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Abstract7

Recently, shear rate gradients and associated gradients in velocity fluctuations (e.g., granular8

temperatures or kinetic stresses) have been shown to drive segregation of different sized particles9

in a manner that reverses at relatively high solids fractions (〈f〉 > 0.50). Here, we investigate these10

effects in mixtures of particles differing in material density through computational and theoretical11

studies of particles sheared in a vertical chute where we vary the solid fraction from 〈f〉 = 0.2 to12

0.6. We find that in sparse flows, 〈f〉 = 0.2 to 0.4, the heavier (denser) particles segregate to lower13

shear rates similar to the heavier (larger) particles in mixtures of particles differing only in size.14

However, there is no segregation reversal at high f in mixtures of particles differing in density. At15

all solids fractions, heavier (denser) particles segregate to regions of lower shear rates and lower16

granular temperatures, in contrast with segregation of different-sized particles at high f , where the17

heavier (larger) particles segregate to the region of higher shear rates. Kinetic theory predicts well18

the segregation for both types of systems at low f but breaks down at higher f ’s. Our recently19

proposed mixture theory for high f granular mixtures captures the segregation trends well via the20

independent partitioning of kinetic and contact stresses between the two species. In light of these21

results, we discuss possible directions forward for a model framework that encompasses segregation22

effects more broadly in these systems.23
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I. INTRODUCTION25

Granular materials tend to segregate when particles in the mixture differ in size, material26

density, shape or other properties. Segregation due to differences only in material density27

(often called density segregation, e.g. Refs. [1–3]) has wide implications for a variety of28

natural and industrial processes. For example, in a vibrofluidized bed, density difference29

between an impurity and the rest of the particles in the bed creates problems for a variety30

of processes employing this mechanism for transport (e.g., Ref. [4]). In longitudinal bars of31

braided rivers, this segregation can give rise to local accumulations of economically important32

denser materials (e.g. gold, uranium, and diamonds) due to the separation of these minerals33

from particles that are less dense (e.g. sand and gravel) [5]. The implications of segregation34

for geomorphological issues are even broader, as evidence points to the influence of local35

variation of particle density on local variability of erosion rates [6] and sediment transport36

rates [7] compared to expected rates (e.g., Ref. [8]).37

Segregation according to particle density has been studied experimentally and computa-38

tionally under a variety of boundary conditions and methods of excitation including vibrated39

systems [2–4, 9] and sheared systems such as gravity-driven flows in rotating drums [10–15]40

and down inclined planes [16], and shear bands in split-bottom cells [17]. In vibrated sys-41

tems, several factors have been shown to play important roles in the segregation process,42

including convection [1], gravity [4], interstitial air [9], and granular temperature (essen-43

tially, the kinetic energy associated with velocity variances) [1, 18]. In sheared flows, similar44

mechanisms have been shown to influence the segregation processes, including variations in45

particle concentration (e.g., Ref. [17, 19]). In this paper, we distinguish between segregation46

according to “particle density” (the focus of this paper) and segregation associated with47

variations of “concentration,” or solids fractions, by restricting our use of the words “dense”48

and “less dense” to refer to the material density of the particles ρm and use phrases such as49

“high/low concentrations” (or “sparse flows”) to refer to relative solid fractions f .50

In sparse sheared flows, kinetic theory (e.g., [20–23]) has been used successfully to model51

and predict segregation in simulations [20] and experiments [24]. The segregation predic-52

tions may represent segregation according to several competing elements: gravity, granular53

temperature, pressure and diffusion “forces” (e.g., Refs. [20, 22, 23]). For example, grav-54

ity segregates denser particles downward (in the direction of gravity) relative to less dense55

2



particles (e.g., Ref. [23]) while a gradient of granular temperature segregates denser par-56

ticles to lower granular temperature (e.g., [20, 21]). For low-to-moderate system-averaged57

solid fractions (〈f〉 up to 0.4), kinetic theory predicts segregation trends well [25]. Kinetic58

theory has been shown to be similarly effective in predicting segregation by temperature59

gradient in mixtures of different sized particles at low-to-moderate f ’s [25, 26], where the60

heavier (larger) particles also segregate to regions of lower temperature. However, as we61

detail shortly, for sufficiently high f ’s, we have shown that for particles of different sizes, the62

segregation reverses, that is, heavier (larger) particles segregate to regions of higher shear63

rates and higher granular temperatures [17, 26], a phenomenon kinetic theory fails to cap-64

ture. These trends at high f have not been investigated for segregation of particles differing65

in material density.66

In most studies of sheared systems of relatively high system-averaged solid fractions 〈f〉,67

the primary focus of segregation of granular mixtures has involved the effect of gravity, while68

the effect of granular temperature has not been thoroughly explored. Typically, in high-f69

flows, similar to sparse flows, denser particles sink relative to equal-sized lighter neighbors,70

and less dense particles rise. In high f flow, Khakhar et al. [10] proposed a ‘buoyancy’71

mechanism, which was shown to successfully reproduce gravity-driven segregation according72

to particle density in rotating drums [11]. Specifically, particles lighter than the surrounding73

mixture of particles experience a buoyancy force greater than their weight and rise, and74

particles denser than the surrounding mixture sink. For example, for flow of such a mixture75

down an plane inclined by θ relative to the horizontal, the segregation flux of the denser76

particles normal to the flow may be expressed according to:77

fd(vd − v) = K[(ρd − ρl)/ρd]fφdφl. (1)

Here, K = CV ρdgcosθ is a characteristic “segregation velocity”, where C is inversely related78

to resistance to local relative motion, and V is the volume of a particle. vi is the velocity79

component of species i in the segregation direction, typically normal to the system-averaged80

flow direction. ρi is the material density of species i, fi is the local solids fraction of species81

i, and φi is the local concentration of particles of species i (φi = fi/Σifi). The subscripts82

i=d and l denote denser and less dense particles, respectively. For the variables associated83

with the mixture dynamics no subscript is used (e.g., f = fd + fl). We note one potentially84

confusing issue: while one would expect v, the system-averaged velocity for the segregation85
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direction, to be zero, there are exceptions in some practical applications of this framework.86

For example, in the flow of particles in a thin surficial layer in a rotating drum (an original87

application for Equation 1 in Ref. [10]), the particles dilate as they move through the first88

half of the flowing layer and then they contract though the second half. Still, the local value89

for v is typically taken to be the velocity in the spatially-averaged flow direction rather than90

the normal direction at each location. To account for cases such as this, for the purposes91

of the discussion in this paper, we keep the explicit representation in v in Equation 1 and92

related expressions of the segregation flux.93

More recent work by Khakhar and colleagues (Refs. [13, 27, 28]) illuminated the form94

of the inverse drag function C by considering movement of particles differing in density95

through an effective medium and showed the drag increased with an effective temperature.96

While this latter work demonstrated how temperature should influence the drag coefficient,97

it did not address the issue of temperature as a driving force of segregation alone. When98

considering results from mixtures of different sized particles, one would expect temperature99

gradients to have the ability to segregate particles in high f systems as well.100

