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We perform numerical simulations of a two-dimensional bidisperse granular packing subjected to
both a static confining pressure and a sinusoidal dynamic forcing applied by a wall on one edge of
the packing. We measure the response experienced by a wall on the opposite edge of the packing
and obtain the resonant frequency of the packing as the static or dynamic pressures are varied.
Under increasing static pressure, the resonant frequency increases, indicating a velocity increase
of elastic waves propagating through the packing. In contrast, when the dynamic amplitude is
increased for fixed static pressure, the resonant frequency decreases, indicating a decrease in the
wave velocity. This occurs both for compressional and for shear dynamic forcing, and is in agreement
with experimental results. We find that the average contact number Zc at the resonant frequency
decreases with increasing dynamic amplitude, indicating that the elastic softening of the packing is
associated with a reduced number of grain-grain contacts through which the elastic waves can travel.
We image the excitations created in the packing and show that there are localized disturbances or soft
spots that become more prevalent with increasing dynamic amplitude. Our results are in agreement
with experiments on glass bead packings and earth materials such as sandstone and granite, and
may be relevant to the decrease in elastic wave velocities that has been observed to occur near fault
zones after strong earthquakes, in surficial sediments during strong ground motion, and in structures
during earthquake excitation.

PACS numbers: 45.70.-n,43.35.+d,91.30.-f

I. INTRODUCTION

Granular matter has very unusual properties and can
exhibit liquidlike behavior by flowing under certain exci-
tations, while it can have a solidlike resistance to shear
for other excitations. The jamming phase diagram, orig-
inally proposed by Liu and Nagel [1], provides a concise
description of the transition from jammed to unjammed
states as a function of density, temperature, or loading.
Granular matter can exhibit fragile properties in which
the response depends on the loading history [2–5]. A
number of studies have focused on the loading axis by
applying a shear to the granular packing and studying
the unjamming of the packing above a certain shear level
[6–14]. Much work has also been performed on calculat-
ing the normal or soft modes of granular packings [15–
18], with particular emphasis on the emergence of low
frequency modes close to the jamming transition.

Most previous studies of granular matter under shear
loading have considered primarily quasistatic shear in-
volving plastic granular flow, applying a single direction
of shear [6–14, 19] or cyclic shear [20–26]. Relatively little
work has been performed on the nonlinear elastic/plastic
sound vibration regime of granular matter in the dense
state where macroscopic plastic distortions of the grain
positions do not occur [27]. Such dynamic shearing of
dense granular packings is of particular interest in con-
nection with prominent effects in surficial sediments from
strong ground shaking from earthquakes [28, 29] as well
as the behavior of fault gouge material in response to
earthquake forcing [30, 31]. Gouge is a disordered granu-
lar matter that often exists along and within the fault
core; it is produced by the long-term grinding of the

tectonic plates against each other via a process known
as communition [32]. It has been hypothesized to play
a role in certain behaviors related to earthquake faults,
such as a delayed triggering response in which a large dis-
tant earthquake can initiate an earthquake after a waiting
time of days or months [33]. Moreover, large earthquakes
have been observed to cause a long-lived, shaking induced
depression of the elastic wave velocity in the mid to up-
per crust in localized areas, which slowly recovers over
time [34, 35] as well as in near surface sediments [36–38].

Experiments performed with glass bead packs [4, 30]
and on natural materials such as sandstone show a simi-
lar decrease in the elastic wave velocity under oscillatory
or dynamic loading [3, 39, 40]. One common method for
probing the softening of the elastic wave velocity is the
use of nonlinear resonant ultrasound spectroscopy, which
can measure the nonlinear elastic state of a rock or a glass
bead pack [3]. The frequency of an applied wave of fixed
amplitude A is swept or stepped across a resonant mode
of the sample, and the resulting signal is measured on the
opposite side of the sample [40]. In diverse materials in-
cluding Berea sandstone, Lavoux limestone, or synthetic
slate, the resonant frequency drops with increasing am-
plitude of the driving wave A [40–43], and this indicates a
drop in the velocity at which an elastic wave pulse trav-
els through the sample [4, 44–46]. In granular matter,
when the static confining pressure is increased, the elas-
tic wave velocities increase [47–50]. Early work on elastic
wave or sound propagation in a glass bead packing sug-
gested that the detailed contact structure of grains within
the packing play an important role in wave transmission
[51, 52], particularly in short-wavelength wave scatter-
ing [48]. For long-wavelength coherent waves, effective
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FIG. 1: (Color online) Schematic of system showing the four
confining walls. The bottom and side walls (dark grey) are
fixed, while the top wall (light yellow) is subjected both to a
static confining force Fl

s = −pŷ (thick light red arrow) and
a sinusoidal dynamic loading force (thin dark blue arrows) in
either the compressional (center arrow) or shear (right arrow)
direction.

