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Abstract11

We investigate transport on regular fracture networks that are characterized by heterogeneity in hydraulic12

conductivity. We discuss the impact of conductivity heterogeneity and mixing within fracture intersec-13

tions on particle spreading. We show the emergence of non-Fickian transport due to the interplay between14

the network conductivity heterogeneity and the degree of mixing at nodes. Specifically, lack of mixing15

at fracture intersections leads to subdiffusive scaling of transverse spreading but has negligible impact on16

longitudinal spreading. An increase in network conductivity heterogeneity enhances both longitudinal and17

transverse spreading and leads to non-Fickian transport in longitudinal direction. Based on the observed18

Lagrangian velocity statistics, we develop an effective stochastic model that incorporates the interplay be-19

tween Lagrangian velocity correlation and velocity distribution. The model is parameterized with a few20

physical parameters and is able to capture the full particle transition dynamics.21
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I. INTRODUCTION23

Understanding transport in network systems is of critical importance in many natural and en-24

gineered processes, including groundwater contamination and geothermal production in fractured25

geologic media [1, 2], disease spreading through river networks [3], engineered flows and medical26

applications in microfluidic devices [4], and urban traffic [5]. While particle spreading has tra-27

ditionally been described using a Fickian framework, anomalous transport—characterized by the28

nonlinear scaling with time of the mean square displacement and the non-Gaussian scaling of so-29

lute distributions and fluxes—has been widely observed in porous and fractured media at various30

scales from pore [6–9] to column [10–12] to field scale [13–18]. The observation of anomalous31

transport is not limited to porous and fractured media, and has been observed in many different32

systems from diffusion of a molecule in a single cell to animal foraging patterns [19–21]. Pre-33

dictability of the observed anomalous transport is essential because it controls the early arrival and34

the long residence time of particles [22–24]. This becomes especially important for environmental35

and human health related issues, such as radionuclide transport in the subsurface [25, 26], or water36

quality evolution in managed aquifer recharge systems [27–29].37

Stochastic models that account for the observed non-Fickian transport behavior in porous and38

fractured media include continuous-time random walks (CTRW) [30–34], fractional advection-39

dispersion equations (fADE) [35, 36], multirate mass transfer (MRMT) [17, 37, 38], stochastic40

convective stream tube (SCST) models [39], and Boltzmann equation approaches [40]. All of41

these models have played an important role in advancing the understanding of transport through42

porous and fractured geologic media.43

The CTRW formalism [41, 42] offers an attractive framework to describe and model anoma-44

lous transport through porous media and networks [30, 43, 44] because it allows incorporating45

essential flow heterogeneity properties directly through the Lagrangian velocity distribution. The46

CTRW approach successfully described average transport in quenched random environments from47

purely diffusive transport [e.g., 23] to biased diffusion [e.g., 45–48]. Most studies that employ the48

CTRW approach assume that successive particle jumps are independent of each other, therefore49

neglecting velocity correlation between jumps [49]. Indeed, a recent study showed that CTRW50

with independent transition times emerges as an exact macroscopic transport model when particle51

velocities are uncorrelated [48].52

However, recent studies based on the analysis of Lagrangian particle trajectories demonstrates53
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conclusively that particle velocities in mass-conservative flow fields exhibit correlation along their54

trajectory [9, 40, 45, 50–53]. Mass conservation induces correlation in the Eulerian velocity field55

because fluxes must satisfy the divergence-free constraint at each intersection. This, in turn, in-56

duces correlation in the Lagrangian velocity along a particle trajectory. To take into account ve-57

locity correlation, Lagrangian models based on temporal [50, 54] and spatial [9, 40, 45, 51, 52]58

Markovian processes have recently been proposed. These models successfully capture many im-59

portant aspects of the particle transport behavior. The importance of velocity correlation has also60

been recently shown for a field-scale tracer transport experiment [18].61

Following the work by Le Borgne et al. [45], the spatial Markov model for particle velocities at62

Darcy-scale has been recently extended to describe multidimensional transport at both pore- and63

network-scale [9, 51]. The model captures multidimensional features of transport via a multidi-64

mensional velocity transition matrix. In these approaches, the transition matrices are constructed65

utilizing Lagrangian velocity information obtained from direct numerical simulations. Therefore,66

for an effective parameterization in terms of the medium geometry and the statistical characteris-67

tics of the Eulerian velocity, a model for the velocity transition process is crucial. Furthermore, it68

is well known that the mixing at fracture intersections and fracture conductivity distribution has69

major impact on transport properties [55–58]. However, the impact of the interplay between the70

network conductivity heterogeneity and the mixing dynamics at fracture intersections on anoma-71

lous transport, and the ability of spatial Markov models to capture it, is still an open question.72

The paper proceeds as follows. In the next section, we present the heterogeneous fracture73

network, the flow and transport equations and details of the different mixing rules at fracture74

intersections. In Section III, we investigate the emergence of anomalous transport by direct Monte75

Carlo simulations of flow and particle transport. In Section IV, we analyze the statistics of the76

Lagrangian particle velocities measured equidistantly along the particle trajectories to gain insight77

into the effective particle dynamics and elucidate the origins of the observed anomalous behavior.78

In Section V, we develop a spatial Markov model that is characterized by the probability density79

function (PDF) of Lagrangian velocities and their transition PDF, which are derived from the80

Monte Carlo simulations. The resulting correlated CTRW model is in excellent agreement with81

Monte Carlo simulations. In Section VI, we then present a physics-based spatial Markov model for82

the velocity transitions that is characterized by only a few parameters, which are directly related to83

the properties of the conductivity heterogeneity and the mixing rules at fracture intersections. The84

predictive capabilities of this model are demonstrated by comparison to the direct Monte Carlo85
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simulations. In Section VII, we summarize the main findings and conclusions.86

II. FLOW AND TRANSPORT THROUGH REGULAR FRACTURE NETWORKS87

We study a regular fracture network consisting of two sets of parallel, equidistant fractures88

oriented at an angle of ±α with the x-axis. The distance between the neighboring nodes is l89