Specially, we recently showed that gradients in granular temperature (or kinetic stress)101

associated with shear rate gradients can drive segregation in high-f sheared mixtures of102

different sized particles [19, 29, 30]. Further, we showed that at relatively high solids fraction103

f , the segregation tendency reversed. That is, on the one hand, we found that in sparse104

systems large particles segregate to regions of high granular temperature and high shear105

rates, consistent with previous reports (e.g., Refs. [20–23, 25]). On the other hand, we106

found that at higher solids fractions, f ≈ 0.5 to 0.6, the large particles segregate to regions107

of low granular temperature. To this point, no analogous study has been performed for108

mixtures of particles differing only in density. Further, one would expect the segregating109

effects of granular temperature gradients should compete with the ‘buoyancy effect’ in these110

mixtures, an important detail for predicting and possibly manipulating segregation in high-f111

sheared flows.112

In this paper, we describe our computational and theoretical efforts to understand the113

effects of granular temperature gradients on segregation of binary mixtures differing only114

in material density, particularly for high solids fractions. To isolate the effect of shear rate115

gradients from the effect of gravity, we present discrete element method (DEM) simulations116

of mixtures of particles differing only in density sheared in a vertical chute [Fig. 1(a)]. The117
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vertical chute is ideal for studying the effect of shear rate gradients and associated granular118

temperature gradients on segregation because of its simple geometry but inhomogeneous119

flow structure. To determine whether or not there is a segregation transition analogous to120

that in mixtures of particles differing only in size, we simulate mixtures over a range of121

solids fractions, from sparse to high solids fractions. We investigate two theories for their122

ability to reproduce segregation in these systems: (1) kinetic theory and (2) our mixture123

theory previously derived for mixtures of different sized particles [19, 29]. We show that124

kinetic theory is qualitatively effective at all solids fractions we investigate but breaks down125

quantitatively at high solids fractions. Our mixture theory, focused on effects associated with126

shear rate gradients, such as gradients in granular temperature and kinetic stress, adapts127

reasonably well to these mixtures of particles differing only in density. In present form,128

though, our theory lacks quantitative detail. In our discussion and conclusion sections, we129

point out shortcomings of this new model and describe ongoing work to improve upon the130

details.131

II. SIMULATION METHOD AND SETUP132

For our computational simulations, we use the discrete element method (DEM) [31] with133

a soft sphere model so that each interparticle contact typically endures over several time134

steps. As is typical, we calculate the forces on each particle at each time step, and from these135

deduce the subsequent movements and positions of all particles throughout the simulations.136

We use a nonlinear interparticle contact model based on Hertzian and Mindlin contact137

theories [32] with damping components calculated based on experimental data (Ref. [33]).138

The interparticle forces FFF = FFF n+FFF t, each has components normal (FFF n) and tangential (FFF t)139

to the plane of contact:140

Fn = −knδ
3/2
n − ηnδ

1/4
n δ̇n , (2a)

141

Ft = min
{

−ktδ
1/2
n δt − ηtδ

1/4
n δ̇t, µFn

}

, (2b)

In these equations, δn and δt denote deformations from interparticle contact as effective142

overlap in the directions normal and tangential to the plane of contact; throughout these143

equations, subscripts n and t refer to the directions normal and tangential to the plane144

of contact, respectively. VVV n = (dδn/dt)nnn, and VVV t = (dδt/dt)ttt are relative velocities of145
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TABLE I. Material properties used in DEM simulations. The less dense particles have similar

properties to glass, although to reduce the computational time we reduce the Young’s modulus by

a factor of O(102), similar to our previous studies [29, 30]. The denser particles have the same

properties except density, which is close to that of steel.

Property less dense dense

Material density (kg/m3) 2520 7800

Young’s modulus (GPa) 0.1 0.1

Poisson ratio 0.22 0.22

TABLE II. Values of contact parameters used in the force model for the DEM simulations for the

three possible pairs of interacting particles, as indicated in the first row.

Parameters less dense denser less dense

less dense denser denser

kn (N/m3/2) 1.57 × 106 1.57× 106 1.57 × 106

kt (N/m
3/2) 2.06 × 106 2.06× 106 2.06 × 106

ηn (N s/m5/4) 2.85 × 10−1 5.01× 10−1 3.50 × 10−1

ηt (N s/m5/4) 3.26 × 10−1 5.74× 10−1 4.01 × 10−1

µ 0.4 0.4 0.4

contacting particles. nnn and ttt are unit vectors in each direction. kn, kt, ηn, and ηt are146

interaction coefficients derived from materials properties as described in Refs. [32] and [33].147

Sliding occurs according to the Coulomb law of friction when |FFF t|/|FFFn| exceeds the coefficient148

of friction µ. The material properties to calculate the interaction coefficients are based on149

particles 2 mm in diameter with all properties similar to ‘glass’ particles, except material150

density: one particle density is similar to that of glass, and the other, similar to that of steel151

(Table I). The interaction coefficients for all contacts in the mixtures we describe in this152

paper are shown in Table II. For the simulations described here, we use an equal volume of153

the two types of spheres. Each species has a 10% polydispersity in the particle diameters to154

impede particle ordering.155

The boundary conditions for our simulations are those of a vertical chute of dimensions156
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D = 20 mm, W = 50 mm, and L = 50 mm in the x−, y−, and z−directions, respectively157

[Fig. 1(a)]. Our chute has one pair of vertical side walls (perpendicular to the y−direction),158

which are roughened using 2 mm spheres in a random close-packed arrangement. The159

boundaries are periodic in the z- (vertical) and x- directions. We perform simulations for160

several different total system-averaged solid fractions from 〈f〉 = 0.2 to 0.6 by varying the161

total numbers of particles in the systems (from ≈ 2500 to 8000 particles). We denote the162

velocity uuu=uxxx+vyyy+wzzz according to the directions noted in Fig. 1(a).163

For each simulation, the particles are initially arranged randomly in the chute and then164

released with small random velocities. After their initial release, particles collide with one165

another and with the vertical walls. Dissipation of energy through interparticle and wall-166

particle interactions limits the velocity throughout the cell, and a steady state velocity is167

reached for most of the simulations after a time between a fraction of a second and several168

seconds as will be discussed. Exceptions will be noted below. We monitor the segregation169

and other kinematics until the segregation appears to have reached steady state, and then170
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FIG. 1. (Color online) (a) Sketch of a vertical chute. (b)-(d) Time-averaged profiles of kinematic

quantities for four mixtures at steady state, here t = 5 − 6 s for 〈f〉 = 0.2 (green solid curve),

t = 20 − 30 s for 〈f〉 = 0.4 (blue dash-dotted curve), t = 30 − 40 s for 〈f〉 = 0.5 (red dashed

curve), and t = 300 − 310 s for 〈f〉 = 0.6 (black dotted curve): (b) streamwise velocity w of the

mixture, (c) kinematic granular temperature T = (u′u′ + v′v′ + w′w′)/3 of the mixture, (d) local

solid fraction of the mixture f .
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terminate the simulations (as discussed in Sec. III).171

III. SIMULATION RESULTS172

The steady-state profiles of the streamwise velocity w, the sum of the mean square velocity173

fluctuations (what one might call the kinematic granular temperature T = (u′u′ + v′v′ +174

w′w′)/3) and the solids fraction f for the mixture are plotted in Figs. 1 (b)-(d). (Here175

and throughout we use the notation q to denote the time average of measured quantity q.176

We average over the results over relatively short times in the segregation process, typically177

0.5 s intervals.) We note these results are similar to those previously published for mono-178

disperse systems (e.g. Refs. [34–36]) and for mixtures of particles differing only in size (Refs.179

[19, 26, 29]). At high 〈f〉, the velocity profile w(y) resembles a plug flow with high shear180

rates at the side walls, while at the lower solid fractions, the velocity is higher and the profile181

is roughly parabolic [Fig. 1 (b)]. In all cases, T is highest near the walls where the shear182

rate γ̇ = dw/dy is the greatest, and increases at every point as 〈f〉 decreases [Fig. 1 (c)].183

Regions of high T and high γ̇ (near the walls) correspond to regions of low f [Fig. 1 (d)].184

