minimum (font-
most) φ. (a) Before the maneuver the curves for the “top”
and “bottom” wings are indistinguishable (p-values indicated
on the plot). (b) During the maneuver the maximum ψ
for the “top” wing is 169◦ ± 10◦ (mean±standard deviation)
and its value for the “bottom” wing is 144◦ ± 8◦ (p-value of
8.5×10−6). The front-most φ values during the maneuver are
40◦±9◦ for the “top” wing and 9◦±9◦ for the “bottom” wing,
corresponding to an increase of the stroke amplitude (p-value
of 5.2×10−7).

These changes in ψ are consistent throughout our data
set, as shown in Fig. 3, which plots the ψ(φ) curves
before the maneuver and during the third wing-beat of
each maneuver, when the fly exerts maximum corrective
torque. To quantify the differences between the curves
we identify two points on each curve: maximum ψ in
the front half stroke (squares) and minimum φ (circles),
corresponding to the front most stroke angle. The “bot-
tom” wing in each maneuver, which increases its stroke
amplitude, is shown in red and the “top” wing is shown
in blue. Before the onset of the correction maneuver the
curves for the “top” and “bottom” wings are indistin-
guishable. During the maneuver, however, the curves for
the “top” and “bottom” wings are significantly differ-
ent. The maximum ψ for the “top” wing is 169◦ ± 10◦

(mean±standard deviation) and its value for the “bot-
tom” wing is 144◦±8◦ (p-value of 8.5×10−6). The front-
most φ values during the maneuver are 40◦ ± 9◦ for the
“top” wing, corresponding to a decrease of the stroke
amplitude, and 9◦ ± 9◦ for the “bottom” wing, corre-
sponding to an increase of the stroke amplitude (p-value
of 5.2×10−7) [21]. These marked changes in ψ raise two
interesting questions. First, do these changes substan-
tially alter the corrective aerodynamic torques? Second,
is the fly actively controlling the pitch angle, or is ψ being
passively determined by the aerodynamic flows?

B. Wing-pitch modulations contribute to roll

corrective torque

To quantify the effect of the ψ asymmetry on the roll cor-
rection maneuver, we calculated the total aerodynamic
torque exerted by both wings during the wing-beat with
the largest φ and ψ asymmetry – wing-beat 3 in Figs. 1d
and 2e. This wing-beat also generated the peak roll cor-
rective acceleration (Fig. 1d, t=13ms) and, hence, maxi-
mum corrective torque. To calculate aerodynamic forces
from the measured body and wing kinematics, we used
a quasi-steady-state aerodynamic model that was cali-
brated for fruit-fly wing shape and kinematics using a
scaled-up mechanical model [14]. Aerodynamic forces
were calculated using the wing orientation and velocity
as measured in the lab frame of reference. The wing-tip
velocity included the wing velocity with respect to the
fly center-of-mass, the fly center-of-mass velocity with
respect to the lab, and the fly’s body angular veloc-
ity with respect to the lab. We verified that the cal-
culated torques are similar for other quasi-steady-state
force models [38, 59, 76] as well. The torques were cal-
culated by assuming the aerodynamic force acts at the
pressure center of each wing, located at 70% of the wing
span from the wing base, and taking the torque arm with
respect to the body center of mass. The components of
the torque along the three body axes are shown in Fig. 4
for two cases: in the first we used the full wing and body
kinematics of wing-beat no. 3 (Fig. 4, black lines) and
in the second we used the same kinematics except ψ(t)
that was taken from the non-maneuvering wing-beat no.
0 (dashed red lines).