(Figure 1). Flow through the network is modeled by Darcy’s law [59] for the fluid flux uij between90

nodes i and j, uij = −Kij(Φj − Φi)/l, where Φi and Φj are the hydraulic heads at nodes i and91

j, and Kij > 0 is the hydraulic conductivity of the link between the two nodes. Imposing mass92

conservation at each node i,
∑

j uij = 0 (the summation is over nearest-neighbor nodes), leads to93

a linear system of equations, which is solved for the hydraulic heads at the nodes. The fluid flux94

through a link from node i to j is termed incoming for node i if uij < 0, and outgoing if uij > 0.95

We denote by eij the unit vector in the direction of the link connecting nodes i and j. A realization96

of the random regular network is generated by assigning independent and identically distributed97

random conductivities to each link. Therefore, the Kij values in different links are uncorrelated.98

The set of all realizations of the quenched random network generated in this way forms a statistical99

ensemble that is stationary and ergodic. We assign a lognormal distribution of K values. We study100

the impact of conductivity heterogeneity on transport by varying the variance of ln(K). The use of101

this particular distribution is motivated by the fact that conductivity values in many natural media102

can be described by a lognormal law [60].103

We study a uniform flow setting characterized by constant mean flow in the positive x-direction,104

by imposing no-flow conditions at the top and bottom boundaries of the network, and fixed hy-105

draulic head at the left (Φ = 1) and right (Φ = 0) boundaries. Thus, the mean flow velocity is106

given by ū = Kg where Kg = exp(lnK) is the geometric mean conductivity. The overbar in the107

following denotes the ensemble average over all network realizations. Even though the underly-108

ing conductivity field is uncorrelated, the mass conservation constraint together with heterogeneity109

leads to the formation of preferential flow paths with increasing network heterogeneity. (Figure 2).110

Once the fluxes at the links have been determined, we simulate transport of a passive tracer by111

particle tracking. We neglect the longitudinal diffusion along links, and thus particles are advected112

with the mean flow velocity between nodes. Here we assume that Darcy’s law is valid in each113

link, which means we assume that the links are filled with a porous medium characterized by114

variable conductivity, but constant porosity. This is motivated also by the fact that the variability115
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FIG. 1. (a) Schematic of the fracture network studied here, with two sets of links with orientation ±α =

±π/4 and uniform spacing l. The conductivity values are reflected in the link thickness. We study log-

normal conductivity distributions with three different conductivity variance values: σ2lnK = 0.1, 1, 5. (b)

Map of the spatially uncorrelated conductivity field with σ2lnK = 5 shown in a log-scale color scheme. No

flow boundary conditions on the top and bottom and constant hydraulic head on the left and right boundaries

ensure a uniform mean flow.
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FIG. 2. (a) Normalized flow field (|uij |/ū) for log-normal conductivity distribution with variance 0.1. (b)

Normalized flow field for log-normal conductivity distribution with variance 1. (c) Normalized flow field

for log-normal conductivity distribution with variance 5. Even though the underlying conductivity field is

uncorrelated, the combined effect of network heterogeneity and the mass conservation constraint at nodes

leads to a correlated flow field with preferential flow paths.
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in porosity is typically much smaller than the conductivity variability [59, 61]. When particles116

arrive at nodes, they follow either complete mixing or streamline routing (no mixing) rule [56–58].117

Complete mixing assumes that Péclet numbers at nodes are small enough that particles are well118

mixed within the node. Thus, the link through which the particle exits a node is chosen randomly119

with flux-weighted probability. Streamline routing assumes that Péclet numbers at nodes are large120

enough that particles essentially follow the streamlines and do not transition between streamlines.121

The complete mixing and streamline routing rules are two end members. In general, the local122

Péclet number and the intersection geometry determine the strength of mixing at nodes, which is123

in between these two end members.124

In Figure 3 we illustrate the fundamental difference between the two mixing rules. When125

the two incoming and the two outgoing links have equal fluxes, the particles from the incoming126

link partition equally into the two outgoing links for the complete mixing rule. However, for the127

streamline routing case, all particles transit to the adjacent link. Therefore, we anticipate that the128

degree of mixing at the nodes will lead to a dramatically different global spreading behavior.129

For complete mixing, the particle transfer probabilities pij from node i to node j are given by130

pij =
|uij|∑
k |uik|

, (1)

where the summation is over outgoing links only, and pij = 0 for incoming links. Particle131

transitions are determined only by the outgoing flux distribution. Equation (1) applies to both132

complete mixing and streamline routing rules for nodes with three outgoing fluxes and one in-133

coming. However, for nodes with two outgoing fluxes, streamline routing implies the transfer134

probabilites135

padj =

1, uadj > uin

uadj

uin
, uadj < uin

popp =

0, uadj > uin

uin−uadj

uin
, uadj < uin,

(2)

where padj is the probability of a particle transitiong to an adjacent link and popp is the probability136

of a particle transitiong to an opposite link (Figure 3).137

The Langevin equations describing particle movements in space and time are138

xn+1 = xn + l
v(xn)

|v(xn)| , tn+1 = tn +
l

|v(xn)| . (3)
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FIG. 3. Schematic for the two different mixing rules for the case in which nodes at the two incoming and

the two outgoing links have equal fluxes. (a) The streamline routing rule makes all the particles transit to

the adjacent link because particles cannot switch between streamlines. (b) The complete mixing rule makes

half of the particles move upward and the other half downward, following flux-weighted probabilities.

where xn is the position of the nth node visited by the tracer particle, and tn is the time at139

which the tracer particle arrives the nth node. The transition velocity is equal to v(xn) = uijeij140

with the transition probability pij following either Equation (1) or (2) depending on the mixing141

rule. The velocity vector v in the following is expressed in (ν, θ) coordinates, in which ν =142

|v| cos(ϕ)/| cos(ϕ)| is the velocity along a link with ϕ = arcos(vx/|v|) and θ = sin(ϕ)/| sin(ϕ)|,143

so that v = [ν cos(α), |ν|θ sin(α)]T . Superscript T denotes the transpose. Note that ϕ can only144

assume values in {−α, α, π−α, π+α}. In short, ν determines the velocity magnitude and longi-145

tudinal directionality and θ determines the transverse velocity directionality.146