Figure 2 shows snapshots at the beginning and the end of the simulations for three185

representative solids fractions (〈f〉 = 0.2, 0.4, and 0.6). Segregation occurs in the horizontal186

direction under gradients of shear rate and granular temperature for all three 〈f〉’s. In all187

cases, all of the particles show some tendency to concentrate to regions of low T , low γ̇,188

and high f in the center of the chute, though the denser particles do so more effectively. In189

contrast with our results for different-sized particles [26], there is no segregation transition,190

or reversal, at intermediate solid fractions for different-density particles. This distinction191

may point toward an important difference in the segregation drivers of each at higher system192

solids fractions. We comment on this more in the conclusion section.193

Additionally, we note that the degree of segregation in the steady state segregation pat-194

terns appears most pronounced for the intermediate value of 〈f〉; in other words, qualita-195

tively, the particles appear less segregated at the smallest and highest system solid fractions.196

This was also not observed in the case of mixtures of different sized particles, where, in the197

steady state segregation pattern, the segregation appeared equally-well pronounced for the198

mixtures of different sized particles for all solid fractions (〈f〉 = 0.2 to 0.6) we investigated.199

The profiles of the solids fraction and segregation fluxes for each component in Fig. 3200
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support the qualitative observations. We plot the solids fraction profiles f i of each compo-201

nent i (i = d for denser particles and i = l for less dense particles) and for the mixture f202

at the steady state 〈f〉 =0.2, 0.4, and 0.6 in Fig. 3, row 1. The data for f clearly shows203

the result of the migration of all particles to the center of the chute. At the larger values204

of 〈f〉 (e.g. 0.4 or 0.6), the maximum local solids fraction of mixture is as high as 0.71,205

close to hexagonal close packing. The relative segregation of the particles at steady state is206

also apparent in these plots. In all cases, the denser particles have a higher solids fraction207

in the middle region of the chute than the less dense particles; this is most pronounced for208

〈f〉 = 0.4, supporting our observations that segregation seemed most pronounced in the209

snapshots from 〈f〉 = 0.4 in Fig. 2.210

Row 2 of Fig. 3 shows the profiles of the horizontal segregation fluxes f i∆vi = f i(vi − v)211

at the beginning of the simulations for these systems. For all three 〈f〉’s, the horizontal212

fluxes are strong and clear: the denser particles have positive fluxes in the left half of the213

chute and negative fluxes in the right half of the chute, indicating denser particles segregate214

to the center of the cell, while the less dense particles segregate to the walls. The relative215
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FIG. 2. (Color online) Snapshots of three mixtures at the beginning and steady state of each

simulation. (The steady state time is determined using data plotted in Fig. 4.) (a) The beginning

of the simulations (t = 0 s). From left to right, 〈f〉 = 0.2, 0.4, and 0.6, respectively; (b) The steady

state of the simulations. From left to right, 〈f〉 = 0.2 at t = 5 s, 〈f〉 = 0.4 at t = 10 s, and 〈f〉 =

0.6 at t = 300 s, respectively. The different species are distinguishable by color: 2 mm denser

particles, blue (dark); 2 mm less dense particles, green (light).
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segregation fluxes decrease for higher values of 〈f〉, which is possibly due to a decrease of216

gradients of γ̇ and T as 〈f〉 increases [see Figs. 1(b)-(c)].217

Row 3 of Fig. 3 shows the profiles of T which we include because of its demonstrated218

importance in driving segregation in certain systems (e.g., [20, 21, 29]). In the sparse flow,219

the less dense particles have a higher value of T than denser particles, which one might220

expect when considering momentum exchange among particles of different density (e.g.,221

Ref. [37]). On the other hand, in the system of highest solids fraction (〈f〉 = 0.6), the222

difference between species kinematic temperatures is minimal, especially at the center of the223

chute cell. This is consistent with our previous observations of highly concentrated mixtures224

in a drum [37], where we argued that in high solids fraction sheared flows, the velocity225

fluctuations did not differ for particles of similar size, regardless of their relative density226

because of geometric considerations of the particle movements.227

We consider two quantities to determine the temporal evolutions of the mixture dynamics.228

The first is the width-averaged vertical velocity of the particles in the chute 〈w〉. We used229
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this to estimate the time dependence of the average kinematics of the mixture. The second230

measure we used provides a systematic measure of the rate and degree of segregation, S,231

essentially, the standard deviation of mean concentration Si of each species i at each time232

step t:233

Si(t) =

√

√

√

√

Nbin
∑

j=1

[(φi(t))j − 〈φi〉]2/(Nbin − 1). (3)

Here, Nbin = 2500 is the number of bins in the y-direction, (φi(t))j = (fi/f)j is the mixture234

concentration of species i in bin j at time t, and 〈φi〉 = 〈fi〉/〈f〉 is mean (volume) concen-235

tration of this species in the system (0.5 for both species). Since 〈φd〉 = 〈φl〉 = 0.5, and236

(φd(t))j + (φl(t))j = 1 (for all t), Sd = Sl, which we denote by S.237

Figure 4 shows the time-dependence of 〈w〉 [Figs. 4 (a), (c), and (e)] and S [Figs. 4 (b),238

(d), and (f)] for the same three systems presented in Figs. 2 and 3. For a sense of the spatial239

resolution of the evolving segregation patterns in these systems, we plot the spatiotemporal240

profiles of the concentration of the denser particles in Figs. 5 (a)-(d). In all systems at early241

times, 〈w〉 and S grow asymptotically from 0 to constant values, at which point the mean242

flow kinematics and segregation reach a steady state. For 〈f〉 = 0.6, this growth takes place243

in two stages: first, 〈w〉 and S increase to relatively constant values within a few seconds244

and remain essentially steady until t ≈ 100 s [see Fig. 4 (e)]; then the particles suddenly245

accelerate again and segregate further until another set of relatively constant values for246

〈w〉 and S is reached; 〈w〉 and S remain steady once again until we stop the simulation at247

t ≈ 300 s [Fig. 4 (e)]. The time of this transition from one apparent metastable state to the248

next differs with different initial conditions. We see evidence for a similar transition for our249

moderate density system [t ≈ 10 s in Fig. 4 (c)], though the effect on segregation rate, if250

any, is negligible [Fig. 4 (d)]. The re-acceleration of the flow is possibly due to a relatively251

minor but sudden rearrangement of particles in the near-close-packed region similar to cage-252

breaking in similarly dense sheared flows [38]. These dynamics could also be related to a253

jamming transition, a matter that is currently under investigation.254

To compare the rate for each system to reach steady state and the segregation rate at255

different systems, we fit the curves of 〈w〉 and S in Fig. 4 using one of two exponential256

relations:257

f(t) = A+B exp(−t/τ) (4a)
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258

g(t) = A +B exp(−(t− t0)/τ) (4b)

where fitting parameters A and B are the fitted initial (A+B) and final (A) values for each259

variable, and τ is the timescale of each process. We fit the data from 〈f〉 = 0.2 and 0.4260

using Equation (4a). During the first stage of 〈f〉 = 0.6, we fit the variables using Equation261

(4a), and during the second stage (from t = 100 to 300 s, determined empirically) we use262

Equation (4b), where t = 100 s is our empirically-determined start time for the second stage263

of the system evolution.264
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FIG. 4. (Color online) Time dependence of average downstream velocity 〈w〉 and segregation

index S: First row shows plots of the downstream velocity averaged across the width of the chute

〈w〉 =
∑Nbin

j=0 f jwj/
∑Nbin

j=0 f j, where wj and f j are the average vertical velocity and average solid

fraction of the mixture in bin j and Nbin = 2500 is the number of bins in the y−direction and

the second row shows plots of a measure of the segregation in the chute S [see Eq. (3)]. Symbols

are data measured from DEM simulations and solid lines are exponential fits to the data. For

〈f〉 = 0.2 and 0.4, the fit equations are f(t) = A + B exp(−t/τ). For 〈f〉 = 0.6, when t < 100 s

(stage I), the fit equation is the same as those at 〈f〉 = 0.2 and 0.4, and when t > 100 s (stage II),

the fit equation is f(t) = A + B exp(−(t − t0)/τ). Here, A, B, t0, and τ are fitting parameters:

A + B and A represent the initial and final values for each variable, τ is the timescale, and t0 is

indicative of the effective start time of the exponential decay during stage II for 〈f〉 = 0.6. The

fitting coefficients are shown in Table III.
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TABLE III. Values of fitting coefficients for 〈w〉 and S.