medium theory indicates a link between the coordina-
tion number (the average number of contacts per grain)
and the elastic wave velocity [47, 49, 53, 54]. Simulations
and experiments with 3D packings indicated that the ef-
fective medium theory fails to account quantitatively for
the shear elastic modulus when the affine approximation
breaks down at low static pressures or high dynamical
amplitudes [55–57]. Much is understood regarding grain
behavior under shear [58, 59]; however, despite a number
of studies on sound wave propagation in two and three
dimensional packings [60, 61], a detailed microscopic un-
derstanding of the elastic wave velocity evolution with
driving amplitude has not yet been obtained.
In this work, we study confined granular packings sub-

jected to both a static pressure and to dynamic loading
achieved by applying an ac compressional or shear load-
ing to our model system. We show that the behavior of
the elastic wave propagation matches what has been ob-
served experimentally, and demonstrate that changes in
the contact number of the grains are correlated with the
elastic wave propagation changes. We illustrate the dy-
namical motion of the grains and discuss the implications
of our work to dynamical triggering studies performed
using earthquake catalogs.

II. SIMULATION

We consider a two-dimensional (2D) packing of N =
700 disks with Hertzian contact interactions [62, 63]:

F
gg
ij = g

[

1

2
(Di +Dj)− rij

]3/2

r̂ij (1)

where g = 10 is the elastic constant, Di(j) is the diameter
of particle i(j), rij = Ri − Rj, rij = |rij |, and r̂ij =
(Ri − Rj)/rij . The value of g can be related to the

Hertzian expression [62] as: g = (8G
√

Dg/2)/3(1 − νg)
where G is the grain shear modulus, Dg/2 is the radius
of the smaller of the two grain sizes, and νg is the Poisson
ratio of the material from which the grains are made. The
two grains interact only when they are in contact with
each other, for rij ≤ (Di+Dj)/2. To avoid crystallization
of the packing, we use a bidisperse assembly of grains
consisting of a 50:50 mixture of grains with a radius ratio
of 1:1.4. We measure length in units of a0, the diameter
of the smaller of the two sizes of grains. Following Gallas
et al. [64] and similar works by Cundall-Strack [63] and
Somfai et al. [60], we include viscous damping forces at
the contacts to mimic the dissipation of sound waves in
granular packings:

Fn
ij = −γnmeff(rij · vij)r̂ij/|rij | (2)

in the normal direction and

Ft
ij = −γsmeff(tij · vij )̂tij/|tij | (3)

in the tangential direction. Here γn = 0.1 and γs = 0.1
are the dissipation coefficients, meff is the effective mass
of the two grain system, vi(j) is the velocity of grain i(j),
vij = vi − vj is the relative velocity, and

tij =

(

−ryij
rxij

)

. (4)

As mentioned in Ref. [64], the Coulomb friction propor-
tional to the normal force is neglected in the present sim-
ple model of interaction; however, the tangential damp-
ing force in Eq. (3) may mimic to some degree the effect
of static friction to halt the tangential relative motion.
We employ a granular dynamics simulation technique to
integrate the equations of motion for each particle, given
by

Mir̈i =
∑

j

F
gg
ij + Fn

ij + Ft
ij + Fg (5)

and

Iiφ̈i =
∑

j

δCij (6)

whereMi is the mass of grain i, Ii is the radius of gyration
of grain i, φi is the angular degree of freedom of grain i,
Fg is a gravitational force term, and δCij is the torque
exerted on a grain through contact with other grains.
We measure distances in units of a0, time in units of
t0 =

√

a0/gg, where gg is the gravitational acceleration
constant, velocity in units of v0 =

√
gga0, force in units of

F0 = m0gg, wherem0 is the mass of the smaller of the two
sizes of grains, elastic constants in units of k0 = m0gg/a0,
and stress in units of θ0 = m0gg/a