The system of discrete Langevin equations (3) describes coarse-grained particle transport for147

a single realization of the quenched random network. Particle velocities and thus transition times148

depend on the particle position. The particle position at time t is x(t) = xnt , where nt denotes the149

number of steps needed to reach time t. The particle density in a single realization is P (x, t) =150

〈δ(x − xnt)〉, where the angular brackets denote the noise average over all particles. We solve151

transport in a single disorder realization by particle tracking based on Equation (3) with the point-152

wise initial condition x0 = 0 and t0 = 0. x0 is located at the center of the left boundary (marked153

by red star in Figure 4). As shown in Figure 4, both network heterogeneity and mixing rule at154

nodes have significant impact on particle spreading. An increase in network heterogeneity leads155
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FIG. 4. Particle distribution at t = 15tl for a given realization after the instantaneous release of particles

at the origin (red star). tl is the mean advective time along one link. (a) Low heterogeneity (σ2lnK = 0.1)

with streamline routing at nodes. (b) Low heterogeneity (σ2lnK = 0.1) with complete mixing at nodes.

(c) High heterogeneity (σ2lnK = 5) with streamline routing at nodes. (d) High heterogeneity (σ2lnK = 5)

with complete mixing at nodes. For low heterogeneity, complete mixing significantly enhances transverse

spreading. An increase in heterogeneity significantly enhances longitudinal spreading.

to an increase in particle spreading in both transverse and longitudinal directions. The impact156

of the mixing rule has a significant impact on transverse mixing, especially for networks with157

low heterogeneity. Complete mixing at nodes significantly enhances transverse spreading while158

longitudinal spreading is much less sensitive to the mixing rule.159
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III. AVERAGE SOLUTE SPREADING BEHAVIOR160

We study the average solute spreading behavior for three different conductivity variances and161

the two mixing rules described above. We obtain the mean particle density, P (x, t), by ensemble162

averaging over multiple realizations,163

P (x, t) = 〈δ(x− xnt)〉, (4)

where the overbar denotes the ensemble average over all realizations. We run Monte Carlo164

particle tracking simulations for 102 realizations for each combination of conductivity variance165

and mixing rule. We consider three different ln(K) variances, σ2
lnK = 0.1, 1, 5. The domain size166

is 100
√

2l× 100
√

2l with 20, 201 nodes. In each realization, we release 104 particles at the origin167

(x0, marked by a red star in Figure 4). The average particle spreading behavior is studied in terms168

of the mean square displacement (MSD) of average particle density, P (x, t). For the longitudinal169

direction (x), the MSD is given by σ2
x(t) = 〈[x(t)− 〈x(t)〉]2〉 where 〈·〉 denotes the average over170

all particles for a given realization. The same definition is applied to compute the transverse MSD,171

σ2
y .172

In Figure 5, we show the time evolution of the longitudinal and transverse MSDs. In both173

directions, spreading shows a ballistic regime (∼ t2) at early times, which then transitions to a174

different preasymptotic scaling in an intermediate regime. The transition occurs approximately at175

the mean advective time over one link, tl.176

The Monte Carlo simulations show that, in the intermediate regime, the longitudinal MSD177

increases linearly with time for weak conductivity heterogeneity [Figure 5(a)], and faster than178

linearly (i.e., superdiffusively) for intermediate to strong heterogeneity [Figure 5(c)(e)]. An in-179

crease in ln(K) variance significantly increases the longitudinal MSD and induces a change in its180

temporal scaling. The Monte Carlo simulations also show that there is no noticeable difference181

between complete mixing and streamline routing cases on longitudinal MSD. This indicates that182

the network heterogeneity dictates the longitudinal spreading in regular networks.183

The transverse MSD evolves linearly in time for complete mixing, and slower than linearly184

with time (i.e., subdiffusively) for streamline routing [Figure 5(b)(d)(f)]. In contrast with the lon-185

gitudinal MSD, the transverse MSD exhibits a strong dependence on the mixing rule at fracture186

intersections. For low heterogeneity, complete mixing induces a significantly higher transverse187
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MSD than streamline routing. This difference, however, decreases as the network heterogeneity188

increases. For streamline routing, the network heterogeneity is the main driver for transitions in189

the transverse direction, and thus we clearly observe that transverse spreading increases as hetero-190

geneity increases. The complete mixing rule, on the other hand, already maximizes transitions in191

the transverse direction so that an increase in heterogeneity has no significant impact.192

In order to obtain complementary information on the spreading process, we also consider the193

first passage time distribution (FPTD) of particles at a control plane x = χ, which acts like an194

absorbing barrier. The FPTD or, in other words, solute breakthrough curve, is obtained from the195

individual particle arrival times τa = inf(tn| |xn − x0| > χ) as196

fχ(τ) = 〈δ(τ − τa)〉. (5)

It provides an alternative measure of longitudinal spreading. Figure 6 illustrates FPTDs for197

different conductivity heterogeneities and mixing rules. Conductivity heterogeneity has a clear198

impact on the FPTD by enhancing longitudinal spreading. This is so because stronger conductivity199

heterogeneity leads to broader particle transition time distribution, which in turn leads to enhanced200

longitudinal spreading. The mixing rule, in contrast, has a negligible impact on FPTDs, and201

only influences transverse spreading. To understand this behavior and further quantify transverse202

spreading, we define the distribution of the transverse exit locations at a control plane x = χ as203

fχ(ω) = 〈δ(ω − ye)〉. (6)

where ye is the transverse location of a particle at the control plane at x = χ. The impact of204

the mixing rule on transverse spreading is clearly visible in Figure 7, which compares fχ(ω) for205

different values of σ2
lnK and different mixing rules. For small ln(K) variances, the mixing rule has206

a major impact on transverse spreading, which here is manifested by the width of the transverse207

particle distribution. The difference between the two mixing rules decreases as σ2
lnK increases.208

In summary, conductivity heterogeneity impacts both longitudinal and transverse spreading,209

whereas the mixing rule mainly impacts transverse spreading. We now analyze the Lagrangian210

particle statistics to understand the underlying physical mechanisms that lead to the observed211

anomalous particle spreading.212
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FIG. 5. Time evolution of MSDs for complete mixing (solid line) and streamline routing (dashed line).