Aw (m/s) Bw (m/s) τw (s) t0,w (s) AS BS τS (s) t0,S (s)

〈f〉 = 0.2 -8.53 8.83 0.61 - 0.21 -0.22 0.18 -

〈f〉 = 0.4 -8.05 8.05 0.69 - 0.35 -0.28 1.08 -

〈f〉 = 0.6(I)a -0.88 0.85 0.82 - 0.12 -0.12 6.60 -

〈f〉 = 0.6(II)a -2.77 2.00 33.90 101 0.19 -0.077 26.22 100

a I and II represent two stages of the flow.
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FIG. 5. Spatio-temporal profiles of concentration of denser particles (φl = fl/f) for (a) 〈f〉 = 0.2

at t = 0 − 5 s, (b) 〈f〉 = 0.4 at t = 0 − 20 s, (c) 〈f〉 = 0.6 at t = 0 − 100 s, and (d) 〈f〉 = 0.6 at

t = 0 − 300 s. The legend indicates the shade of gray that corresponds to particular fraction of

denser particles. For example, φd = 1 for white pixels and φd = 0 for black pixels.

The values of these fitting parameters for 〈w〉 and S for the three different 〈f〉’s are listed265

in Table III. The timescale for both 〈w〉 and S (τw and τS, respectively) increase as 〈f〉266

increases, though the increase of τw is not as pronounced as for τS. The average flow in the267

sparsest system (〈f〉 = 0.2), takes longer for the mean flow to reach the steady state than268

the essential segregation (τw > τS). When 〈f〉 increases to 0.4, τw is comparable to τS. For269

〈f〉 = 0.6, τS is 8 times larger than τw in stage I, indicating segregation of the two species270

is still evolving when the mean flow has reached steady state.271
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As mentioned, segregation in the sparse system has been previously shown to be driven272

by the gradients of granular temperature, which can be modeled by the kinetic theory273

[21, 25]. We have shown that segregation can also be driven by gradients in shear rate274

and granular temperature gradients [26]. In Section IVA, we use a kinetic theory approach275

to model the shear-induced density segregation in the vertical chute. The kinetic theory276

captures the segregation trends and fluxes at sparse systems (e.g. 〈f〉 = 0.2), but it over-277

estimates the segregation fluxes when the system concentration increases (〈f〉 ≥ 0.4). Next,278

we adapt a recently-developed theory [29] based on a mixture theory to understand the279

driving mechanisms for shear-induced density segregation for the higher 〈f〉 systems.280

IV. TWO MODELS FOR SHEAR-INDUCED SEGREGATION281

We consider these results in the context of two models. The first is kinetic theory for282

binary mixtures of slightly inelastic particles as detailed in Ref. [23]. The second is based283

on a model we previously proposed for different sized, same density particles, described in284

detail in Refs. [19, 29].285

A. Kinetic theory adapted for the vertical chute problem286

To compare our simulation results with those predicted by kinetic theory, we consider287

that our particles are slightly dissipative (restitution coefficient e ≈ 0.9) and that what288

we might call the dynamic temperature of each species [the kinetic energy of the velocity289

fluctuations, TD = miT i typically differ from one another (mi is the mass of species i)]. As290

in Ref. [30], we use expressions derived under the framework of kinetic theory assuming a291

Maxwellian velocity distribution and allowing the particles to be slightly inelastic and that292

includes the effect of non-equipartition of temperature [37, 39, 40] according to expressions293

in Ref. [23] (similar to those in Ref. [20]).294

To compare predictions from kinetic theory with our simulation results, we focus on295

segregation in the y−direction (see Fig. 2) within the first 1 s of the simulation. In Fig. 6,296

we plot the difference in the average “segregation” or “diffusion” velocities vl − vd of the297

two species from the DEM simulations and as predicted according to expressions developed298

from kinetic theory. (We note that the details on how the theoretical values are calculated299
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are included in Appendix A.)300
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FIG. 6. (Color online) Profiles of the relative diffusion velocities vl − vd between less dense and

denser particles in the y−direction averaged across the width of the chute and over the first 1 s for

three different systems with 〈f〉 indicated in the figure. Solid lines denote vl− vd = 0 to guide eye.

In all cases, kinetic theory successfully predicts the segregation trend. Specifically, the301

dense particles segregate toward the center, and the less dense particles segregate toward302

the walls. For the sparse system (〈f〉 = 0.2), kinetic theory successfully predicts the relative303

segregation velocities both qualitatively and quantitatively. The predicted fluxes are slightly304

larger than those measured from the simulation. This is probably due to the existence305

of “density waves” of locally high concentrations of particles as reported by Liss et al.306

[41] in this system (apparent in Fig. 2(b)), which is not accounted for in the development307

of the predictions we report here from kinetic theory (Appendix A). However, when the308

system is more concentrated (〈f〉 ≥ 0.4), kinetic theory over-predicts the relative segregation309

velocities. At 〈f〉 = 0.6, the predicted segregation fluxes are one order of magnitude larger310

than fluxes from the simulation. These results indicate that kinetic theory can qualitatively311

predict segregation fluxes in agreement with previous work [21, 25]. However, as the system312

becomes more concentrated (〈f〉 > 0.4), kinetic theory overestimates segregation fluxes as313

also found by Xu et al. [25], and the difference between theory and results increases as 〈f〉314

increases.315

B. Mixture theory with “temperature effects” adapted to density variations316

We next consider a model we developed to account for the effect of temperature gradients317

on segregation in sheared high-〈f〉 systems for particles differing only in size to determine318

whether or not it can be adapted to model the segregation effects we see here for mixtures319
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of particles differing in density. Our mixture theory model is more simplistic than kinetic320

theory in that it does not start at the particle-scale to develop rules for interactions between321

species. Rather, the interaction forces are based on some macroscopic assumptions of the322

mechanics of the interactions. In that way, this theory is more easily adaptable to different323

boundary conditions, but one must use caution in interpreting the results.324

The basic form of the model is described in detail in Refs. [19, 29], adapted to gravity-325

driven flow in Ref. [42]. The model development in our earlier work was based, in part, on326

the assumption that the solids fraction f is uniform throughout for equal-density particles,327

and, therefore, so is what we might call the mixture bulk density defined by ρ = fρm. For328

segregating mixtures of particles differing in material density, even if f is uniform, ρ becomes329

non-uniform as the mixture segregates. In this section, we outline our theory following much330

of the development we described in Refs. [19, 29], but modified to allow for a spatially varying331

particle density and then compare it with our DEM results.332

1. Overview of mixture theory333

As in the description for the DEM results, we denote bulk Eulerian properties of each334

species with subscripts and those of the mixture of both species together as variables without335

subscript (e.g., ρ = Σiρi, and ρi = ρm,ifi). We first consider conservation of mass and336

momentum for the mixture:337

∂ρ

∂t
+∇ · (ρuuu) = 0. (5a)

∂

∂t
(ρuuu) +∇ · (ρuuu⊗ uuu) = ∇ · σ +FFF . (5b)

and the same for the individual species:338

∂ρi
∂t

+∇·(ρiuuui) = 0, (6a)

∂(ρiuuui)

∂t
+∇·(ρiuuui ⊗ uuui) = ∇·(σσσi) +FFF i + βββi. (6b)

In these equations, σσσ is the stress tensor using the relatively standard sign convention for339

stresses as, for example, noted in Ref. [43], and FFF represents the net body force per unit340
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volume. σσσi is the local stress borne by species i, and the total stress σσσ =
∑