Although changing ψ(t) from the maneuvering to the
non-maneuvering kinematics had an effect on the aero-
dynamic torques, tracing the corresponding changes in
the body roll dynamics requires solving the Euler equa-
tion of motion for the body. Namely, since 3D rotations
do not commute and since the body has nonzero angular
velocity, the effects of the plotted torques on roll is non-
intuitive. For example, it has been shown that a torque
along the body z-axis plays an important part in roll cor-
rection and that flies apply torque along this axis partic-
ularly during the back-strokes of these maneuvers [21].
Numerical integration of the Euler equations of motion
for the two cases in Fig. 4 shows that while the maneuver-
ing wing stroke reduced roll velocity by ∼3600◦s−1, the
same kinematics with the non-maneuvering ψ reduced
roll velocity by ∼2350◦s−1 corresponding to a 35% loss
in corrective roll braking. This change is attributed to
differences in the torque along the body x or roll axis
(Fig. 5a), in the beginning of the wing stroke, as well as
to the larger differences in the torque component along
the body z axis (Fig. 5c) seen after the middle of the
wing-beat, where the “hump” structure is observed. In
addition, the mixed kinematics have larger peaks for the
torque along the body y axis (Fig. 5b), which roughly
corresponds to larger oscillations in body pitch. Per-
forming a similar analysis on all 10 movies in our data
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FIG. 4. (Color online) The three components of the aero-
dynamic torque generated by the two wings during wingbeat
no. 3 of the roll maneuver plotted as a function of time in
ms (solid black lines). (a-c) The torque components shown
are along the (x, y, z) axes of the body frame of reference (de-
fined in Fig. 1b) . The torques were calculated based on the
full wing and body kinematics and using a quasi-steady-state
aerodynamic force model. Plotted in dashed red (light gray)
lines are the aerodynamic torque generated by the same wing-
beat kinematics but with ψ(t) taken from a non-maneuvering
wing-beat (no. 0). Solving the Euler equation of motion for
the body using the torque calculated for these two cases and
the experimental initial conditions showed that the measured
kinematics reduced the body roll velocity from 2710◦s−1 to
−870◦s−1 (a slowdown of 3580◦s−1), while the “mixed” kine-
matics reduces the body roll velocity to 360◦s−1 (a slowdown
of 2350◦s−1)

set showed that changing ψ to the non-maneuvering kine-
matics resulted in 13% to 65% loss in corrective roll brak-
ing, with an average of 37%±17% (mean±standard de-
viation). These marked differences highlight the impor-
tance of the modulations in wing pitch angle imposed by
the fly during roll correction.

C. An equation of motion for wing-pitch based on

a torsional spring model and quasi-steady

aerodynamics

To investigate whether ψ is actively controlled or pas-
sively determined by coupling to the flow, we model the
wing-hinge as a torsional spring along the wing-pitch axis
as shown in Fig. 5 [73]. The torque τs generated by the
spring is given by:

τs(t) = −k
(

ψ(t)− ψ0

)

− cψ̇(t), (1)

where k is an elastic coefficient, ψ0 is the rest angle of
the spring, and c is a damping coefficient. The wing is
assumed to be a rigid plate, which is a good approxima-
tion for D. melanogaster wings [14, 55]. The effect of
the coupling between the elastic coefficient k and aero-
dynamic forces on the pitch angle in steady state (ψ̇=0)
is illustrated in Fig. 5c,d. For simplicity, we consider a
wing hinge with a rest angle ψ0=90◦ corresponding to a
wing with a vertical orientation.
When the wing is moving (Fig. 5c), its airspeed exerts

an aerodynamic force that is approximately perpendic-
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FIG. 5. (Color online) Torsional spring model for wing-pitch.
(a, b) A fly scheme with the spring torque indicated by red
arrows. The wing frame of reference is shown in (b). (c,
d) The operation of the spring (black spiral) on a moving
wing (thick black line). For wing with low air speed (c) Red
(light gray) line indicates the aerodynamic force that twists

the torsional spring such that in steady state (when ψ̇=0)
the spring torque and aerodynamic torques are balanced. (d)
When the wing is moving faster, the aerodynamic force is
stronger and so is the torque it generates about the wing
base. In steady state the torsional spring is twisted further
than in (c) such that the two torques balance at a shallower
wing pitch angle.