(a) Longitudinal MSD for σ2lnK = 0.1. (b) Transverse MSD for σ2lnK = 0.1. (c) Longitudinal MSD for

σ2lnK = 1. (d) Transverse MSD for σ2lnK = 1. Inset: Change in the time evolution of transverse MSD for

complete mixing with increasing variance. (e) Longitudinal MSD with σ2lnK = 5. Inset: Change in the

time evolution of longitudinal MSD for complete mixing with increasing variance. (f) Transverse MSD with

σ2lnK = 5. Inset: Change in the time evolution of transverse MSD for streamline routing with increasing

conductivity variance.
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IV. LAGRANGIAN VELOCITY DISTRIBUTION AND VELOCITY CORRELATION STRUC-213

TURE214

The mechanisms leading to anomalous transport can be understood through the analysis of215

the statistics of Lagrangian particle velocities [9, 18, 45, 50–52]. We consider here the particle216

velocities at fixed positions along their trajectories. The Lagrangian velocity vL(sn) at a distance217

sn = nl along the particle trajectory is given by vL(sn) = v(xn) with xn the particle position218

in the network after n steps. Its absolute value, i.e., the streamwise velocity is vL(sn) = |v(sn)|.219

We now analyze the Lagrangian velocity correlation structure, and the PDF of transition times220

between nodes along trajectories, which is given by τn = l/vL(sn).221

This is in contrast with the classical Lagrangian viewpoint, which considers particle velocities222

at fixed times along trajectories, uL(t) = v(xnt) where nt is the number of steps needed to arrive223

at time t through the time process in Equation (3). The distance covered along the streamline224

up to time t then is given by s(t) = ntl, and the streamwise Lagrangian velocity is given by225

uL(t) = |v(xnt)|.226

We compute the steady-state transition time and velocity distributions along streamlines, ψτ (t)227

and pL(v), respectively, through sampling the transition times and velocities along all particle228

trajectories and among network realizations. Figure 8(a) illustrates the PDF of transition times and229

velocities for different ln(K) variances. As σ2
lnK increases, the transition time and velocity PDFs230

become broader. The transition time follows closely a truncated power-law distribution. Both231

velocity and transition time distributions did not show noticeable difference between complete232

mixing [Figure 8(a)] and streamline routing [not shown].233

A broad transition time distribution is known to be a source of anomalous transport behavior,234

and a key input parameter for the CTRW framework [31, 43]. For example, an optimal distri-235

bution of transition times may be inferred by interpreting first-passage time distributions [49].236

However, the transition time distribution alone does not have information on the spatial velocity237

correlation structure, which may be an important factor that controls anomalous transport behav-238

ior [9, 18, 45, 47, 51, 52]. To analyze the Lagrangian correlation structure, we compute the velocity239

autocorrelation function.240

The autocorrelation function for a given lag ∆s = s− s′ is defined as

χs(s
′, s′ + ∆s) =

〈[vL(s′ + ∆s)− 〈vL(s′ + ∆s)〉][vL(s′)− 〈vL(s′)〉]〉
σv(s′ + ∆s)σv(s′)

, (7)
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where σ2
v(s) is the variance of the Lagrangian velocity at a travel distance s. It depends in general

on the starting position depending on the distribution of initial particle velocities. Here, particles

are injected at the origin within each realization. This implies that particles sample uniformly

from the heterogeneous flow velocity. The stationary streamwise velocity distribution, in contrast,

is obtained by spatial sampling along particle pathlines. As a consequence, here, the correlation

function depends on the starting point s′. However, with increasing streamwise distance from the

injection point, the autocorrelation becomes stationary. Thus, we define the stationary autocorre-

lation function χs(s− s′) by averaging over Eq. (7) as

χs(∆s) =
1

a

a∫
0

ds1χs(s1, s1 + ∆s), (8)

where we use a = 100`.241

For comparison, we also consider the correlation of Lagrangian velocities uL(t) sampled in242

time along particle trajectories. It is defined analogously as243

χt(t− t′) =
1

T

T∫
0

dt′
〈[uL(t′)− 〈uL(t′)〉][uL(t′ + ∆t)− 〈uL(t′ + ∆t)〉]〉

σu(t′ + ∆t)σu(t′)
, (9)

where ∆t = t − t′. Figure 8(b) illustrates the Lagrangian autocorrelation function χs(s) for244

different ln(K) variances with a complete mixing rule. The correlation length scale `c is defined245

by246

`c =

∞∫
0

ds χs(s). (10)

The correlation function χs(s) is well represented by an exponential that is characterized by `c.247

Under the complete mixing rule, we find that `c increases as the network heterogeneity increases,248

indicating an increase in velocity correlation (`c = 1.01, 1.34, 2.13 for σ2
lnK = 0.1, 1, 5, respec-249

tively). This is mainly due to the emergence of preferential flow paths, as shown in Figure 2. The250

inset in Figure 8(b) compares the correlation functions χs(s) and χt(t) plotted against distance251

normalized by the link length l and time normalized by the mean advection time across a link, for252

σ2
lnK = 5. Velocity correlation in time is significantly stronger than velocity correlation in space,253

and closely follows a power law with slope 0.7. The reason for this slow decay in the temporal254
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FIG. 8. (a) Lagrangian transition time distributions for σ2lnK = 0.1, 1, 5 and complete mixing at the nodes.