2
0.
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The grains are confined within four walls in our simu-
lation box as illustrated in Fig. 1. Wall interactions are
modeled using image grains that are the reflection of a
grain in contact with the wall to the other side of the
wall. The bottom and side walls are held at fixed po-
sitions, while the top wall is a piston used to apply a
static load Fs

l = −pŷ normal to the wall modulated by
a dynamic load of the form Fd

l = A sinωtα̂, where α = y
for compressional loading and α = x for shear loading.
The position of the top wall is allowed to vary accord-
ing to the sum of the total load Fload = Fs

l + Fd
l and

the effective forces exerted on the image grains by the
actual grains. A static pressure value of p = 0.005 corre-
sponds to a downward force on individual grains touching
the top wall of 1.92 × 10−4. This pressure is transmit-
ted throughout the packing and opposed by an effective
force arising from the fixed bottom wall, so that indi-
vidual grains move very little when the static pressure is
modified. Similarly, a dynamic compressional amplitude
ofA = 0.030 contributes an oscillating force of magnitude
1.15×10−4 to each grain touching the top wall, such that
the motion of individual grains remains much smaller
than a0. It is important to note that due to the confine-
ment, once the grains have been prepared in the packing
they are not able to rearrange their positions but can
only make slight shifts relative to their neighbors, which
do not change. We measure the net force exerted by the
grains on the top wall, f t(t), and the bottom wall, f b(t),
for fixed A while slowly stepping ω across a resonant
frequency ω0. For each driving frequency ω, we collect
data during a period of 50 drive cycles. We then com-
pute the power spectrum S(ν)α = |

∫

fα(t)e−i2πνtdt|2,
with α = t, b, of both f t(t) and f b(t), and obtain the
response in the form of the relative or normalized ampli-
tudes of the output to input signals at the driving fre-
quency, η(A) = S(ν = ω/2π)b/S(ν = ω/2π)t. As a ratio,
η is a dimensionless quantity that provides information
about the relative spectral weight of the response; we use
it to quantify changes in the resonant frequency of the
system.

To prepare our system, we remove the left wall of the
sample, hold the top or piston wall in a fixed position,
and fill the system with a granular gas. We add a grav-
itational force term Fg = miggx̂ to each grain and al-
low the grains to settle into a dense packing. We then
close the left wall and change the gravitational force to
Fg = −miggŷ to force the grains toward the bottom wall
of the packing; we then permit the piston or top wall to
move and incrementally apply a static pressure to the pis-
ton, allowing the granular arrangement to settle to a state
of no net motion between pressure increments. Once we
have reached the desired static pressure level p, we add
a sinusoidal term to the force exerted by the piston, re-
sulting in a sinusoidal motion of the piston. We permit
the system to oscillate for 20 cycles in order to eliminate
any transient effects, and then measure the wall forces
f t(t) and f b(t) during a period of 50 cycles. In a given
run we perform a frequency sweep by holding the ampli-
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FIG. 2: (Color online) Results from the compressional dy-
namic simulation. (a) Scaled amplitude of detected response
η vs driving frequency ω at A = 0.025 for increasing static
pressure p = 0.0050, 0.0055, 0.0060, 0.0065, 0.0070, 0.0075,
0.0080, 0.0090, 0.0100, 0.0110, 0.0120, 0.0130, and 0.0140
(bottom to top), showing a shift of the resonant peak ω0 to
higher frequencies with increasing p. (b) Resonant frequency
ω0 vs static pressure p on a log-log scale, indicating an increase
in the elastic wave velocity with increasing static pressure, for
different values of the dynamic amplitude A = 0.015, 0.020,
0.025, and 0.030, from top to bottom. Dashed lines are fits to
ω0 ∝ pβ with β ≈ 0.35. (c) η vs ω at p = 0.0050 for increas-
ing dynamic amplitude A = 0.010, 0.012, 0.014, 0.015, 0.016,
0.018, 0.020, 0.022, 0.024, 0.025, 0.026, 0.028, 0.030, 0.032,
0.034, 0.036, 0.038, and 0.040 (top to bottom), showing a
shift of the resonant peak to lower frequencies with increas-
ing A. (d) Resonant frequency ω0 vs dynamic amplitude A,
on a log-log scale, indicating a decrease in the elastic wave
velocity with increasing A, for different values of the static
pressure p = 0.005, 0.007, 0.009, and 0.011, from bottom to
top. Dashed lines are fits to ω0 ∝ A−β with β ≈ 0.4.