ular to the wing surface [14]. The aerodynamic force
exerts a torque about the wing hinge, rotating the wing
such that the spring exerts an opposite torque. In steady
state, the pitch angle is deflected from its rest value such
that the two torques balance each other. The gravita-
tional torque on the wing is negligible compared with the
aerodynamic toque, since the wing weighs ∼0.3% of the
fly’s weight, while the aerodynamic force is comparable to
the fly’s weight. When the wing’s airspeed is increased
as in Fig. 5d, the aerodynamic and spring torques are
larger resulting in a greater steady-state pitch deflection
with respect to the vertical.
Modulating the wing-pitch rest angle ψ0 induces an

asymmetric change in the angle of attack between the
front and back half-strokes, which has been associated
with body-yaw maneuvers [73]. The effect of the spring
damping coefficient on ψ kinematics is manifested by a
counter-torque −cψ̇ proportional to the wing-pitch ve-
locity that damps its motion. Hence, the effect of this
damping torque is expected to be most prominent when
ψ̇ is large, namely when the wing is flipping either at the
front or at the back of the wing stroke. Conversely, dur-
ing the middle parts of each half stroke, when the wing
is not rotating much along its pitch axis, the effect of
damping is expected to be small.
We derive an equation of motion for the pitch angle ψ
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of a single wing described as a thin elliptical plate with
typical fruit-fly paramters: major axis equal to the wing
span R=2.1mm, minor axis equal to the chord length
a=0.7mm, thickness b=a/50, and mass m=0.03mg. We
work in the wing frame of reference (ê1, ê2, ê3) as defined
in Fig. 5, such that the pitch rotation axis is ê1. The wing
moment of inertia tensor with respect to rotation about
the wing-hinge and assuming a thin wing (b≪ a,R) is:

I =





I11 I12 0
I21 I22 0
0 0 I33



 =
3m

10





a2 5
6
aR 0

5
6
aR R2 0
0 0 a2+R2





(2)
The off-diagonal terms arise from considering rotations
about the wing hinge, which is offset with respect to the
wing center of mass.
Due to the flapping motion, the wing frame of reference

rotates with respect to the body frame of reference. In
addition, the body itself generally rotates in the lab frame
of reference during the roll correction maneuver, which
generates fictitious torques in the wing frame of refer-
ence. The two coordinate transformations from the lab
to the body frame and from the body to the wing frame
must, therefore, be considered in deriving the equation
of motion for ψ. We define Ω to be the wing angular ve-
locity vector in the wing frame of reference, such that Ω
includes both the body and wing angular velocities (see
Appendix A). The equation of motion is a balance of an-
gular momentum L=IΩ in a rotating frame of reference:

(

dL

dt

)

lab

=

(

dL

dt

)

wing

+Ω× L = τtotal, (3)

in which the total torque is the sum of aerodynamic and
spring torques:

τtotal = τaero + τs. (4)

The aerodynamic torque τaero is calculated from the
wing and body kinematics as described above, the spring
torque τs is given by Eq. 1. Substituting L=IΩ into
Eq. 3 and using the thin wing approximation so that
I33=I11+I22 we find:

I11
(

Ω̇1 +Ω2Ω3

)

+ I12
(

Ω̇2 − Ω1Ω3

)

= τtotal,1 (5)

similar to [59], although here both wing and body frames
of references are rotating. Hence, to obtain an equation
of motion for ψ, we need to obtain an explicit expression
for ψ̈. The only place where ψ̈ appears is in Ω̇1. We
express Ω as a sum of the wing angular velocity in the
wing frame ωw,w and the body angular velocity in the
wing frame ωb,w, namely: Ω=ωw,w+ωb,w, with the wing
and body parts given by [77]:

ωw,w =





ψ̇ + φ̇ sin θ

φ̇ cos θ sinψ − θ̇ cosψ

φ̇ cos θ cosψ + θ̇ sinψ



 . (6)

ωb,b =





ρ̇+ φ̇b sin θ

φ̇b cos θb sin ρ− θ̇b cos ρ

φ̇b cos θb cos ρ+ θ̇b sin ρ



 (7)

ωb,w = Tb→w · ωb,b (8)

The vector ωb,b is the body angular velocity in the body
frame of reference and the rotation matrix Tb→w de-
scribes the transformation between the body and wing
frames of references (see Appendix A). Note that since θ
and θb are defined with an opposite sign with respect to
[77] (see Fig. 1c), their sign in Eqs. 6 and 8 is reversed
accordingly. The equation of motion (5) becomes:

ψ̈ =
τtotal,1
I11

− φ̈ sin θ − φ̇θ̇ cos θ − ω̇b,w,1 (9)

− Ω2Ω3 −
I12
I11

(

ω̇w,w,2 + ω̇b,w,2 − Ω1Ω3

)

.