Inset: Lagrangian velocity distributions for the three different values of σ2lnK . As the network conductivity

becomes more heterogeneous, both the transition time distribution and the velocity distribution become

broader. (b) Velocity autocorrelation function in space. Error bars represent the coefficient of variation. An

increase in network heterogeneity leads to stronger correlation. Inset: Comparison between the velocity

autocorrelation in space and in time for σ2lnK = 5. Velocity autocorrelation in time is normalized with the

mean advective time along one link, and velocity autocorrelation in space is normalized with the link length.

velocity correlation structure is the contribution from particles at stagnation zones (links with very255

small velocity values).256

To further analyze and characterize the (spatial) Lagrangian velocity series {v(sn)}, we com-257

pute the velocity transition matrix. To this end, we determine the transition probability density to258

encounter a velocity v after n+m steps given that the particle velocity was v′ after n steps, which259

in the variables (ν, θ) reads as260

rm(ν, θ|ν ′, θ′) =
〈
δ [ν − ν(xn+m)] δθ,θ(xn+m)

〉∣∣∣
ν(xn)=ν′,θ(xn)=θ′

. (11)

To evaluate the transition probability numerically, the particle velocity distribution is dis-261

cretized into classes, ν ∈ ⋃N
j=1(νj, νj+1], with N = 100. We may discretize velocity equiprobably262

in linear or logarithmic scale. The logarithmic scale provides a better discretization for low veloc-263

ities, which have a decisive role for the occurence of anomalous transport because they determine264
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FIG. 9. Schematic of the velocity transition matrix for d = 2 dimensional networks. The transition ma-

trix considers all 16 possible transitions to capture the full particle transport dynamics. The matrix has

information about the one-step correlation, directionality and velocity heterogeneity.

the tailing behavior in FPTDs and spatial profiles. High velocities may be represented by only a265

few characteristic values. We define the transition probability matrix266

Tm(i, θ|j, θ′) =

∫ νi+1

νi

dν

∫ νj+1

νj

dν ′rm(ν, θ|ν ′, θ′)p(ν ′, θ′)
/∫ νj+1

νj

dν ′p(ν ′, θ′), (12)

where p(ν, θ) = 〈δ[ν − ν(xn)]δθ,θ(xn)〉 is the joint single point PDF of ν and θ.267

The transition matrices can be obtained numerically from the ensemble of particle trajectories.268

In d = 2 dimensional networks, there are sixteen possible transitions, which are described by a269

multi-dimensional transition matrix (Figure 9). We measure particle velocity transitions from link270

to link (equidistance in space) and populate the respective entries in the transition matrix. The one-271

step transition matrices T1(i, θ|j, θ′) for two different heterogeneity distributions and mixing rules272

with equiprobable binning are shown in Figures 10 and 11. For small heterogeneity (σ2
lnK = 0.1,273

Figure 10), the difference in the transition matrix for complete mixing and streamline routing at274

nodes is significant. This difference diminishes as heterogeneity increases (σ2
lnK = 5, Figure 11).275

16



 

 

 

 

 

 

 

 
 

 

 

 

−12

−10

−8

−6

−4

−2

0

 

 

 

 

(a) Complete mixing, (b) Streamline routing,σ2
ln K = 0 .1 σ2

ln K = 0 .1

FIG. 10. (a) Velocity transition matrix with linear equiprobable binning for σ2lnK = 0.1 and complete

mixing at nodes. Out of 16 transitions, only the four that have forward-forward movement in longitudinal

direction (E, M, G, O) are possible. Note that the probability for each possible transition is almost identical.

(b) Velocity transition matrix with linear equiprobable binning for σ2lnK = 0.1 with streamline routing.

Again, only the four transitions that have forward-forward movement in longitudinal direction (E, M, G, O)

are possible. Also, note that the probability for M and G transitions (0.89) is significantly higher than E and

O transitions (0.11).

Network heterogeneity also exerts a significant impact on the particle transition matrix: as conduc-276

tivity distribution becomes more heterogeneous, the probability of transitions with flow reversal277

(negative x-direction) increases. Higher probability values along the diagonal of the transition278

matrix reflect the spatial velocity correlation. Similarly, the upper triangular and lower triangu-279

lar matrices in the transitions with backward movement (A, F, K, P) indicate that the velocity280

magnitude is typically smaller for backward movements than for forward movements.281

The clear differences between transition time matrices for different mixing rules indicate the282

importance of taking the directionality of particle transport into account. Nonlocal theories of283

transport, including CTRW, are often invoked to explain the observation that the first passage284

time distribution (FPTD) is broad-ranged [16–18, 43]. Early arrival and slow decay of the FPTD285

is also observed in our model system. To develop a predictive transport model for the observed286

average particle density P (x, t), we study average particle movements from a CTRW point of view287

that incorporates the velocity correlation and velocity distribution (heterogeneity). This approach288

17



 

  

 

 

 

 
 

  

(a) Complete mixing, (b) Streamline routing,σ2
ln K = 5 σ2

ln K = 5

−12

−10

−8

−6

−4

−2

0

FIG. 11. (a) Velocity transition matrix with linear equiprobable binning for σ2lnK = 5 and complete mixing

at the nodes. Due to strong heterogeneity, 12 different transitions, including backward movements, are

possible. Also, note that up-up and down-down transitions (A, F, K, P) have triangular matrices. This

indicates that velocity magnitudes mostly increase when a particle changes direction from −x direction to

+x direction and vice versa. (b) Velocity transition matrix with linear equiprobable binning for σ2lnK =

5 and streamline routing. Since strong heterogeneity dictates particle transitions, there is no significant

difference between complete mixing and streamline routing.

has been recently proposed for lattice fracture networks based on the finding that the series of289

particle velocities {vL(sn)} sampled spatially along a particle trajectory form in fact a Markov290

process [51].291

V. SPATIAL MARKOV MODEL: A CORRELATED CONTINUOUS TIME RANDOM WALK292

The series of Lagrangian velocities {vL(sn) ≡ vn} along particle trajectories can be approx-293

imated as a Markov process if the transition matrix satisfies the Chapman-Kolmogorov equa-294

tion [e.g., 62], which in matrix form reads as295

Tn(i, θ|j, θ′) =
∑
i′,θ′′

Tn−m(i, θ|i′, θ′′)Tm(i′, θ′′|j, θ′). (13)