tude of the oscillation of the piston fixed but increasing
the frequency of the oscillation to a new value after each
set of 70 cycles. To change the static pressure or the
magnitude of the dynamic forcing, we start with a fresh
uncompacted sample in each case. This avoids a system-
atic increase in density that could otherwise occur after
each frequency sweep. Our simulation measurement pro-
tocol is similar to that used in the experiment described
in Ref. [30], where the resonance compressional P waves
are observed.

III. RESULTS

We first compare measurements of the dynamic re-
sponse η in the compressional and shear oscillatory sim-
ulations and in experiments. In Fig. 2(a) we plot the
normalized amplitude η as a function of driving fre-
quency ω for fixed compressional dynamic amplitude
A = 0.025 and static pressures ranging from p = 0.005
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FIG. 3: (Color online) Experimental glass bead pack results
modified from Ref. [30]. (a) η vs f = ω/2π for increasing
dynamical amplitude A = 10 mV, 70 mV, 130 mV, 190mV,
250 mV, 310 mV, and 370 mV, from top to bottom. (b)
Normalized ∆ω0 vs A, in mV, for samples with increasing p
from bottom to top. The elastic wave velocity decreases with
increasing A in each case, but the overall magnitude of the
decrease becomes smaller as p increases.

to p = 0.0140. Here the resonant frequency ω0 shifts
to higher values as the static pressure is increased. For
the clamped boundary conditions we consider, the res-
onant frequency ω0 is related to the elastic wave veloc-
ity V by ω0 = πV/L, where L is the sample thickness
along the y-axis [3, 30]. This indicates that the elastic
wave velocity is increasing with increasing static pressure,
in agreement with previous observations. By identifying
the value of ω0 from each curve, we construct a plot of
ω0 versus p shown in Fig. 2(b) for dynamic amplitudes
ranging from A = 0.015 to A = 0.030. The resonant fre-
quency increases with increasing static pressure roughly
as a power law with slope β ≈ 0.35; however, there is an
overall downward shift in the resonant frequency as the
compressional dynamic loading A increases. In Fig. 2(c)
we plot η versus ω for the compressed system at fixed
static pressure p = 0.0050 and dynamic amplitudes rang-
ing from A = 0.010 to A = 0.040. Here, the peak value
ω0 decreases in frequency with increasing dynamic am-
plitude A, indicating that the elastic wave velocity is de-
creasing with increased dynamic driving. This soften-
ing of the system with dynamic driving is more clearly
shown in Fig. 2(d) where we plot ω0 versus A for values
of p ranging from p = 0.005 to p = 0.011. The soften-
ing is very robust and appears for each value of p. For
comparison, we illustrate in Fig. 3(a) the experimentally
obtained values of η as a function of frequency for dif-
ferent dynamical amplitudes A. The resonant frequency
decreases with increasing dynamic amplitude. This is
more clearly shown in Fig. 3(b), where we plot ∆ω0, the
shift in ω0 from a reference value, versus the dynamic am-
plitude A for different values of static pressure [30]. In
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FIG. 4: (Color online) Results from the shear dynamic sim-
ulation. (a) η vs ω at A = 2.0 for increasing static pressure
p = 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, from left maximum to right
maximum, showing a shift in ω0 to higher frequencies with in-
creasing p. (b) Resonant frequency ω0 vs static pressure p on
a log-log scale, indicating an increase in the elastic wave veloc-
ity with increasing static pressure, for different values of the
dynamic amplitude A = 3, 5, 7, and 10, from top to bottom.
Dashed lines are fits to ω0 ∝ pβ with β ≈ 0.25. (c) η vs ω at
p = 0.5 for increasing dynamic amplitude A = 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0,
9.5, and 10.0, from left maximum to right maximum, show-
ing a shift of ω0 to lower frequencies with increasing A. (d)
Resonant frequency ω0 vs dynamic amplitude A, on a log-log
scale, indicating an increase in the elastic wave velocity with
increasing A, for different values of the static pressure p = 0.3,
0.4, 0.5, 0.6, 0.7, and 0.8, from top to bottom. Dashed lines
are fits to ω0 ∝ A−β with β ≈ 0.1.