The three terms ω̇b,w,1, ω̇b,w,2 and ω̇2,w,1 appear in Ap-
pendix A in full form.
Given the torsional spring parameters (k, c, ψ0), the

body orientation (φb(t), θb(t), ρ(t)), body center of mass
velocity (ẋ(t), ẏ(t), ż(t)), wing kinematics (φ(t), θ(t)),

and an initial condition for (ψ, ψ̇), we solve the equa-
tion of motion for ψ(t) using Matlab’s ordinary differen-
tial equation solver. The body center of mass velocity
is used in determining the wing-tip velocity in the lab
frame of reference, which is then used to calculate the
aerodynamic force. To use experimentally measured data
and their time derivatives, we smoothed the data using
splines, keeping the smoothing residuals comparable to
the measurement accuracy of each kinematic variable.

D. Determining whether wing-pitch modulation is

active or passive

We used the above model to find the spring parameters
(k, c, ψ0) that best fit the measured ψ kinematics. For
each wing, the fit was performed one wing-beat at a time
to find whether the spring parameters accurately describe
the wing pitch kinematics and whether the spring pa-
rameters change during the correction maneuver. The
fitting was achieved by searching the 3D spring parame-
ters space for a triplet (k, c, ψ0) that minimizes the root-
mean-squared error (RMSE) of the calculated ψ with
respect to the measured one. The minimization was
performed using two methods. In the first method, we
scanned a dense 3D grid in parameter space, and for each
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FIG. 6. (Color online) Calculated wing-pitch kinematics from
the torsional-spring model plotted in the (φ, ψ) plane (solid
black lines) along with the smoothed measured kinematics of
the left and right wings (circles). Fit results for for a wing-
beat before the correction maneuver (no. 0) are shown in (a)
for the left wing and in (b) for the right wing. Similarly, fit
results for a a maneuvering wing-beat (no. 3) are plotted in
(c) for the left wing and in (d) for the right wing. Each plot
(a-d) includes also the values of the fitted spring parameters.
The mean RMS error values for the fits in (a-d) were: 5.7◦,
5.2◦, 6.2◦ and 6.1◦, respectively. The torsional spring model
captures the salient features of the measured ψ kinematics.
The dashed gray curves in (c) and (d) correspond the the
calculated ψ kinematics resulting from the wing and body
kinematics of the maneuvering wing-beat combined with the
fitted spring for the non-maneuvering wing-beat in (a) and
(b), respectively.

point solved the differential equation for ψ and calcu-
lated its RMSE. We then verified that the error landscape
is smooth with a single global minimum and picked the
spring parameters corresponding to the minimum error.
In the second method, we used Matlab’s nonlinear trust-
region-reflective least-squares optimization algorithm to
find the minimum, such that each step of the algorithm
entailed solving the differential equation for ψ. Both
methods gave quantitatively equivalent results that were
within the experimentally determined uncertainty for ψ.

For each fitted spring we estimated the fit confidence
intervals (CI) for each of the three fitted parameters. For
example, to estimate the CI for k we calculated ψ(t) aris-
ing from a spring with (k + δk, c, ψ0). We then search
for the maximum positive δk such that the calculated ψ
kinematics deviate by less than 4◦ from the measured val-
ues during the entire stroke. This threshold corresponds
to the uncertainty of our wing-pitch angle measurement.
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FIG. 7. (Color online) The calculated torque exerted by the
spring during the same wing-beats shown in Fig. 6. The
torques were calculated using Eq.1 with the fitted spring pa-
rameters and the measured wing kinematics. The total spring
torque τs is plotted in dashed thick green (light gray) lines,
the elastic torque term −k(ψ(t)−ψ0) is plotted in black, and

the damping torque term −cψ̇ is plotted in red (darker gray).
The wing-beats shown are a non-maneuvering wing-beat for
the left (a) and right (b) wing, as well as a manuevering wing-
beat for the left (c) and right (d) wing. Black arrows indicate
a time when the torque in (d) is more negative than in (a-c)
as a result of the damping term after the front wing-flip.