For a Markov process, the m-step transition matrix Tm is equal to the m-fold product of the296
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1-step transition matrix T1 with itself as Tm = Tm. Recent studies have shown that the spatial297

Markov model accurately predicts the transition probabilities, as well as the return probability for298

any number of steps [45, 51]. Therefore, a CTRW characterized by a Markov velocity process in299

space is a good approximation for describing average transport.300

The average particle movements on the random network can be described by the following301

system of equations302

xn+1 = xn + l
vn
|vn|

, tn+1 = tn +
l

|vn|
. (14)

The series of Lagrangian velocities {vn}∞n=0 is a spatial Markov process and thus fully char-303

acterized by the stationary velocity density ps(v) and the one-step transition PDF r1(v|v′) =304

〈δ(v − vn+1)〉|vn=v′ . The particle density for the correlated CTRW (14) can be written as305

P (x, t) =

∫
dv〈δ(x− xnt)δ(v − vnt)〉, (15)

in which nt = max(n|tn ≤ t), xnt is the position of the node at which the particle is at time t,306

and vnt is the velocity by which the particle emanates from this node. The angular brackets denote307

here the average over all realization of the stochastic velocity time series {vn}. Equation (15) can308

be recast as309

P (x, t) =

∫
dv

∫ t

t−l/|v|
dt′R(x,v, t′), (16a)

in which we defined

R(x,v, t′) =
∞∑
n=0

〈δ(x− xn)δ(v − vn)δ(t′ − tn)〉. (16b)

The latter satisfies the Kolmogorov type equation

R(x,v, t) = δ(x)p0(v)δ(t)+∫
dv′r1(v|v′)

∫
dx′δ(x− x′ − lv′/|v′|)R(x′,v′, t− l/|v′|), (16c)

where p0(v) denotes the distribution of initial particle velocities at step 0. For the injection con-310

dition applied here, the initial velocities are sampled uniformly among the network realizations.311

Thus, p0(v) is not equal to the stationary velocity PDF ps(v), which is obtained by sampling the312
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velocities equidistantly along a particle path, as outlined above. The correlated CTRW model (16)313

describes the evolution from an initial PDF p0(v) towards the steady state PDF through the transi-314

tion matrix r1(v|v′).315

For independent successive velocities, i.e., r1(v|v′) = p(v), one recovers the CTRW model [e.g.,316

41]317

P (x, t) =

∫ t

0

dt′R(x, t′)

∫ ∞
t−t′

dτ

∫
dxψ(x, τ), (17a)

where R(x, t) satisfies

R(x, t) = δ(x)δ(t) +

∫
dx′
∫ t

0

dt′R(x′, t′)ψ(x− x′, t− t′), (17b)

and the joint transition length and time density is given by

ψ(x, t) =

∫
dv′p(v′)δ(x− lv′/|v′|)δ(t− l/|v′|). (17c)

In the following, we refer to system (16) as correlated CTRW because subsequent particle318

velocities are correlated in space, and to model (17) as uncorrelated CTRW because subsequent319

particle velocities are uncorrelated in space.320

Based on the Markovianity assumption of particle transitions, the developed correlated CTRW321

model is applied to study particle transport in the random network. We compare the results ob-322

tained from direct Monte Carlo simulations to both the correlated and uncorrelated CTRW models.323

Correlated CTRW is characterized by the one-step transition matrix T1 determined from numer-324

ical Monte Carlo simulations [Figures 10 and 11]. Uncorrelated CTRW is characterized by the325

Lagrangian velocity distribution p(v), which is obtained from Monte Carlo simulations as well.326

The predictions of the developed correlated CTRW model show an excellent agreement with327

the Monte Carlo simulations for all levels of heterogeneity and mixing rules under consideration328

[Figures 12, 13(a)(b)(c), and 14(a)]. Note that the direct Monte Carlo simulations are performed by329

solving Equation (3) in 100 realizations for different mixing rules. Correlated CTRW captures the330

time evolution of the particle plume with remarkable accuracy, including spatial moments, first331

passage time distributions and distributions of transverse particle breakthrough positions. Fig-332

ure 12 shows the time evolution of the longitudinal and transverse MSDs. Both the scaling and the333

magnitude of the longitudinal spreading are captured accurately by the correlated CTRW model.334

The model also reproduces accurately the magnitude and evolution of the transverse MSD.335
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FIG. 12. Time evolution of MSDs obtained from Monte Carlo simulations (solid lines), and the model

predictions from the correlated CTRW model (dashed lines). The developed correlated CTRW model is

able to accurately capture the time evolution of the MSDs for all levels of heterogeneity strength and mixing

rules. (a) σ2lnK = 0.1, (b) σ2lnK = 1, and, (c) σ2lnK = 5 with complete mixing, where red line is longitudinal

direction and blue line is transverse direction. (d) σ2lnK = 0.1, (e) σ2lnK = 1, (f) σ2lnK = 5 with streamline

routing, where black line is longitudinal and green line is transverse direction.