σσσi. βββi represents341

the interaction force exerted on species i by the other species.342

We then consider the instantaneous value of each variable q at position rrr as a sum of343

the local temporal average q(rrr) and the difference between its instantaneous value and the344

average q′(rrr, t) = q(rrr, t)−q(rrr) (typically called “Reynolds decomposition,” [44]). We consider345

the results in the context of pseudo-2d systems like the vertical chute so that the flow exhibits346

uniformity in the directions perpendicular to segregation (e.g. x− and z−directions). We347

rewrite the momentum equation (5b) for the mixture in the y− direction as348

∂

∂t
(ρ+ ρ′)(v + v′) +

∂

∂y
[(ρ+ ρ′)(v + v′)(v + v′)] =

∂

∂y
(σyy + σ′

yy) + F y + F ′

y (7)

We consider systems in which the mixture velocity reaches steady state (as in the majority349

of the segregation for 〈f〉 = 0.6 in Fig. 4, row 3). We approximate the correlations between350

velocity fluctuations and concentrations as negligible (as we found in Ref. [29]). Finally, for351

this paper, we restrict our discussions to cases where the only body force (particle weight)352

is in the z−direction, like the vertical chute. Then the Reynolds averaged equations in the353

y−direction may be expressed as :354

∂σcccyy
∂y

+
∂σkkkyy
∂y

= 0, (8)

for the mixture and355

∂σcccyy,i
∂y

+
∂σkkkyy,i
∂y

− βy,i = 0. (9)

for the individual components. As in Ref. [29], we refer to σkkkyy ≡ ρv′v′ as a component of356

the kinetic stress and define a contact stress tensor σσσccc = −σσσ so that terms such as σcccyy are357

positive for our problem where there are only compressive, not tensile, interactions between358

particles. We note that ρv′v′ scales roughly with T , so that Eq. (8) indicates that a gradient359

in T can be associated with a gradient in both σkkkyy and σcccyy (of opposite signs). Since all360

terms in Eqs. (8) and (9) are averaged, we drop the overbar from this point in this paper,361

so that unless noted for each variable q alone refers to the average quantity q.362

In contrast with classic mixture theory (e.g., Refs. [45–47]), we follow Refs. [29, 42]363

and references within, and allow the partitioning of kinetic and contact stresses between the364

species to vary from the associated solids fractions (σcccyy,i 6= φiσ
ccc
yy and σ

kkk
yy,i 6= φiσ

kkk
yy). Instead,365

we use independent stress partition coefficients (ψccc
i and ψkkk

i ):366

σcccyy,i = ψccc
iσ

ccc
yy, and σ

kkk
yy,i = ψkkk

i σ
kkk
yy, (10)
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where ψccc
i and ψ

kkk
i determine the proportion of normal contact and kinetic stresses carried by367

species i and are not necessarily equal to φi.368

For the interaction term βy,i, we propose a similar form to that for equal density particles369

in Ref. [29], modified slightly to account for the variable species concentrations throughout370

the system:371

βy,i = σcccyy
∂

∂y
ψccc
i + σkkkyy

∂

∂y
ψkkk
i − ρicD(vi − v)− d

∂ρi
∂y

, (11)

The first two terms on the right hand side of the equation ensure that, as in Darcy’s law,372

the segregation process is driven by intrinsic rather than partial stress gradients (as in Refs.373

[47–49]). The third term is a linear drag law, and cD is a linear drag coefficient. The fourth374

term acts as a “remixing force” that drives grains of constituent i towards areas of lower375

concentration, and d is an ordinary diffusion coefficient.376

Combining Eqs. (10)-(11) with Eq. (8), a segregation flux of species i can be expressed377

as:378

ρi(vi − v) =
(Rccc

i − Rkkk
i )φi

cD

∂σkkkyy
∂y

−
d

cD

∂ρi
∂y

. (12)

Rccc
i = ψccc

i/φi and Rkkk
i = ψkkk

i /φi are stress partition variables we introduce to facilitate a379

physical interpretation of the governing features of this equation. Equation (12) is similar380

to, but more general than, the equivalent expression for equal density particles presented as381

Equation (11) in Ref. [29] as:382

φi(vi − v) =
(Rccc

i − Rkkk
i )φi

ρcD

∂σkkkyy
∂y

−
d

cD

∂φi

∂y
. (13)

For mixtures of particles of the same material density, ρ can be expressed by ρ = ρmf , where383

ρm is the material density of all species in the mixture, so the two expressions for flux are384

interchangeable. For our mixtures of particles of different densities ρ = ρm,dfd + ρm,lfl, and385

the two expressions for flux are not equal.386

Otherwise, the predictions are similar. Both Equations (12) and (13) predict that if387

Rccc
i = Rkkk

i , the species will not segregate. However, if Rccc
i 6= Rkkk

i and ∂σkkkyy/∂y 6= 0, whichever388

species carries a higher fraction of the contact stress than they do the kinetic stress should389

be pushed to the region of higher temperature.390
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2. Mixture theory compared with simulation results391

To compare the theoretical predictions with the computational results, we consider that,392

for the theoretical development, we have assumed that the velocities in the system reach393

steady state before the majority of the segregation process takes place. This condition394

is met for the initial segregation that occurs for the highest, 〈f〉 ∼ 0.6, so we focus our395

comparison on this case. We do not have a predictive form for stresses or the coefficients of396

drag and diffusion. In lieu of a direct comparison of theory and simulation, we investigate397

the relationships between the segregation flux and partition coefficients measured in the398

simulations and compare them with those predicted by Equation (12) to determine whether399

the theoretical framework is consistent with the simulations. Then we use these data to400

obtain estimates for the coefficients of drag and diffusion as described shortly.401

We first calculate the stresses and other dynamics in the simulations throughout the402

system including the partition coefficients for the partial stresses and the concentration403

profiles. For the stresses, we follow the same procedure described in Ref. [29], which we404

summarize in Appendix B. We have found that the stresses do not change considerably over405

the course of the simulation and plot the profiles from the data averaged over t = 50-100406

s in the simulation after the mixture kinematics first reach a quasi-steady state. In Fig.407

7 (a), we plot the profiles of σkkkyy(y) and σcccyy(y), which in many ways are similar to those408

using equal-density, different-sized particle mixtures in Ref. [29]. The profile of σkkkyy(y) peaks409

near the rough walls and dips in the middle. As one would expect from Eq. (8), σcccyy(y)410

follows the opposite trend: it is highest in the middle and dips near the walls. The total411

stress σcccyy(y)+σ
ccc
yy(y) is nearly constant across the chute cell. We fit the data by exponential412

functions: σkkkyy(y) = Aexp(B|y|), and σcccyy(y) = C−Aexp(B|y|), where the fitting parameters413

are given in the caption of Fig. 7. Figures 7 (b) and (c) show the contact and kinetic stresses414

associated with each of the two species, and Fig. 7 (d) shows the concentration profiles of415

each constituent in the y−direction. These results indicate that, depending on the region of416

the chute, either the less dense or the denser particles may take up a higher fraction of the417

local stress, and σcccyy,i(y) scales most closely with φi(y).418

In Fig. 8 we plot the relative partial stress coefficients Rccc
i = ψccc

i/φi and Rkkk
i = ψkkk

i /φi,419

averaged over the time interval t = 50 − 100 s. Rccc
i ≈ 1 except immediately adjacent to420

the wall, where the results may be affected by the neighboring wall particles. These results421
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FIG. 7. (Color online) The y−component of total and partial normal stresses in the y−direction

for the mixture and the two species at a quasi-steady state (t = 50 − 100 s). (a) total, kinetic,

and contact stresses for the mixture; (b) contact stresses for the two species; (c) kinetic stresses

for the two species; (d) species concentrations. The dashed lines in (a) are exponential fits for the

kinetic and contact stresses of the mixtures. For kinetic stresses: σkkkyy(y) = Aexp(|By|) based on a

linearized least squares fit, where A = 3.6× 10−2 N/m2 and B = 0.25 mm−1; for contact stresses:

