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Rapid prototyping by combining evolutionary computation with simulations is becoming a pow-
erful tool for solving complex design problems in materials science. This method of optimization
operates in a virtual design space that simulates potential material behaviors and after completion
needs to be validated by experiment. However, in principle an evolutionary optimizer can also
operate on an actual physical structure or lab experiment directly, provided the relevant material
parameters can be accessed by the optimizer and information about the material’s performance can
be updated by direct measurements. Here we provide a proof of concept of such direct, physical
optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond
to impact. We report on an entirely computer controlled lab experiment in which a 6 x 6 grid
of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated
suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find
field patterns that minimize the force transmitted through the suspension. Searching within a space
of roughly 1010 possible configurations, after testing only 1,500 independent trials the algorithm
identifies an optimized configuration of layered rigid/compliant regions.

I. INTRODUCTION

In designing materials, one is often faced with a
large number of control parameters whose relative
importance for reaching optimized performance is a
priori unknown [1, 2]. Given that it is typically not
feasible to explore the large parameter space through
exhaustive experimentation, computational methods
have been gaining importance. These methods perform
virtual experiments by simulating a given physical
situation, and then update the simulation parameters
until they get close to the desired result. Among such
methods, evolutionary computation has been particu-
larly successful in situations where the searchscape is
complex, and they have found application in diverse
areas including robotics optimization and learning [3, 4],
crystal structure prediction [5–8], directed self-assembly
[9, 10] and optimization of granular materials [11–16].
In all of these cases, the standard process is that
the optimization occurs within the virtual simulation
environment and only once the algorithm arrived at a
final solution is this solution translated into a physical
object or an experiment to validate performance.

New opportunities for design arise when considering
materials whose properties can be changed quickly by
external electrical, optical or mechanical stimuli: this
enables feedback whereby the optimizer can operate
directly on the physical material by measuring its
properties and, in response, devising suitable stimuli
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to steer those properties towards the desired goal.
Circumventing the simulation can have a number of
advantages. In particular, while the optimizer can be a
black-box algorithm agnostic of the actual physics, the
simulation needs to be carefully adjusted and validated
to capture all essential aspects of the experiment to be
replicated. For complex nonlinear processes this often
is a key difficulty, which is avoided by using the actual
experiment to generate the signal that is fed back to
the optimizer. All of this becomes feasible once the
optimizer is sufficiently powerful to require sampling of
only a small subset of possible parameter combinations
to get close to the desired goal, and as long as the
material can cycle through different configurations
rapidly.

As a proof of concept, we demonstrate this approach
with a reconfigurable material consisting of regions
whose stiffness can be switched from rigid to compliant.
The particular goal is to have this material automatically
adapt and configure itself such that the transmission
of impact force is minimized. The material is a field-
activated dense suspension of ferrofluid and iron filings.
Under the application of an external magnetic field the
suspension strongly increases its viscosity, a phenomenon
that has been used in a number of applications as smart
fluids [17–20]. At the large solids concentration (packing
fraction of about 0.5) we are considering here, the sus-
pension behaves like a field-activated granular material
that can be driven through a jamming transition and
becomes rigid. An array of electromagnets controls
this reversible transformation locally across a 6x6 grid
pattern of individually addressable regions that cover
the volume of the material. The complex, nonlinear
dynamic behavior of the material arises both from
the field-response of individual regions and from the
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FIG. 1. a) Picture of the experimental setup, showing the primary components: the linear actuator, the container holding
the suspension, and the electromagnet array. The force sensor sits at the bottom of the container. As seen from the side, the
container is 1” wide and 12” tall. b) Sketch of the side wall of the container, indicating the layout of the magnet array, the
size of the impactor at the top and the position of the force sensor at the bottom. c) Diagram of the automation process that
is run for each configuration tested.

interactions of neighboring regions. On one side of the
suspension volume is a linear actuator that impacts the
material and on the opposite side we mount a force
sensor. The task we are setting ourselves is to configure
the field-induced pattern of spatial rigidity variation
inside the material such that it minimizes the signal
measured by the force sensor.

Computer control of this material allows us to create
any specific field-induced pattern, via the electromag-
nets, and reliably evaluate its performance. However,
already in the simplest case, just using each electro-
magnet in binary ON/OFF mode, there are 236 or
roughly 1010 possible configurations. Furthermore, the
relationship between the control parameter—in this case
the current to the electromagnet—and the local degree
of rigidity inside the material are highly nonlinear.
Nevertheless, the essentially digital, binary nature of the
material with its grid of rigid/compliant cells, makes
optimizing the impact response a natural problem for a
genetic algorithm to tackle.