Ignoring the correlated structure of the Lagrangian velocity leads to predictions of longitudinal336

and transverse spreading that deviate from the direct Monte Carlo simulation [Figures 13(d)(e)(f),337

and 14(b)]. The uncorrelated CTRW model is not able to predict transverse spreading for the338

streamline routing case [Figure 13(d)(e)(f)], or the peak arrival time and spread of the FPTD339

[Figures 14(b)]. In contrast, these behaviors are accurately captured by the correlated model.340

VI. PARAMETERIZATION OF THE CORRELATED CTRW MODEL341

In the previous section, we showed that the effective particle movement can be described by342

a CTRW whose particle velocities, or transition times, form a spatial Markov process. The latter343
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has been characterized by a velocity transition PDF which has been sampled from the simulated344

particle velocities. While the resulting correlated CTRW describes the observed behavior well,345

the application of the approach to experimental data (such as tracer tests) asks for a process model346

that requires only a few parameters which may be estimated from the available data. Thus, here347

we consider an explicit Markov process model for subsequent transition times that captures the348

essential features of correlation with a minimal set of parameters. To accomplish this, we follow349

the approach of [18], who recently proposed an effective parameterization of the correlated CTRW350

model and applied it to the interpretation of field-scale tracer transport experiments.351

We consider the series of streamwise particle velocities vn = |vL(sn)| and model them as352

a Markov process {vn} through the steady state velocity PDF, ψv(v), and the transition ma-353

trix T [63]. First note that v is discretized into N classes, v ∈ ⋃N
i=1(vc,i, vc,i+1], such that the354

transition probabilities between the classes are represented by the N × N transition matrix T.355

Here, we choose equiprobable binning such that the class limits vc,i are given implicitly by356

∫ vc,i+1

vc,i

dt ψτ (t) =
1

N
. (18)

With this condition, T is a doubly stochastic matrix, which satisfies
∑N

i=1 Tij =
∑N

j=1 Tij = 1.357

For a large number of transitions it converges towards uniformity358

lim
n→∞

[Tn]ij =
1

N
, (19)

whose eigenvalues are 1 and 0. Correlation is measured by the convergence of T towards the359

uniform matrix. The characteristic number of steps over which the Markov chain is correlated,360

is determined by the decay rate of the second largest eigenvalue χ2 of T (the largest eigenvalue361

of a stochastic matrix is always 1). The convergence towards uniformity can be quantified by the362

correlation function C(n) = χn2 , which can be written as363

C(n) = exp

(
− n

nc

)
, nc = − 1

ln(|χ2|)
. (20)

The transition matrix is characterized by nc, which determines the characteristic number of364

steps for convergence towards uniformity. Thus, we consider here a Markov model whose transi-365

tion matrix is characterized by just two eigenvalues, namely 1 and χ2. Its transition matrix is given366

by367
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Tij = aδij + (1− a)
1− δij
N − 1

. (21)

It describes a Markov process that remains in the same state with probability a and changes to a368

different state, whose distribution is uniform, with probability 1− a. The diagonal value of a ≤ 1369

determines the correlation strength. A value of a = 1 implies perfect correlation, which renders370

the N -dimensional unity matrix, Tij = δij . For a = 1/N , all transitions are equally probable,371

and the transition matrix is equal to the uniform matrix with Tij = 1/N . The eigenvalues of the372

transition matrix (21) are χ1 = 1 and373

χ2 =
Na− 1

N − 1
. (22)

Thus, the number nc of correlation steps is given by374

nc = − 1

ln
(
Na−1
N−1

) N�1≈ − 1

ln (a)
. (23)

It is uniquely determined by the value of a. The value of a can be estimated from the correlation375

function χs(s) of streamwise Lagrangian velocity given by Equation (8). The streamwise velocity376

correlation function is given in terms of the velocity time series {vn} as377

χ(sn+m − sn) =
〈v′n+mv′n〉
〈v′n2〉

, (24)

where we defined v′n = vn − 〈v〉 with 〈v〉 the mean streamwise velocity and sn = nl. Using378

the discretization (18) of streamwise velocities into N equiprobable bins and the transition matrix379

T, the velocity correlation can be written as380

χs(sn+m − sn) =

1
N

N∑
i,j=1

v′c,i[T
m]ijv

′
c,j

1
N

N∑
i=1

v′c,i
2

. (25)

Note that the transition matrix T given by (21) is symmetric and has only the two eigenvalues,381

χ1 = 1 and χ2 given by (22) with χ2 of order N − 1. Thus, performing a base transformation382

in (25) into the eigensystem of T, one sees that383
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χs(sn+m − sn) = exp

(
−|sn+m − sn|

`c

)
, (26)

where the correlation length is given by `c = ncl. Thus, nc is directly related to the correlation384

length of the streamwise Lagrangian velocity. Note that `c = 0 for zero correlation and `c = ∞385

for perfect correlation. As illustrated in Figure 8(b), χs(s) is well approximated by an exponential386

function. Thus, we obtain a from the correlation length `c as a = exp(−l/`c). The transition387

matrix T is fully parameterized in terms of the correlation length of the streamwise Lagrangian388

velocity.389

To describe the observed steady state velocity distribution ψv(v) we consider the equivalent390

distribution ψτ (τ) of transition times τ = l/v, which is illustrated in Figure 8(a). It is well391

described by the following truncated power-law distribution392

ψτ (t) ∼
exp(−τ0/t)
(t/τ0)1+β

, (27)

where τ0 determines the early time cutoff, and β the power-law slope. Note that τ0 and β are393

both positive coefficients. The slope β of the power-law regime describes the heterogeneity of the394

velocity distribution. As β decreases, the transport becomes more anomalous because the prob-395

ability of experiencing large transition times increases. Therefore, smaller β can be understood396

to represent higher flow heterogeneity, as is well known in the CTRW modeling framework [43].397

Indeed, the estimated β values decrease as the conductivity distribution becomes more heteroge-398

neous (we obtain β = 18, 2.6, 1.7 for σ2
lnK = 0.1, 1, 5, respectively). We estimate the parameters399

τ0 and β from the measured transition time distributions [Figure 8(a)]. As pointed out recently400

by [64], the tail behavior of the transition time PDF as quantified by the exponent β may in prin-401

ciple be related to the lower end of the distribution of hydraulic conductivity.402

The velocity PDF is obtained from the transition time PDF by ψv(v) = (l/v2)ψτ (l/v) and403

quantifies together with the transition matrix T the velocity heterogeneity and velocity correlation404

structure. To honor the network geometry and to accurately estimate transverse spreading we need405

one more input parameter that quantifies the velocity directionality. Since the majority of velocity406

transitions are forward-forward, we only consider E, M, G and O transitions. We need a additional407

parameter that quantifies the probability of changing (either M or G) or maintaing the direction408

(either E or O), and define γ as the probability of changing and 1 − γ is the probability of main-409

taining the direction. The measured γ values for the complete mixing rule are in all cases ∼ 0.5,410