σcccyy(y) = C −Aexp(|By|), where A = 1.6 × 10−2 N/m2, B = 0.24 mm−1 and C = 27.05 N/m2.

indicate that nearly everywhere the contact stress borne by each species is proportional to422

its local concentration, i.e., ψccc
i = φi. In contrast, the denser particles carry a significantly423

higher fraction of the kinetic stresses than their concentration (Rkkk
d > 1, and ψkkk

d > φd), and424

the less dense particles carry a lower fraction of the kinetic stresses than their concentration425

(Rkkk
l < 1, and ψkkk

l < φl). We briefly note here that these results are markedly different than426

in mixtures of particles differing only in size, where the lighter (smaller) particles carry a427

higher fraction of the kinetic stress [29, 42]. We discuss this more in Sections V and VI.428

The results in the mixtures of particles differing only in density indicate that Rccc
l −R

kkk
l > 0429

and Rccc
d −Rkkk

d < 0. Considering this in the context of the theoretical predictions in Equation430

12, the less dense particles should migrate in the direction of increasing kinetic stress and431

the denser particles should migrate in the direction of decreasing kinetic stress (Fig. 8(c)).432

Since ∂σkkkyy/∂y > 0 for y < 0 and ∂σkkkyy/∂y < 0 for y > 0 [see Fig. 7(a)], Eq. (12) predicts433
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L − Rkkk
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Rccc
L −Rkkk

L = BφD; B ≈ 0.8.

that denser particles segregate to the center of the cell and the less dense particles segregate434

to the walls, consistent with our simulation results (e.g., Figs. 2(c) and 3).435

We build on these results to develop a prediction for the evolution of the local concen-436

trations of the species. We first consider the equation of conservation of mass for species437

i. With no gradients in the x− and z−directions and assuming the solids fraction of the438

mixture is time independent during segregation (∂f/∂t = 0), we can rewrite Eq. (6a) as:439

ρm,if
∂φi

∂t
+

∂

∂y
(ρivi) = 0. (14)

We substitute the theoretical form of the segregation flux expressed in Eq. 12 into Eq. 14,440

and we find:441

ρm,if
∂φi

∂t
+

∂

∂y

(

(Rccc
i −Rkkk

i )φi

cD

∂σkkkyy
∂y

−
d

cD

∂ρi
∂y

)

= 0. (15)

Comparing the concentration profiles in Fig. 7(d) with profiles of Rccc
i − Rkkk

i in Fig. 8(c)442

indicates that the magnitude of Rccc
i −R

kkk
i for each species is correlated with the concentration443

of the other species. We plot Rccc
l −R

kkk
l vs. φd for these data in Fig. 8(d) excluding the creeping444

regions in the middle of the chute (−6mm < y < 6 mm). Though not perfectly linear [see445
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fit in Fig. 8(d)], we approximate it as such in Equation 15, i.e., Rccc
l −Rkkk

l ≈ Bφd, where B is446

a fitting parameter. (We determined that B ≈ 0.8 by fitting the data in Fig. 8). Then Eq.447

(15) may be rewritten for the less dense particles as:448

∂φl

∂t
+

B

cDρm,lf

∂

∂y

[

φl(1− φl)
∂σkkkyy
∂y

]

−
d

cDf

∂2fφl

∂y2
= 0. (16)

The spatio-temporal profiles of concentration of less dense particles can then be obtained449

by solving Eq. (16) numerically, though f(y), ∂σkkkyy/∂y, diffusivity D = d/cD, and the ratio450

q = B/cD (an indication of the segregation magnitude) must be obtained. For f(y) and451

∂σkkkyy/∂y we use the profiles of the mixture solid fraction [Fig. 1(d)] and normal kinetic452

stresses in the y-direction [Fig. 7(a)] obtained from the simulations. We do not know D453

and q; for simplicity, we choose constant values for these two parameters empirically by454

comparing the predictions obtained using different values of D and q to the simulation455

results. For our numerical solution, we use initial conditions consistent with a homogenous456

mixture (φd = φl = 0.5 at t=0 for all values of y), and no-flux conditions at the two walls457

(−q(1 − φl)φl(∂σ
kkk
yy/∂y)/ρm,l = D∂(fφl)/∂y at y = ±25 mm for all values of t). We then458

discretize the problem and solve numerically by using a central difference scheme for spatial459

derivatives and modified Euler method for time integration.460

Figure 9 shows spatio-temporal profiles of concentration of less dense particles from the-461

oretical predictions up to 300 s. Based on trial and error we chose q = 1 × 10−3 s and462

D = 0.2 mm2/s. The value for D is similar to that we found for a mixture of 2 mm and 3463

mm particles in a drum, where we found d = 1.26 × 10−5 m2/s2 and cD = 6.3 s−1 so that464

D ≈ 0.2 mm2/s. On the other hand cD = B/q = 0.8/(10−3 s) = 80 s−1 is signicantly larger465

than that for the mixture of different sized particles (≈ 6.3 s−1). It is likely that both D466

and cD vary with details such as the local shear rate as in Ref. [13, 28, 50], so that such467

comparisons are not so useful, but rather the next generation of the model should consider468

a more physically representative form for these parameters which we discuss in the next469

section.470

In both the theoretical predictions and simulation results [compare Fig. 9 (a) and (b)471

with Fig. 5 (c) and (d), respectively], the less dense particles segregate to the side walls,472

and dense particles segregate toward the center. In the middle of the chute, in the slow473

creeping region where the gradients of normal kinetic stresses is very small, the segregation474
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process is much slower than other regions. All of these indicate a good qualitative agreement475

between theoretical predictions and simulation results. On the other hand, the theory does476

not capture the sudden intensifying of the segregation pattern that begins ≈ 100 s in the477

simulations that appears to be correlated with an increase in average velocity. We hypoth-478

esize this sudden change is associated with an increase in packing efficiency and decrease in479

relative magnitude of collisional damping of the particle motion that is not captured by the480

theory.481
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FIG. 9. Theoretical predictions of spatio-temporal profiles of the concentration of less dense par-

ticles compared to those in Figs. 5 (c) and (d). (a) t = 0 − 100 s (b) t = 0 − 300 s. The legend

indicates the shade of gray that corresponds to particular fraction of denser particles. For example,

φd = 1 for white pixels and φd = 0 for black pixels.

Finally, with the fitted values of q and D from above, we compare the segregation velocity482

vl−vd predicted by Eq. (12) with the simulation results for the first second and at the steady483

state (t = 300 − 310 s), as shown in Fig. 10. Our theoretical predictions match well with484

DEM simulations at both stages of simulations, in contrast to the kinetic theory (Fig. 12),485

which, based on the local kinematics in the DEM simulations, overpredicts the segregation486

velocity by approximately one order of magnitude compared with that exhibited by the487

DEM simulations.488

V. DISCUSSION489

These results add to the growing body of evidence supporting the importance of veloc-490

ity fluctuations (via granular temperature and/or kinetic stresses) in driving segregation in491

high solids fraction granular flows. Effects of velocity fluctuations are typically discounted492
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in high-f granular flows as they are relatively small. For example, kinetic stress is much493

smaller than contact stress (e.g., Fig.7), and the kinetic energy associated with velocity494

fluctuations is much smaller than gravitational potential energy differences in a granular495

mixture. The results reported here support the premise that, even though velocity fluctua-496

tions are relatively small compared with other dynamics in high-f flows, gradients of kinetic497

stress can drive segregation in a wide variety of granular materials at high solids fractions498