each case, the resonant frequency decreases with increas-
ing dynamic amplitude in agreement with the simulation
results.
We find similar behavior for a system in which the top

plate is dynamically sheared in the direction transverse to
the applied static pressure. In Fig. 4(a) we illustrate rep-
resentative η vs ω curves at A = 2.0 and increasing static
pressure p in the sheared system. Figure 4(b) shows a log-
log plot ω0 versus p curves for values of A ranging from 3
to 10 in the same system. We observe a power law behav-
ior ω0 ∝ pβ with β ≈ 0.25, a somewhat smaller exponent
than in the dynamically compressed system. The reso-
nant frequency increases with increasing p, indicating an
increase in the elastic wave velocity with increasing static
pressure. We note that significantly larger static pres-
sures must be applied to the dynamically sheared system
than to the dynamically compressed system in order to
obtain a wave signal that propagates through the entire
packing and is measurable on the bottom plate. For in-
creasing dynamic amplitude, the resonant frequency de-
creases, as illustrated in Fig. 4(c) for p = 0.5 and a range
of values of A. The decrease is slower than linear, as
shown in Fig. 4(d) where we plot ω0 versus A for differ-
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FIG. 5: Results from the compressional dynamic simulation.
The total magnitude of the frequency shift across our mea-
sured range of A, ∆ω = ω0(A = 0.005) − ω0(A = 0.030) vs p
shows two regimes of frequency shift behavior. At low p, ∆ω0

increases with increasing static pressure, while for p > 0.005,
∆ω0 decreases with increasing p. The higher static pressure
regime agrees with the experimental response.

ent values of p in the dynamically sheared system. These
simulation results are also in excellent agreement with
our experimental observations on shear resonant modes
[65].

In Fig. 3(b) we find that experimentally, the overall
magnitude of the decrease in f0 with increasing dynamic
amplitude, ∆ω0, becomes smaller when the static load
p is increased. The same behavior occurs in the simula-
tions, as shown in Figs. 2(d) and 4(d). For the compres-
sional dynamic simulations, we find that if we decrease
the static pressure p to very small values, ∆ω0 passes
through a peak value and then begins to decrease with de-
creasing p instead of increasing. This is shown in Fig. 5,
where we plot ∆ω0 = ω0(A = 0.005) − ω0(A = 0.030)
as a function of static pressure p in the compressional
system. For p < 0.005, ∆ω0 increases with increasing
static pressure, while for p > 0.005, ∆ω0 decreases with
increasing static pressure. The higher p behavior agrees
with the experimental results [30]. The behavior at low
p < 0.005 will be further explored in a future work. In
general, the elastic response of a granular packing un-
der weakly confining pressure may seriously deviate from
the predictions of effective medium approaches. For the
remainder of this paper, we will focus on the higher pres-
sure regime with p > 0.005 in the compressional dynamic
simulation.

We next compare the response of the system with the
average coordination number 〈Zc〉 = N−1

∑

Zi of the
packing, where Zi is the number of particles in direct
contact with particle i. In Fig. 6(a) we plot the normal-
ized amplitude versus driving frequency in a compres-
sional system with p = 0.005 for dynamic amplitudes
ranging from A = 0.010 to A = 0.030. As before, we ob-
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FIG. 6: (Color online) Results from the compressional dy-
namic simulation. (a) η vs ω for A = 0.010, 0.015, 0.020,
0.025, and 0.030, from top to bottom, at fixed p = 0.005. (b)
Average contact number Zc in the packing vs ω for A = 0.010,
0.015, 0.020, 0.025, and 0.030, from top to bottom, at fixed
p = 0.005. There is a pronounced dip in Zc that increases in
magnitude with increasing A. (c) Value of 〈Zc〉 at ω = ω0

as a function of dynamic amplitude A for p = 0.005, 0.007,
0.009, and 0.011, from bottom to top.