The lower CI for k was calculated similarly by consider-
ing a negative δk. The CI values for the other two spring
parameters were calculated using the same method.
To illustrate the types of changes that the spring pa-

rameters produce in the ψ(t) curves, we show the fit re-
sults for ψ(t) for a non-maneuvering wing-beat and a
maneuvering one in Fig. 6. The resulting wing-pitch an-
gles are shown in the (φ, ψ) plane (solid lines) along with
the measured ψ (symbols). We find that the fitted tor-
sional spring model reproduced the salient features for
all four measured ψ kinematics with mean fitting error
of 5.8◦. For example, the model accurately captured the
“hump” in the ψ(φ) curve seen after the front wing-flip
in Fig. 6a,b,c as well as the “hump” absence in the right
wing stroke during the maneuvering wing-beat shown in
Fig. 6d.
As expected, the fitted spring parameters for both

wings before the maneuver were very similar and within
each other’s CI: k=47pN×m/deg, c=27fN×m/(deg s−1),
and ψ0=0◦ ± 2.3◦. During the correction we observe
changes in all three spring parameters. However, not
all these changes were significant. For example, we find
that for the right wing, which increased it’s stroke am-
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FIG. 8. (Color online) Intuition for the individual effect
of each spring parameter on the ψ(φ) curve. We calcu-
lated the wing pitch kinematics of the non-maneuvering wing-
beat in Fig. 6a and as a reference used the spring with
k=50 pN×m/deg, c=25 fN×m/(deg s−1), and ψ0=0◦ (with
respect to the vertical). The curves resulting from the refer-
ence spring are plotted in solid black lines. (a) Wing pitch
curves for increasing k. (b) and (c) show similar curves for
increasing c and ψ0, respectively. Color bars show values of
each parameter.

plitude during the roll correction, the elastic coefficient k
changed from 48±7.5pN×m/deg to 52.5±6.7pN×m/deg,
but that this change fell within the fit CI and was there-
fore experimentally indistinguishable. In contrast, the
rest angle ψ0 changed from −2.3◦ ± 3.2◦ to −15◦ ± 3.9◦,
which fell outside the fit CI and was therefore a de-
tectable change. The most prominent change we ob-
served in this particular maneuver was a 46% increase
of the spring damping coefficient of the right wing form
28.4± fN×m/(deg s−1) to 41.5±2.6fN×m/(deg s−1) (fit-
ted value ± CI).

To highlight the effect of the different fitted springs
on the kinematics of ψ, we solved for ψ(t) of the ma-
neuvering wing-beat but with the spring fitted for the
non-maneuvering wing-beat. The resulting ψ(t) is plot-
ted in Fig. 6d in dashed gray, showing a large overshoot
of the wing-pitch angle after the front-flip, reminiscent of
the non-maneuvering kinematics.

The individual contributions of the elastic and damp-
ing torques to the total spring torque during two wing-
beats in Fig. 6 are shown in Fig. 7. First, we find that
the magnitudes of elastic and damping torques are com-
parable, indicating that both of them are important in
determining wing-pitch kinematics. Second, we find that
the spring torques during the maneuvering wing-beat of
the right wing (Fig. 7d) are different than the torques
during the other wing-beats in Fig. 7a-c. Namely, the
torques in Fig. 7d show stronger positive damping torque
during the back wing-flips, as well as stronger negative
damping torque after the forward flip, where the “hump”
appears during non-maneuvering wing-beats.