Artificial evolution achieves its power by comparing
members of a population of trial solutions that comprise
a generation, selecting the best-performing member(s),
and then applying modifications (mutations) to generate
the next generation of trials in an effort to get closer

to the desired performance. Typically, these trial
solutions are all generated in parallel; for example, by
performing a separate simulation for each member of
the population. In principle, the same could be done
with a large number of parallel experiments. For the
proof-of-concept approach described in this paper, we
reduce this to a single experimental setup and use it to
cycle through all trial solutions per generation before
moving on to the next generation. We show that such
an algorithm can explore the enormous configuration
space efficiently, operating on the material directly, and
can find optimized configurations.

II. EXPERIMENTAL SETUP

Figure 1a shows the experimental setup. In the center
is the rectangular container (dimensions 12”x12”x1”,
with walls made from 430-type stainless steel of 0.035”
thickness), seen here from its side, that holds the
volume of dense suspension—about 1.5 liters. The
two-dimensional array of electromagnets is mounted on
the outside of one of the large faces of the container
(Fig. 1b). Each magnet in its on-state can apply a field
around 0.5T at a depth of 1

2” into the suspension. A
Gauss meter measured the magnetic field as 0.2 ± 0.1T,
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FIG. 2. Magnetic field dependence of the viscosity for a 6
cSt ferrofluid, a suspension of 50% by volume 250-400 micron
iron filings dispersed in 100 cSt silicone oil, and a suspension
of 50% by volume of 250-400 micron iron filings suspended in
6 cSt ferrofluid. The red box indicates the magnetic field 1

2
”

into the suspension applied by one magnet in the ON state
during optimization experiments. The blue box corresponds
to the field with the magnet OFF. The nonzero field cor-
responds to contributions from neighboring magnets turned
ON.

1
2” away from the magnet. The relative permeability
of the ferrofluid of 2.6 (from the manufacturer) is
then used to arrive at the quoted value. The force
sensor is mounted at the center of the bottom container
wall, in line with the linear actuator that drives a
T-shaped piston vertically into the suspension from
above. The piston cross-section is 3” wide x 1” deep.
For each trial, when the piston impacts the sample,
the penetration corresponds to roughly two magnet rows.

To maximize the difference between rigid and com-
pliant states in the suspension material, 250-400 micron
iron filings were dispersed in a ferromagnetic fluid com-
posed of colloidal magnetite particles in a proprietary
blend of light hydrocarbons manufactured by Ferro
Tec (Type EFH1), at a packing fraction φ= 0.50 iron
filings by volume. Figure 2 shows the field response of
this mixture and compares it with the response of the
ferrofluid by itself as well as iron filings in 100cSt silicone
oil at the same φ but without ferrofluid. All data were
taken in an Anton Paar MC301 rheometer at constant
shear rate of 2s−1. Given the field strengths available
with our magnet array, the iron filings/ferrofluid mixture
can transform from a viscosity around 10 Pas when the
magnet is off to values in excess of 500Pas with the
magnet turned on. By contrast, the ferrofluid alone
reaches only 1Pas even at the highest fields, and the iron
filings in oil exhibit an off-state with significantly larger
viscosity (around 100 Pas) and thus a smaller dynamic
range.

The electromagnets, the linear actuator and the force
sensor are computer-controlled to allow for automated
testing of configurations. Each electromagnet is acti-
vated by a data acquisition device (NI USB-6008/9).
Since the device can only supply 5mA at 5V, it drives a
small circuit with power transistors capable of handling
the 0.35A at 12V required for fully turning on each
magnet. The linear actuator is activated in a similar
way, except that the larger current (5A at 12V) required
to propel it forward is handled by a transistor circuit
controlling a double-pole, double-throw relay. The force
sensor (Omega DLC101-10, (1.64 ± 0.05) × 10−2 Volts
per Newton output) continuously measures the force,
while the computer collects a fixed number of voltage
values as the impact is taking place. Figure 3a shows
the measured force signal.