serve that the resonant frequency ω0 decreases with in-
creased A. In Fig. 6(b) we show the corresponding 〈Zc〉
versus driving frequency. For larger driving amplitudes
A > 0.015, near the resonance frequency ω ≈ 7 × 10−6

there is a dip in 〈Zc〉 which increases in magnitude with
increasing A, indicating that the packing is becoming
looser as the dynamic amplitude increases. The decrease
of 〈Zc(ω0)〉, the value of 〈Zc〉 at the resonant frequency,
is shown in Fig. 6(c) as a function of A. There is a slight
increase in 〈Zc(ω0)〉 as the static pressure increases, but
there is a clear decrease in 〈Zc(ω0)〉 with increasing A.
As suggested by the effective medium theory, the elastic
wave velocity is proportional to the coordination number
[47, 49, 53, 54]. Thus the reduction of the number of the
contacts in the packing at a large driving (A > 0.015)
is the main physical reason for the decrease in the elas-
tic wave velocity with increasing dynamical amplitude
in the granular packing. Higher static pressure forces
more grains into direct contact. In contrast, larger am-
plitudes of dynamical forcing A tend to break contacts in
the packing. At small A, we note that the dip in 〈Zc〉 oc-
curs below the resonant frequency. This suggests that the
elastic softening in this regime is likely determined both
by the contact stiffness decrease and the contact number
reduction [4]; weak contacts between grains may be im-
portant for low driving amplitudes but are destroyed at
higher driving amplitudes.
Finally, we find that the motion of the grains under

excitation takes two forms. The bulk of the packing re-
sponds collectively, with a large section of the packing
moving coherently in response to the dynamic forcing at
and near resonance. We also observe isolated soft spots or
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FIG. 7: (Color online) Contour plot showing the regions of
the sample undergoing the largest amount of motion in the
dynamically compressed system at p = 0.005 at the resonant
frequency. Colors (dark to light) indicate the magnitude of
the motion at each spatial location; the colorbar scale has
been multiplied by 100. (a) A = 0.010. (b) A = 0.020. (c)
A = 0.025. (d) A = 0.030.

rattler areas where an individual grain has a much higher
amplitude of motion than the grains that surround it.
These soft spots tend to contribute additional damping
to the propagating elastic wave signature. To identify the
soft spots in the compressional dynamic simulation, we
compute δri = max(ri(t)−ri(0)), which is the maximum
displacement of an individual particle from its average
equilibrium position ri(0) for a given driving frequency,
amplitude, and static pressure. In Fig. 7 we show con-
tour plots of the value of δri at the resonant frequency
for packings with p = 0.005 and A = 0.010 to 0.030.
The position in the packing is indicated on the x and y
axes, while the coloring indicates the value of δri. The
number and density of soft spots, indicated by local max-
ima in δri, increases with increasing driving amplitude,
with a single spot in Fig. 7(a), two in Fig. 7(b), three in
Fig. 7(c), and more than four in Fig. 7(d). This prolif-
eration of soft spots contributes to the drop in ω0 with
increasing driving amplitude. The soft spots can also be
imaged as in Fig. 8, where we illustrate the grain posi-
tions along with the force chain network in the packing,
and color each grain according to its relative value of δri.
The soft spots in Fig. 7 coincide with rattler particles
in the center column of Fig. 8, where we show the grain
configurations at the resonant frequency ω0. For com-
parison, in the left column of Fig. 8 we show the system
response at a low frequency of ω = 5.0×10−6, and in the
right column we show the response at a high frequency of
ω = 1.475× 10−5. Away from resonance, there is signifi-
cantly less motion throughout the packing. The highest

stresses in the packing become more heterogeneously dis-
tributed at resonance as the driving amplitude increases.

IV. DISCUSSION

Different regimes of the elastic wave velocity c (com-
pressional or shear) through 2D or 3D bead packings as
a function of applied static pressure pext have been ob-
served previously in experiment, with c ∝ p1/6 at high
pressures but c ∝ p1/4 at low pressure [47, 53, 66–71].
The results shown in Figs. 2 and 4 are more consistent
with the low pressure regime. For the case of monodis-
perse disk packings, this effect was treated analytically
in Ref. [72]. This scaling behavior might be correlated
to the change in static pressure with the average contact
number in the packing [47, 73] as has been confirmed
numerically [49, 60, 74] and in experiments [24].
Regarding the magnitude of the change in the wave ve-