To gain intuition for the effect that each of the spring
parameters induces on wing-pitch, we calculated the ψ(t)
kinematics that arise from individually modulating each
one of the spring parameters (Fig. 8a). We used the

wing and body kinematics of the non-maneuvering wing-
beat in Fig. 6 and and considered a reference spring
with k=50pN×m/deg, c=25fN×m/(deg s−1), and ψ0=0◦

(with respect to the vertical), which is within the CI
of the best fitted spring. Increasing k from 20 to
80 pN×m/deg (Fig. 8a) shows that both the top and
bottom branches of the ψ(φ) loops approach the ψ=90◦

center line (black arrows in Fig. 8) . Increasing k stiff-
ens the spring, such that the aerodynamic force induces
smaller ψ deviations from the vertical (ψ=90◦). This ef-
fect is nonlinear, since the aerodynamic force depends on
ψ through the angle of attack. Increasing the damping
coefficient c from the reference value of 25 (thick black
curve) to 45 fN×m/(deg s−1) (red curve) resulted in the
disappearance of the “hump” structure after the front
flip (top left part of the curve). In addition, this increase
also smoothed a similar smaller feature of the ψ(φ) curve
seen after the back flip (bottom right part of the curve).
Conversely, decreasing c from 25 to 5 fN×m/(deg s−1)
generated two large “hump” structure after the forward
and back wing flips. The most prominent effect of the
damping coefficient appears around the wing flips, since
these stages of the wing stroke have the largest pitch
velocity, which maximizes the damping torque −cψ̇. In-
creasing the rest angle ψ0 from −20◦ to 20◦ consistently
moved both parts of the ψ(φ) loop towards more posi-
tive ψ values (Fig. 8, black arrows). In addition, we find
that increasing ψ0 affected the “hump” structure (top
left part of curve), since off-setting the spring make it
easier for the aerodyanmic force to bend the wing back-
wards after the front flip. Taken together, the results in
Figs. 6-8 highlight the effect of the spring modulation on
the wing-pitch kinematics during roll correction.

We performed the spring fitting procedure described
above for all 9 wing-beats of the same maneuver.
Figs. 9a-c show the fitted spring parameters as a func-
tion of time in wing-beats, such that t = 0 corresponds
to the wing-beat during which the fly was perturbed.
While the changes in the fitted k and ψ0 values during
the maneuver are comparable to the fit CI, the changes
in c are much larger than the CI. Fig. 9 shows a signifi-
cant change in c during the active part of the maneuver.
The damping coefficient of the right wing showed an in-
crease of c followed by a decrease to its premaneuver
value. The maximum change in c was a 67% increase
observed during wing-beat no. 2. Concomitantly, c of
the left wing decreased by 32% before increasing back to
its value prior to the perturbation. At the end of the
maneuver c of the left wing was slightly larger than c of
the right wing, corresponding to the roll counter-torque
the fly generates at that time. The variations in spring
parameters shown in Fig. 9 should be compared against
the variations during non-maneuvering flight (Appendix
B), which are much smaller: we find standard deviations
of ±2.3 pN×m/deg in k, ±2 fN×m/(deg s−1) in c and
±3.5◦ in ψ0. We note that the variations in k and c
during volitional yaw tuning maneuvers, in which ψ0 is
modulated [73], are also smaller than the modulation of
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FIG. 9. (Color online) (a-c) the fitted spring parameters k, c, and ψ0, as a function of time in wing-beats for the maneuver
analyzed in Figs. 1-4 and 6. The time t=0 corresponds to wing-beat in which the fly was perturbed. Data is shown for the right
wing in red (light gray) and for the left wing in blue (dark gray). Error bars correspond to the fit’s confidence intervals (CI).
(d-f) The same fit results for k, c, and ψ0, plotted as a function of the wing-stroke amplitude for the corresponding wing-beat
of each wing. The CI are the same as in (a-c).

these parameters reported here.

To further illustrate the the coupling between the
wing-stroke and wing-pitch kinematics, we plot the fitted
spring parameters as a function the wing-stroke ampli-
tude Φ in each wing-beat of the same maneuver (Figs. 9d-
f. The elastic coefficient k shows a slight increase with
Φ. The fitted values of ψ0 are uncorrelated with Φ. In
contrast, c shows a clear increase with Φ, indicating that
an increasing wing amplitude is correlated with an in-
creasing damping coefficient.