During operation, the genetic algorithm sends a file
designating a field configuration to the magnet control
portion of the software, which turns on the right com-
bination of electromagnets and triggers the force sensor
to begin collecting data (Fig. 1c). After a 1.5s delay, a
signal is sent to the linear actuator to begin impact. The
data acquisition software then writes the force data to
a file for the algorithm to interpret. In our experiment,
the algorithm focuses on the peak force value (Fig.
3a). Then the cycle begins again as the algorithm
sends out another configuration to the apparatus. Each
configuration is tested in approximately 3s. As the
configurations approach the optimized pattern the peak
force is seen to decrease.

Because we are testing the material under conditions
of severe impact by ramming the linear actuator into the
suspension, a method is required to minimize mechanical
compaction of the material after repeated tests and to
refresh the initial state of the material before testing
the result of magnet configuration changes. As Fig. 3b
shows, without such refreshing there is a monotonic
decay of the peak force when the same configuration is
impacted repeatedly. To reduce this effect, the material
is vibrated by a large speaker for 30 seconds between
each impact. The speaker is mounted on the side of the
container, opposite the magnets (Fig. 1), and outputs
a 55 Hz wave train with 4 pulses per second (Fig. 3b,
inset). This vibration before each trial significantly
increases the reproducibility of the initial state, which
now fluctuates around a fixed value by ±2N and no
longer decreases continually (blue trace in Fig. 3b).

The optimization is performed on the computer
by a population-based incremental learning algorithm
[21, 22], a type of genetic algorithm. The algorithm first
selects ten random magnet configurations, constituting
the initial generation. The configurations are randomly
sampled assuming a fixed probability for the magnet at
site (i,j) to be Pij . Each of these configurations is then
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FIG. 3. a) Temporal force profile during impact as measured by the sensor at the bottom of the container. The different traces
indicate the evolution of the profile during optimization (gray) and in the optimized state (black). The piston impacts the top
of the suspension at about -0.125s. b) Peak force as a function of the number of impacts performed on one fixed configuration
without (red) and with (blue) vibration between subsequent impacts. Inset) Power spectrum of the audio clip used to vibrate
the suspension for 30s between trials.

evaluated by performing an impact experiment and the
algorithm assigns a fitness value to each, in this case
the peak force measured. Once all configurations in one
generation have been tested, they are ranked by perfor-
mance and used to update the probabilities for magnet
activation. The new probabilities P ′ij are set according
to P ′ij = Pij + τCov(R,M) where τ is the learning rate,
which determines how much the probability can jump
in one generation, set to τ = 0.1 for all optimization
runs; R is the relative fraction of other configurations in
the generation worse than the configuration in question
and Mij is a binary representation of the magnets where
ON = 1 and OFF = 0. The covariance matrix is
implemented to allow for correlated mutations. Config-
urations for the next generation are sampled using these
updated probabilities and the process is iterated. We
consider the optimization complete when we see that
most of the probabilities converge to 0 or 1 (some seem
to stay around 0.5 because it is not guaranteed that
every magnet will influence the impact behavior).

III. RESULTS

Tasking the algorithm with minimizing the peak
force value corresponds to finding the configuration that
functions as the best shock absorber. One might, at first
glance, guess that the all ON and all OFF configurations
would set the upper and lower performance limits, given
that the average rigidity of the whole system is lowest
in the all OFF state and highest with all magnets
ON. However, this assumes a homogeneous material
that is compressed uniformly. On our experiment, the

situation is deliberately made more complex by letting
the impact occur over only a portion of the top free
surface of the dense suspension. Because this surface
can deform, the material in its low-viscosity OFF state
can let the impactor penetrate considerably and thus
create a sizable force at the bottom of the container.
By turning all magnets ON a more rigid connection to
the bottom is established and while the impactor does
not penetrate as much, it can now transmit even larger
force. One might also consider a random pattern of
ON/OFF cells. However, in this case there is a high
chance, on average, for rigid cells to percolate across
the material and thereby channel impact momentum
vertically rather than distributing it more widely in the
horizontal direction.