locity c with dynamical amplitude, it is generally larger
for low static pressure than for high static pressure
[30, 44], in agreement with our results in Figs. 2 and
4. In Ref. [57], this behavior was suggested to result
from significant rearrangements of the contact network,
resulting in a change in the average contact number but
without significant motion of particles or a significant
change in the packing density. Indeed, as we observe
here, small shifts in the positions of individual grains
can modify the local contact number enough to change
the effective velocity of elastic waves in the system. We
find a reduction in the average contact number when the
amplitude of the dynamical forcing is increased, consis-
tent with the experimental results. This resembles the
“acoustic fluidization” effect (initially introduced for de-
scribing frictional weakening [75]) that has been observed
in which the elastic wave velocity can soften under large
wave amplitudes even when significant contact reorga-
nization and sliding do not occur [4, 76]. If the wave
amplitude were large enough to drop the average contact
number below the jamming threshold in a significant por-
tion of the sample, a “sonic vacuum” state could occur
in which transmission of elastic waves would become im-
possible [77]. Above these amplitudes, the entire packing
fluidizes, as in Refs. [78, 79].
Granular packings often exhibit heterogeneous re-

sponses due to their highly disordered internal contact
structure. In a 2D idealized granular packing, based
on the response of a single grain to a sinusoidal driv-
ing frequency, localized normal modes at high frequency
were predicted to occur, likely due to the interference
between scattered plane waves [80]. Evidence for local-
ized soft spots has been observed in Hertzian packings
where the velocity distribution functions for the motion
of individual particles have fat tails, indicating strongly
non-Gaussian behavior [81]. These soft spots found at
relatively low frequencies have been connected particu-
larly with highly nonlinear responses such as glass-like
behavior and non-affine displacement fields in granular
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FIG. 8: (Color online) Images of grain positions in the dynamically compressed system at p = 0.005. Individual grains are
colored according to their average net displacement (dark blue: smallest motion; light blue: largest motion); in each case, the
net displacement is much smaller than the grain radius. Grains that are outlined in light red have zc < 4. Lines indicate the
force contact network; force contacts with the walls are not shown. Heavy lines are strongly stressed bonds that experience
forces that are greater than one standard deviation above the mean force in the packing. Heavy light red lines indicate strongly
stressed bonds that pass through a grain with Zi < 4. Left column: Low frequency state with ω = 5.0× 10−6. Center column:
Resonant frequency state at ω = ω0. Right column: High frequency state with ω = 1.475 × 10−5. (a,b,c) A = 0.010, where
ω0 = 1.2× 10−5. (d,e,f) A = 0.020, where ω0 = 8.75× 10−6. (g,h,i) A = 0.025, where ω0 = 8.5× 10−6. (j,k,l) A = 0.030, where
ω0 = 7.5× 10−6.

packings [15–18, 82–84].

Numerous studies have employed granular packings as
a surrogate for the complex behavior occurring along
fault zones in Earth [30–32, 85, 86]. Our results may sug-
gest that the decrease in velocity observed along and near

a fault after a large earthquake is analogous to a change
in the granular packing to a state with a reduced num-
ber of contacts, even if no significant rearrangements of
the grain positions have occurred. These contacts could
gradually reconnect over time, in analogy with the slow
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recovery of the sound velocity that has been observed
in the earth. Indeed, in the earth, the fault blocks sur-
rounding a fault zone contain fractures at many scales.
These are analogous to the grain contacts in our simu-
lation and laboratory experiments. As wave amplitudes
increase, slip is mobilized along the fractures resulting
in a bulk modulus softening of the rock. This behavior
is followed by slow dynamics where contacts in fractures
are re-established, as demonstrated in laboratory exper-
iments [4, 30].

V. SUMMARY

We characterize the evolution of the internal charac-
teristics of bidisperse two-dimensional granular packings
under large amplitude dynamic forcing and varied con-
fining pressure. We find that the resonant frequency
or fundamental mode of the frequency decreases with
increasing dynamic amplitude at constant static pres-
sure, in agreement with laboratory and field experiments.

For fixed dynamic amplitude, the resonant frequency in-
creases with increasing confining pressure, also in agree-
ment with experiment. We show that the average contact
number Zc of the packing decreases both at resonance
and for increasing dynamic amplitude. We characterize
the heterogeneity of the packing response by measuring
the vibration displacement of each grain, and find regions
of high and low displacements. Our approach provides in-
sight into the elastic nonlinear nature of unconsolidated
materials such as granular packings, as well as consoli-
dated materials such as sandstone.
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