We analyze 10 maneuvers in our data-set and
fit the spring coefficients for each wing-beat.
The mean pre-perturbation spring parameters are
k=46±7 pN×m/deg, c=29±3 fN×m/(deg s−1), and
ψ0= − 7±5◦ (mean±standard deviation for n = 20). To
highlight the changes in the spring parameters during
the maneuvers we plot the differences ∆k, ∆c, and
∆ψ0 with respect to their values prior to the maneuver
(Fig. 10). Figs. 10a-c show the values of these differences
for each wing-stroke with separated symbols for the
“bottom” wing in the roll maneuver (the wing that flaps
with larger Φ, red circles) and the “top” wing (blue
squares). While the data for ∆ψ0 are not correlated
with Φ, the data for ∆k and ∆c are correlated with
Φ. Both parameters have correlation coefficients of
∼0.5± 0.15 (value ± 95% confidence interval) and these

correlations are highly significant (p=3.6×10−10 for ∆k
and p=8.8×10−8 for ∆c). Finally, we note that for Φ
values smaller than the mean pre-perturbation value
Φmean=156◦ ± 2.5◦ (mean±standard error for n = 20),
we see that ∆c is scattered around 0 and for Φ > Φmean

∆c increases with Φ. To quantify this trend we calculate
the means of ∆k, ∆c, and ∆ψ0, for the data points with
Φ ≤ Φmean and similarly for those with Φ > Φmean. The
means are shown in the bar plots in Figs. 10d-e, with
error bars representing the standard error of each mean.
This analysis shows that while ∆ψ0 has no significant Φ
dependence (p=0.48), we see a clear Φ dependence of ∆k
and ∆c, with p-values of p=3.6×10−10 and p=8.8×10−8,
respectively. Together, Fig. 10 shows that both k and c
increase at higher wing-stroke amplitude associated with
the wing-stroke amplitude asymmetry the flies apply
during roll correction maneuvers.

IV. SUMMARY AND OUTLOOK

We used measured body and wing kinematic data of fruit
flies to show how asymmetric changes in the spring pa-
rameters give rise to differences in wing-pitch kinematics
during roll correction maneuvers. In previous work it was
shown that flies can control the rest angle ψ0 to modu-
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FIG. 10. (Color online) (a-c) The differences in the fitted spring parameters ∆k, ∆c, and ∆ψ0 calculated with respect to
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flapped with increased stroke-amplitude to exert roll correcting torque. Blue (dark gray) squares indicate data for the “top”
wing in each maneuver. A dashed black line on each plot in (a-c) indicates the mean stroke amplitude before the maneuver
Φmean=156◦ ± 2.5◦ (mean±standard error for n = 20). Wing-beats with Φ > Φmean. The data for ∆k and ∆c are correlated
with Φ, with correlation coefficients of ∼0.5± 0.15 (value ± 95% confidence interval) and p-values of p=3.6×10−10 for ∆k and
p=8.8×10−8 for ∆c. (d-f) The mean values of ∆k, ∆c, and ∆ψ0, below and above the Φ=165◦ threshold. Black error bars
indicate the standard error of each mean. The p-values in each plot are the results of a t-test comparing the data below and
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late their wing pitch and perform yaw turns [73]. Here,
we highlight that fruit flies can also modulate the effec-
tive spring damping coefficient c and elastic coefficient k.
This work builds on previous studies that used a damped
torsional spring model [62, 64, 65, 73, 78] and on studies
that showed that the torques exerted by the hinge can
be approximated by a such a spring by analytically re-
covering the spring-torque from measured kinematic data
[56, 73]. Here, we use this torsional spring model to di-
rectly solve the equation of motion for the wing-pitch and
reproduce its intricate kinematics.

Our results directly address the question of whether ψ
is actively or passively controlled. Together with a previ-
ous analysis on yaw turns in flies [73], our findings suggest
that flies take advantage of the passive coupling between
aerodynamics and the torsional spring to indirectly con-
trol their wing-pitch kinematics by modulating the spring
parameters: damping coefficient, rest angle and elastic
coefficient. Thus, flies can control their wing-pitch kine-
matics on a sub-wing-beat time-scale by modulating all

the effective spring parameters on longer time-scales.