In Fig. 4a we show the evolution of the material
toward its optimized configuration by plotting the
median peak force for each generation. In generation
1, the optimizer starts with a random pattern, which
transmits larger forces than either the all ON or OFF
configurations (red and blue lines). After about 100
generations the optimizer has settled into an asymptotic
configuration that absorbs peak forces roughly twice
as efficiently than the initial random state and 20%
better than the all OFF state. In Fig. 4b we plot the
evolution of the total error in the peak force, given
by

√
(∆F )2 + (δF )2, where ∆F is the spread in peak

force values among configurations belonging to a given
generation, and δF is the experimental uncertainty in
determining each peak force. This error reaches a low,
asymptotic level after a similar number of generations,
N , as the peak force itself. The solid is a fit to an
exponential decay, F ∝ exp(−N/N0) from which we
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FIG. 4. a) Median peak force for each generation during a particular optimization run where ten configurations (trials) are
tested per generation. The black line is a fit to a decaying exponential, while the red and blue lines correspond to the limit of
all magnets ON or OFF, respectively. The pictures indicate the average magnet configuration for a given generation, with color
indicating the probability to be ON (black = 100%). Initially all probabilities are about 0.5 but as the optimizer finds better
solutions the configurations converge to a particular state. b) Total error in the median peak force as a function of generation.

extract a characteristic optimization time of N0 = 42± 9
generations. While the median peak force decreases as
the algorithm narrows in on promising configurations,
the shape of the impact profile as a function of N still
remains the same (Fig. 3a). This demonstrates that
the qualitative behavior of the force transmission during
impact is independent of the configuration. Performing
several independent optimization runs with the same
fitness metric and material configuration we find that
they all show similar behavior and the data shown in
Fig. 4 is representative for the whole group.

The call-outs in Figure 4a give a visual image of the 6
x 6 magnet pattern after a certain number of generations
have elapsed. Black corresponds to ON, white to OFF.
Each picture is an average over the patterns that popu-
late a particular generation. Early in the evolution, the
various patterns exhibited by members of a population

appear to be uncorrelated because the optimizer is still
exploring a wide swath of configuration space. As a
result, the average patterns appear almost uniformly
gray. Further into the evolution, the algorithm fine-tunes
patterns based on the better performing configurations
from previous generations. As a result, the probability
of a cell to be either rigid or compliant converges and
the average patterns become more well-defined.

Close inspection of the evolving configurations indi-
cates that some cells converge very quickly, indicating
that they are clearly important to decreasing the trans-
mitted force. For example, the third row of cells from the
bottom stays always ON, starting from just the fiftieth
generation, which is approximately the optimization
decay time. However, some cells do not converge to a
fixed state and continue to fluctuate between ON and
OFF. We interpret this as a sign that these cells do not
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affect the force transmission significantly. Which cells
are contributing strongly, or minimally, to an optimiza-
tion will depend on the task at hand. In the specific
situation considered here, the details of the impactor
geometry, the place at which impact occurs with respect
the boundaries of the suspension volume, and the place
at which the transmitted force is measured all are likely
to play key roles. However, when minimizing force
transmission through the material, we always find one
dominant characteristic of the optimized configuration:
a horizontal structuring with layers of alternating rigid
and compliant cells.

Layering of materials of different compliance is widely
used in energy dissipation applications. Without having
been programmed to explore layering (or, in fact, any
particular aspect of the underlying physics), the algo-
rithm independently identified layering as a promising
approach. In our realization of the algorithm with a
population of 10 members per generation this solution is
realized after no more than 100-150 generations, i.e., in
no more than 1,500 trials. The total time for finding the
optimized state was a little less than 14h. This includes
30s of vibration to refresh the initial state before each
trial; the actual testing time was on the order of seconds
per trial. Without the need to reset the initial state,
optimizations could be performed in one hour. The total
time could also be reduced by at least a factor of 10 if all
trials per generation were performed in parallel instead
of using a single experimental setup sequentially as we
did for this proof of concept.

IV. CONCLUSIONS

We have shown that automated material design is
possible without simulation by coupling a nonlinear,
reconfigurable material directly to a genetic algorithm.
In a specific example of a highly nonlinear material
consisting of a planar array of 6 x 6 controllable cells,
and thus a search space of 236 possible configurations,
individual configurations could be tested in seconds and
solutions for the best shock-absorbing configurations
were found on the timescale of hours. This example of
a dense, field-activated suspension that can be magnetic
field-activated locally was introduced here to serve as
proof-of-principle, but the approach we introduced is
generally applicable to a wide range of different material
optimization tasks. Because the optimizer operates on
the actual physical material or structure, issues that
hamper simulation of complex dynamical processes,
such as proper validation, are automatically taken care
of. Furthermore, if the optimizer is not just used in
a single-shot fashion to identify optimized parameters
for a fixed performance target, but remains active and
coupled to the material, self-learning responses can be
envisioned by which the material adapts to changing
targets.
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