25



independently of conductivity distributions. This is because the complete mixing rule maximizes411

transverse excursions. However, for streamline routing γ is very sensitive to the underlying con-412

ductivity distribution. It decreases as the conductivity distribution becomes more heterogeneous413

(we find γ = 0.89, 0.71, 0.58 for σ2
lnK = 0.1, 1, 5, respectively). This is because the probability of414

transitioning to an adjacent link is higher for the streamline routing case, and as the conductivity415

heterogeneity increases the probability of transitioning to the opposite link increases.416

In summary, the correlated CTRW model for the random network under consideration is char-417

acterized by four independent parameters that determine the velocity distribution and the velocity418

correlation strucuture: β, which characterizes the slope of the truncated power-law distribution;419

τ0, which characterizes the early time cutoff of the transition time distribution; a, which quantifies420

the velocity correlation; and γ, which quantifies the velocity transition directionality.421

In order to test the predictive power of the parametric correlated CTRW model, the model422

predictions are compared to the results obtained from the direct Monte Carlo simulations. We423

obtain and excellent agreement with the Monte Carlo results for all the conductivity distributions424

and mixing rules that we studied (Figures 15 and 16). The model accurately captures the time425

evolution of the particle plumes, including spatial moments, first passage time distributions and426

the distributions of the transverse particle breakthrough positions (Figures 15 and 16).427

The fact that the parametric correlated CTRW proves as good here as the more complex cor-428

related CTRW model presented in the previous section is noteworthy, as the parametric model429

involves only four parameters. In particular, the previous CTRW model quantifies explicitly the430

transition probability of each velocity class to the others, while the parametric correlated CTRW431

model only quantifies the probability to stay in the same velocity class and it assumes that the432

probability to jump to any other class is independent of velocity. This assumption is likely valid433

here since there is nearly no dependence of the velocity correlation properties on the velocity434

(Figure 11). This assumption would break down in systems where transitions from one velocity435

to the other is strongly dependent on velocity. For instance, in highly channelized systems, the436

probability for particles to stay in high velocity channels may be different from their probability to437

stay in low velocity areas (see discussion in [65]). This result represents an important step towards438

the application of this framework to the field. As discussed in [18], the model parameters can439

be estimated by analyzing jointly cross-borehole and push-pull tracer tests. In particular, velocity440

correlation is key to distinguishing reversible from irreversible dispersion, which is linked to the441

difference between spreading and mixing.442
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FIG. 15. Comparison between the time evolution of the MSDs obtained from the Monte Carlo simulations

(solid lines) and the model predictions from the parametric correlated CTRW model (dashed lines). The

proposed model is able to accurately capture the time evolution of the MSDs for all levels of heterogeneity

and mixing rules under consideration. (a) σ2lnK = 0.1, (b) σ2lnK = 1, (c) σ2lnK = 5 with complete mixing,

where red line is longitudinal direction and blue line is transverse direction. (d) σ2lnK = 0.1, (e) σ2lnK = 1,

(f) σ2lnK = 5 with streamline routing, where black line is longitudinal and green line is transverse direction.

VII. CONCLUSIONS443

Fracture networks characterized by conductivity heterogeneity and different mixing rules at444

fracture intersections lead to non-trivial transport behavior often characterized by non-Fickian445

dispersion properties in both longitudinal and transverse directions. The divergence-free condition446

arising from mass conservation leads to a correlated flow field with preferential paths, even when447

the underlying conductivity field is completely uncorrelated. Mixing rules at nodes are shown448

to have a major impact on transverse mixing. In particular, the streamline routing rule leads to449

subdiffusive transverse spreading behavior. While velocity distributions are mainly controlled by450

the underlying conductivity distributions, the velocity correlation structure is determined by the451
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FIG. 16. Probability distributions of the transverse particle breakthrough positions obtained from Monte

Carlo simulations, and predictions from the parametric correlated CTRW model. (a) σ2lnK = 0.1. (b)

σ2lnK = 1. (c) σ2lnK = 5. Inset: Particle breakthrough curves from Monte Carlo simulations and model

predictions from the parametric correlated CTRW model.

interplay between network heterogeneity and mixing rule at nodes.452

Here, we propose and validate a spatial Markov model that is fully parameterized from the453

velocity field distribution and spatial correlation properties, and explicitly captures the multidi-454

mensional effects associated with changes in direction along the particle trajectory. In particular,455

we discuss the impact of spatial velocity correlations, which are typically not included in the456

classical CTRW framework, on the transport behavior. To make this model amenable to field ap-457

plications, we develop a parametric model formulation containing a minimum set of parameters458

that still captures the main properties of the velocity field relevant for transport: β characterizes459

the slope of the truncated power-law velocity distribution, τ0 characterizes the early time cutoff of460

the transition time distribution, a quantifies the velocity correlation, and γ quantifies the velocity461

transition directionality.462

The excellent agreement between the model and the numerical simulations provides a valida-463

tion of this parametric correlated CTRW approach, whose parameters can be determined from field464

tracer tests [18] to assess the respective role of velocity distributions and velocity correlations in465

situ. It is important to note that, in its current formulation, the parametric correlated CTRW model466

assumes an identical correlation length over all velocity classes. This assumption allows us to467

quantify velocity correlation with a single parameter, but could be an oversimplified approach for468

certain cases. For example, correlated conductivity field with strong preferential paths may lead469
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to longer velocity correlation length for high velocities compared to small velocities. This should470

be investigated in future research and we conjecture that assigning variable correlation length as a471

function of velocity class could be a promising approach.472

Finally, our study shows how the interplay between fracture geometrical properties (conductiv-473

ity distribution and network geometry) and physical transport mechanisms (the balance between474

advection and diffusion that determines mixing at the fracture scale) controls average particle475

transport via Lagrangian velocity statistics. We conjecture that the proposed correlated CTRW476

model may provide an avenue to link the model parameters to geometrical and physical transport477

mechanisms.478
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