The results presented here raise a few open questions.
For example, what physiological mechanism generates
the effective behavior of a torsional spring and, more
specifically, how damping can be physiologically imple-
mented and modulated. We can propose two alternative
mechanisms for damping generation: the first is an ac-
tive mechanism based on a muscle exerting negative work
along the pitch axis, such as the first basalare muscle (b1)
that has been proposed to be related to wing-pitch con-
trol [4, 79]. The activity pattern of the basalare muscles
(b1, b2, and b3) as well as the III2-III3 muscles have
been correlated with the position of the ventral (front-
most) flip of the wing stroke angle, making these muscles
additional candidates for wing-pitch control [6]. The sec-
ond proposed mechanism is a passive mechanism that in-
creases torsional damping at large wing stroke amplitudes
(see Figs. 9e and 10b,e). Our results cannot discriminate
between these two proposed mechanisms. A related open
question is the implication of passive aerodynamic effects



12

to the design of insect wings through their intricate vena-
tion patten [80–82]. Future extensions of this work may
include more detailed spring models such as an asymmet-
ric linear spring [52] and nonlinear springs [58], as well
as studying wing pitch kinematics in insects with flexible
wings. Finally, applying the methods developed here to
other organism may reveal whether the modulations of
relatively simple bio-mechanic parameters that allow an
animal to control its complex motion, is a general design
principle of biolocomotion.

Appendix A: Equation of motion for ψ

Given below are the terms in the equation of motion for
ψ (eq. 9) that were implicitly specified in the main text.
The rotation matrix Tb→w from the body frame of refer-
ence to the wing frame of reference consists of two rota-
tions: a rotation from the body frame to the wing-stroke
place frame followed by a rotation from the wing-stroke
frame to the wing frame. We define M(α, β, γ) as the
Euler rotation matrix corresponding to a rotation of α
radians in yaw, β radians in pitch, and γ radians in roll.
The matrix Tb→w becomes:

Tb→w =M(φ, θ, ψ)M(0, θb0, 0)
T , (A1)

where θb0 is the measured pitch angle of the stroke plane
with respect to the body frame of reference. For fruit flies
we typically measure θb0≈ 45◦. The remaining terms are
in eq. 9 are:

ω̇w,w,2 =− θ̈ cosψ + φ̈ cos θ sinψ + θ̇ψ̇ sinψ (A2)

− φ̇θ̇ sin θ sinψ + φ̇ψ̇ cos θ cosψ

ω̇b,w = Ṫb→w · ωb,b + Tb→w · ω̇b,b. (A3)

Ω1Ω3 =
(

ωw,w,1 + ωb,w,1

)(

ωw,w,3 + ωb,w,3

)

(A4)

We note that differences between the parameter val-
ues determined in [73] and the current manuscript are
primarily due to the more accurate equation of motion
used in the present study. The equation of motion used
here considers the wing rotating frame of reference that
results in fictitious torques along the wing pitch axis.

Appendix B: Spring parameters during

non-maneuvering flight

To test whether the spring parameters change when a
fly is not maneuvering, we analyzed a movie of a fly
hovering with no magnetic pin glued on its back and,
hence, no external perturbation. The movie consisted of
22 wing-beats in which the fly’s center-of-mass speed was

lower than 60mm s−1, equivalent to 0.09 body-lengths
per wing-beat. The mean stroke amplitude of both
wings was 151.4±2◦ (mean±standard deviation, n=44).
The fitted spring parameters for every wing-beat of each
wing are plotted in Figure 11. The mean and standard
deviation in the fitted spring parameters for the left wing
are k=47±2.6 pN×m/deg, c=29±1.6 fN×m/(deg s−1),
and ψ0= − 10±3.5◦. The values for the right wing are
k=54±2.3 pN×m/deg, c=24±2 fN×m/(deg s−1), and
ψ0= − 4±3.5◦. The variation in k and c is markedly
smaller than the variation of these parameters during
roll correction maneuvers.
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