(high-f). Specifically, the kinetic stresses drive the segregation direction and magnitude499

through: (1) the manner in which they are partitioned among different species compared to500

the partitioning of contact stresses and (2) the gradient in the kinetic stresses. These results501

are qualitatively similar in mixtures of particles differing only in size and those differing only502

in density.503

A striking difference between the segregation of mixtures of different sized particles and504

different density particles in high-f flow is the segregation direction of the more massive505

particles. The direction of segregation of the more massive (denser) particles in mixtures506

of particles differing only in density is opposite to the more massive (larger) particles in507

mixtures of particles differing only in size. In the first case, the more massive (denser)508

particles segregate along a kinetic stress gradient toward the region of lower kinetic stress,509

and in the second case, the more massive (larger) particles segregate toward the region510

of higher kinetic stress. Our results indicate that this difference is driven by the manner511

in which the kinetic stress is partitioned among the different species. In high-f flows,512

the smaller particles bear a higher fraction of the kinetic stress than their larger equal-513

density counterparts [19, 29, 30, 37], and the denser particles bear a higher fraction of the514
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kinetic stress than their lighter equal-sized counterparts (similar to results in Ref. [37]).515

Previously published results (e.g., Ref. [37]) suggest these differences are driven primarily516

by the geometry of correlated particle movements in these high-f flows, so, interestingly, it517

appears the geometry driving the fluctuations in these high-f flows is a significant contributor518

to the segregation in these systems.519

Once the kinetic stress is unevenly distributed among the species, the species that bear a520

larger fraction of the kinetic stress than their volume concentration in the mixture are driven521

toward “cooler” regions (those of lower kinetic stress and lower granular temperatures).522

Those that bear a smaller fraction of the kinetic stress are driven toward “hotter” regions523

(those of higher kinetic stress and higher granular temperatures). It is not immediately524

obvious why this occurs, but for insight we might consider that all particles appear driven525

away from high-temperature regions. If one species bears a higher fraction of the kinetic526

stress than the other, the additional random kinetic energy may allow that species to explore527

more pore spaces among the mixture to get to the lower temperature regions.528

We have shown here and elsewhere ([19, 30]) that kinetic theory, perhaps the most com-529

plete physics-based predictive theoretical frameworks for granular mixtures breaks down in530

its prediction of segregation in high-f flows. While kinetic theory directly accounts for parti-531

cle scale interactions in the form of transfer of momentum, and energy during collisions, the532

predictions are based on the assumption that collisions are chaotic, uncorrelated, and binary.533

Effects due to simultaneous multi-particle interactions are typically not captured, though534

their have been some recent attempts to extend kinetic theory by considering macroscopic535

structures in granular flows [51]. The need to account for these effects may be responsible536

for the breakdown in kinetic energy predictions at higher solids fraction. We are currently537

investigating these questions in detail, as they may also prove relevant for the results we538

present here where small scale rearrangements can apparently lead to large scale system539

segregation adjustments.540

Other than kinetic theory, relatively little theoretical investigation has been performed541

for the manner in which gradients in velocity fluctations, granular temperature, and kinetic542

stresses may drive segregation. The theory described here shows promise in its ability543

to capture segregation in these systems. In the end, it is a relatively simple but critical544

generalization of the theory presented in Refs. [19, 29]. We note that the theory suffers from545

empirical expressions for drag and diffusion coefficients, and other details of the interparticle546
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interactions. In that light, it is interesting to consider the empirical results with those from547

other models. Most relevant for the mixtures discussed here, Tripathi and Khakhar [27, 28]548

proposed a form for the drag force analagous to Stoke’s Law. Additionally, the extended549

form of kinetic theory proposed by Larcher and Jenkins [51] has alternative forms for the550

drag and diffusion coefficients that could be tested for their effectiveness in application to551

this mixture theory.552

VI. CONCLUSION553

In this paper, we performed a numerical and theoretical study of segregation of particles554

differing only in density sheared in a vertical chute cell. We showed that gradients in555

the shear rate and associated kinematics in the span-wise direction can drive segregation556

by particle density in both sparse and high solids fraction systems. This shear-induced557

segregation, reported for high solids fractions mixtures of particles differing only in density558

for the first time, exhibits a similar segregation trend to previous reports of analogous559

phenomena in sparse flow. Specifically, the denser particles segregate to the region of a560

lower shear rate and granular temperature, and the less dense particles segregate to the561

region of higher shear rate and granular temperature. This is in stark contrast to our562

previous observations of shear-induced segregation of particles differing only in size [26]563

which exhibits a phase transition at intermediate concentrations. In sparse flows large564

particles segregate to regions of low shear rates, low granular temperatures, and low kinetic565

stress, while in high solids fraction flows, large particles segregate to regions of high shear566

rates, high granular temperatures and high kinetic stresses. This dichotomy may be related567

to recent reports of an intermediate segregation state in mixtures of particles differing both568

in size and density where particles that are both larger and denser than their smaller less569

dense counterparts rise to an intermediate level in a sheared system where the shear rate is570

non-uniform (e.g., Refs. [12, 52–54]).571

Our mixture theory successfully predicts the segregation trends observed in the simula-572

tions, though, admittedly, uses empirical fits for some of the coefficients. In the framework573

of this theory, the shear rate gradients give rise to kinetic stress gradients – closely related574

to the gradients of granular temperature – which explicitly drive density segregation. Then,575

the particles which bear more of the contact stress than the kinetic stress – here, the less576
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dense particles – are pushed to the regions of low contact stress and high kinetic stress (or577

high granular temperatures). In contrast, in high solids fraction mixtures of particles dif-578

fering only in size, the large particles bear more of the contact stress than the kinetic stress579

and push the large particles to the regions of low contact stress and high kinetic stress (or580

high granular temperature).581

Although the framework is reasonable for shear-induced segregation, and predictions ap-582

pear to correlate reasonably well with observations, a deeper understanding of the kinematics583

of high-f sheared mixtures is needed for a complete segregation theory. First, we need a584

relationship between Rccc
i − Rkkk

i and flow properties such as particle concentrations and flow585

velocities to close the governing equations. For this, we have temporarily used a linear re-586

lationship between Rccc
i − Rkkk

i and φj (for disparate species i and j), though this is clearly587

not completely representative, judging from the data (Fig. 8(d)). Coefficients of drag and588

diffusion also suffer from this empirical over-simplified nature. A more mechanistic way to589

obtain relationships for D and cD as they depend on kinematics of the flow is necessary for590

a predictive model for shear-induced segregation.591

Finally, most segregation takes place in a gravitational field where segregation may be592

driven by simultaneous effects associated with the gravity and shear rate gradients. A more593

widely-applicable theory will combine the theoretical details described in this paper and594

in Ref. [29] with gravity-driven segregation effects, such as those described by Gray and595

colleagues, first in Refs. [48, 49] or Khakhar and colleagues, first in Ref. [10], and more596

recently in Refs. [13, 27, 28]. Preliminary results presented in Ref. [42] show promise in597

capturing the simultaneous effects of particle size and density in segregating mixtures.598
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Appendix A: Kinetic theory expressions used in segregation prediction601

As in Refs. [20, 23, 30], The diffusion velocity of two species i and j in the direction of602

the interest (e.g. y−direction) can be calculated as:603

vi − vj = −
n2

ninj
Dijdi, (A1)

Where, Dij is the local coefficient of diffusion, and di (sometimes called a “diffusion force”604

[22]) represents competing segregation and mixing factors leading to the difference in dif-605

fusion velocities (vi − vj) and subsequent segregation between the two types of particles.606

Calculations performed for Dij and di are listed in Table IV. The calculations involve terms607

related to granular temperature TD, pressure P and ordinary diffusion represented by dT , dp,608

and dn. We note that the granular temperature used here is what might be considered a dy-609

namic granular temperature compared with the temperature plotted in Fig. 3: TD,i = miTi.610

Also, pressure Pi is distinct from the hydrostatic pressure and is derived from considerations611

within the framework of kinetic theory and conservation of momentum for the two species612

as shown in Refs. [20, 23].613

We average the details in the x− and z−directions over the first 1 s of the experiment.614

In our calculations, most of the variables, such as TD, are calculated directly from the615

simulations directly, while the initial solids fraction of each species is set to be uniform, each616

equal to one half of the total solids fraction (fi(y) = 〈f〉/2).617

The first column of Fig. 11 shows the profiles of TD(y) for the two constituents at three618

different 〈f〉’s. In all systems, TD is large close to the walls and small at the center of the619

cell for both species (similar to Fig. 3, row 4). As 〈f〉 increases from 0.2 to 0.6, temperature620

gradients decrease approximately by two orders of magnitude. Furthermore, the less dense621

component always has greater values of TD than denser particles in the regions close to the622

walls, where the flow is dilute [see Fig. 1(d)]. In contrast, TD are roughly the same in the623

region at the center of the cell, where the flow is highly concentrated. This matches the624

observation for the flow of granular mixtures differing only in density in the rotating drums625

[37]: granular temperature scales inversely only with size, not with density in high-f regions,626

while in low-f regions, granular temperature scales inversely with mass (or material density627

for same size particles). The second column of Fig. 11 shows profiles of P (y). Similar to628

TD, P is large in the region close to the walls and small in the region at the center of the629
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FIG. 11. (Color online) Profiles of Dynamic granular temperature and dynamic pressure for two

species in the y−direction averaged across the width of the chute and over the first 1 s for three sys-

tems of different 〈f〉’s as indicated in the figure. First row: Plots of dynamic granular temperature

TD; Second row: Plots of dynamic pressure P .

cell. The pressure of less dense particles is larger than dense particles in the dilute region.630

In the high-f region, the pressure of two species are almost the same.631

The second column of Fig. 12 shows the diffusion forces that drive the segregation and632

diffusion fluxes (as calculated in Table IV). Based on Eq. (A1), positive (negative) diffusion633

forces in the left (right) half of the chute cell imply negative (positive) values of vl − vd,634

indicating less dense particles segregate to the side walls. In all three systems, the thermal635

‘diffusion force’, dT , that is associated with gradients of the granular temperature is much636

greater than the other two diffusion forces (i.e. dn and dp), indicating that dT is the dom-637

inating driving forces for density segregation in vertical chute flow. However, as shown in638

Fig. 6, the kinetic theory overpredicts vl−vd at high f compared with the DEM simulation,639

which implies that the thermal driven ‘diffusion force’ as calculated in Table IV probably640

overestimates the granular temperature gradient effects on density segregation in high-f641

granular flow.642

Appendix B: Stress calculation643

In this Appendix, we briefly describe our calculations of the total and partial stresses we644

use for testing our theoretical segregation predictions for the mixture theory. To do so, we645
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TABLE IV. Variables in the diffusion equation [Eq. (A1)] of kinetic theory

Variable Expression Description

ri ri Particle radius of species i

mi mi Particle mass of species i

ni
fi

4πr3i /3
Number density of species i

TD,i miTi = mi
u′iu

′

i + v′iv
′

i + w′

iw
′

i

3
Dynamic granular temperature of species i

Pi

ni(TDi +∆TDi)+ Dynamic granular pressure
∑2

k=1Kik

[

TDi +
(mi∆TDk+mk∆TDi)

(mi+mk)

]

of species i

di dP + dT + dn “Diffusion force” for species i

dP

Pi

Pj
∇Pj −∇Pi

nTD

(

Pj

Pi
+ 1
) Pressure driven diffusion force

dT −
Kij

nTD

mj −mi

mj +mi
Thermal driven diffusion force

dn −
Kij

n

[

∇ni

ni
−

∇nj

nj

]

Ordinary diffusion force

Dij
ninj

n

ri + rj
Kij

[

π(mi +mj)TD

32mimj

]1/2

Local diffusion coefficient

between two species i and j

Kij

(π

3

)

gijr
3
ijninj(1 + e) Coefficient concerning

the frequency of interaction

gij

1

(1− f)
+ 6

(

rirk
ri + rk

)

×
ξ

(1− f)2
Radial distribution function

+8
(

rirk
ri+rk

)2
× ξ2

(1−f)3

ξ 2π(nir
2
i + njr

2
j )/3 area scale

divide the chute into equal sized bins in the y−direction of width ∆y = 2 mm. We calculate646

stresses such considering the contribution from the part of each particle j within a bin of647

width ∆y centered at y.648

We calculate the kinetic stress σkkkyy,n(y) = ρnv
′

nv
′

n(y) (the y-component of the normal649
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kinetic stress of species n) using a relatively standard procedure (as in Ref. [29]):650

σkkkyy,n(y) =
ρm,n

N2

(

∑N

i=1

ΣjVij,n
Vbin

)

(

∑N

i=1

Σj [vij,n − v(y)]2Vij,n
ΣjVij,n

)

.

(B1)

Here, i refers to the ith time step of which there are N , and j refers to the jth particle (of651

species n) that is partly or fully in this bin (at time step i). V n
ij and vnij are the volume and652

velocity of that particle, respectively. Vbin = DL∆y is the total volume of the bin. v(y) =653

Σn[f
n(y)vn(y)]/Σnf

n(y) is mean velocity at y. As in Section IVB, σkkkyy(y) = Σnσ
kkk
yy,n(y).654

To calculate the local contact stress at each position y, we consider each interparticle655

contact K in a bin of width ∆y centered at y. Then, we sum the stresses associated with656

each interparticle contact in each region, as in Refs. [55, 56]. Specifically, for the mixture in657

the y−direction, we calculate:658

σcccyy(y) =

∑N

τ=1

∑Nc(y)

K=1
FijK ,y · lijK ,y

NVbin
. (B2)

Here, FFF ijK,y
is the force of particle i on particle j associated with the Kth contact in this659

bin, of which there are Nc(y, τ) at time step τ . There are N such timesteps. lllijK,y
is the660

vector from the center of particle i to the center of particle j.661

Since a contact may involve particles of different species, we consider three types of662

contacts separately in calculating the species contact stresses. (1) Contacts between two663

less dense particles only contribute to the partial contact stress of the less dense particles,664
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FIG. 12. (Color online) Profiles of driving forces in the y−direction averaged across the width

of the chute and over the first 1 s for three 〈f〉’s as indicated in the figure. The three different

diffusion forces are: dT , dp, and dn vs. y.
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and we denote the stress associated Kth such contact as σσσcccK,ll. (2) Contacts between two665

denser particles only contribute to the partial contact stress of the denser particles, and we666

denote the stress associated Kth such contact as σσσcccK,dd. (3) Contacts between one less dense667

particle and one denser particles contribute to the contact stress of both species; we denote668

the stress associated Kth such contact as σσσcccK,ld. As the size of two species is the same, for669

each collision between a less dense and denser particle, we divided the contribution of stress670

to the partial stresses equally between the two species. Based on that, we calculate the671

partial contact stress at y for particles of species n at time step τ as:672

σσσcccn(y, τ) =
∑Nc,n(y)

K=1
σσσcccK,nn +

∑Nc,j(y)

K=1
σσσcccK,nj/2. (B3)

In this equation, σcccK,nn denotes the contact stress associated Kth contact between a673

particle of type n with another particle of the same species in a bin of width ∆y centered674

at y, of which there are N i
c(y). σσσcccK,nj denotes the contact stress associated Kth contact675

between two particles of different species in a bin of width ∆y centered at y, of which there676

are N j
c (y). We calculate the average stress over N time steps:677

σσσcccn(y) =
∑N

τ=1
σσσcccn(y, τ)/N. (B4)

We note that this satisfies σσσccc(y) = σσσcccl (y) + σσσcccd(y), as specified in Section IVB.678
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